- The Gibbs sampler is a conditional sampling technique in which the acceptance-rejection step is not needed.
- The Markov transition rules of the algorithm are built upon conditional distributions derived from the target distribution.
- Suppose that the random variable can be decomposed into *n* components, i.e. x = (x₁,..., x_n). In Gibbs sampler, one randomly or systematically chooses a coordinate x_i and then substitutes it with x'_i drawn from

$$\pi(x_i \mid y, x_1, \ldots, x_{i-1}, x_{i+1}, x_{i+2}, \ldots, x_n),$$

that is, the conditional posterior density of x_i .

This conditional posterior usually is but does not have to be one-dimensional.

Gibbs Sampler (Systematic Scan)

1. Let
$$k = 0$$
 and $x^{(0)} = (x_1^{(0)}, x_2^{(0)}, \dots, x_n^{(0)})$.
2. Draw $x_1^{(k+1)}$ from the conditional densit

$$\pi(x_i \mid x_1^{(k+1)}, \ldots, x_{i-1}^{(k+1)}, x_{i+1}^{(k)}, \ldots, x_n^{(k)}),$$

for i = 1, ..., n

3. Set k = k + 1, and if k is less than total number of iterations defined by the user, go back to the 2. step.

Gibbs Sampler (Random Scan)

- 1. Let t = 0 and $x^{(0)} = (x_1^{(0)}, x_2^{(0)}, \dots, x_n^{(0)})$.
- 2. Select a random uniformly distributed index *i* from the set {1, 2, ..., *n*}.
- 3. Draw $x_i^{(k+1)}$ from the conditional distribution

$$\pi(x_i \mid x_1^{(k)}, \ldots, x_{i-1}^{(k)}, x_{i+1}^{(k)}, \ldots, x_n^{(k)}).$$

4. Set k = k + 1, and if k is less than total number of iterations defined by the user, go back to the 2. step.

Differences between the moves of Metropolis-Hastings (M-H) and Gibbs sampler (GS). In the images, the actual samples have been visualized with red and the other proposed (M-H) and conditional sampling (GS) points with blue.

Balance Equation for Gibbs Sampler

The balance equation $\int \pi(x)A(x, y) dx = \int \pi(y)A(y, x) dx$ holds for Gibbs sampler, which can be shown as follows. Let us for simplicity assume that the systematic scan Gibbs sampler is in question and each conditional density is a one-dimensional one. The transition function is given by

$$A(x, y) = \prod_{i=1}^{n} \pi(y_i | y_1, \dots, y_{i-1}, x_{i+1}, \dots, x_n).$$

Integrating A(y, x) with respect to the last coordinate x_n gives

$$\int_{\mathbb{R}} A(y, x) dx_n = \int_{\mathbb{R}} \prod_{i=1}^n \pi(x_i \mid x_1, \dots, x_{i-1}, y_{i+1}, \dots, y_n) dx_n$$

Balance Equation for Gibbs Sampler continued

$$= \prod_{i=1}^{n-1} \pi(x_i \mid x_1, \dots, x_{i-1}, y_{i+1}, \dots, y_n) \int_{\mathbb{R}} \pi(x_n \mid x_1, \dots, x_{n-1}) dx_n$$

=
$$\prod_{i=1}^{n-1} \pi(x_i \mid x_1, \dots, x_{i-1}, y_{i+1}, \dots, y_n).$$

The last equality follows from $\int_{\mathbb{R}} \pi(x_n | y_1, \dots, y_{n-1}) dx_n = 1$. Repeating this integration inductively with respect to $x_{n-1}, x_{n-2}, \dots, x_1$, it follows that $\int_{\mathbb{R}^n} A(y, x) dx = 1$. Thus, we have

$$\int_{\mathbb{R}^n} \pi(y) A(y, x) dx = \pi(y) \int_{\mathbb{R}^n} A(y, x) dx = \pi(y).$$

Balance Equation for Gibbs Sampler continued

Considering now the right-hand side of the balance equation, and observing that A(x, y) is independent of x_1 , we have

$$\int_{\mathbb{R}^n} \pi(x) A(x, y) dx_1 = A(x, y) \int_{\mathbb{R}^n} \pi(x) dx_1$$
$$= A(x, y) \pi(x_2, x_3, \dots, x_n),$$

and further $\int_{\mathbb{R}} \pi(x) A(x, y) dx_1 =$

$$\left(\prod_{i=2}^{n}\pi(y_{i}|y_{1},\ldots,y_{i-1},x_{i+1},\ldots,x_{n})\right)\pi(y_{1}|x_{2},\ldots,x_{n})\pi(x_{2},\ldots,x_{n}).$$

Balance Equation for Gibbs Sampler continued

$$= \Big(\prod_{i=2}^{n} \pi(y_i | y_1, \ldots, y_{i-1}, x_{i+1}, \ldots, x_n)\Big) \pi(y_1, x_2, x_3, \ldots, x_n).$$

Repeating this inductively for x_2, x_3, \ldots, x_n , and taking into account that

$$\int_{\mathbb{R}^{i}} \pi(y_{1}, \dots, y_{i-1}, x_{i}, \dots, x_{n}) \pi(y_{i} \mid y_{1}, \dots, y_{i-1}, x_{i+1}, \dots, x_{n}) dx_{i}$$

= $\pi(y_{1}, \dots, y_{i-1}, x_{i+1}, \dots, x_{n}) \pi(y_{i} \mid y_{1}, \dots, y_{i-1}, x_{i+1}, \dots, x_{n})$
= $\pi(y_{1}, \dots, y_{i-1}, y_{i}, x_{i+1}, \dots, x_{n}),$

it follows that $\int_{\mathbb{R}^n} \pi(x) A(x, y) dx = \pi(y)$, showing that the balance equation holds.

- In general, one step of Gibbs sampler (GS) requires more work than that of the Metropolis-Hastings (M-H) algorithm, since the former is likely to require more point evaluations of the posterior density.
- However, subsequent points produced by GS are usually less mutually correlated than those produced by M-H, i.e. the sample ensemble of a given size is typically better distributed according to the posterior in the case of GS than that of M-H.
- Sampling from a conditional density in Gibbs Sampler typically requires findind the essential part of the density due to which implementation can be difficult.

Sampling from one-dimensional density

One can draw *x* distributed according to the probability distribution Φ : $\mathbb{R} \to [0, 1]$, $\Phi(t) = \int_{-\infty}^{t} \pi(\tau) d\tau$, through the following steps:

- 1. Draw *u* from Uniform([0, 1]).
- 2. Set $x = \Phi^{-1}(u)$.
- If the integral $\Phi(t) = \int_{-\infty}^{t} \pi(\tau) d\tau$ is computed for a set of points t_1, t_2, \ldots, t_m covering the essential part of the support of π , the above algorithm can be used to numerical sampling.

Numerical sampling from one-dimensional density

One can draw *x* distributed according to the probability distribution Φ : $\mathbb{R} \to [0, 1]$, $\Phi(t) = \int_{-\infty}^{t} \pi(\tau) d\tau$, through the following steps

- 1. Find a set of points t_1, t_2, \ldots, t_m covering the essential part of the support of π .
- 2. Compute the integral $\Phi(t) = \int_{-\infty}^{t} \pi(\tau) d\tau$ for each point t_1, t_2, \dots, t_m .
- 3. Draw u from Uniform([0, 1]).
- 4. Find the smallest index *i* for which $\Phi(t_i) > u$ and set $x = t_i$.

Example 9 (Matlab)

Draw and visualize a sample ensemble consisting of 100000 points from a probability density

(a) $\pi(\tau) \propto \cos(\pi \tau/2)$ (b) $\pi(\tau) \propto (\tau + 1)^2/4$ (c) $\pi(\tau) \propto (\tau + 1)/2$ (d) $\pi(\tau) \propto \log(\tau + 2)$

with $\tau \in [-1, 1]$. Use the algorithm of the previous page. Visualize the results using histograms.

Gibbs Sampler

Example 9 (Matlab) continued

Blue = Histogram, Red = Exact.

Example 10 (Matlab)

Repeat the sampling procedures of Example 9 using Gibbs Sampler. Compare the results to the ones obtained with the random walk Metropolis with Gaussian proposals. Observe that the Gibbs sampler produces faster moving Markov chain than Metropolis-Hastings.

Solution

Samples from each one-dimensional conditional density were produced numerically by dividing intersection of the unit disk and the line corresponding to conditional density into a 200 equally spaced points, and then the previously given one-dimensional sampling algorithm was used.

Gibbs Sampler

Gibbs Sampler

Gibbs Sampler

Example 10 (Matlab) continued

- Based on the burn in sequence, it is clear that the Gibbs sampler produces a faster moving Markov chain than the Metropolis-Hastings, i.e. the sample points are less mutually correlated in the case of Gibbs sampler.
- A rule of thumb is that the more the sampling history for a single coordinate looks like a "fuzzy worm" the more independent are the sampling points and the better is the Markov chain in general with regard to convergence of the estimates.

