Lectures 13: Jackknife sampling I.

error propagation for nonlinear functions of fit parameters

The Empirical density function

Statistical inference concerns learning from experience: we observe a random sample $\mathbf{x} = (x_1, x_2, \dots, x_n)$ and wish to infer properties of the complete population \mathcal{X} that yielded the sample. A complete knowledge is obtained from the population density function F(.) from which \mathbf{x} has been generated $F \rightsquigarrow \mathbf{x} = (x_1, x_2, \dots, x_n)$

Definition

The empirical density function $\hat{F}(.)$ is defined as:

$$\hat{F}(x) = \frac{1}{n} \sum_{i=1}^{n} \delta(x - x_i)$$

where $\delta(\cdot)$ is the Dirac delta function. So the probability of $x = x_j$ is :

$$\int \hat{F}(x_j) dx = \int \frac{1}{n} \sum_{i=1}^n \delta(x_j - x_i) dx = \begin{cases} \frac{1}{n}, x_j \in \{x_1, \cdots, x_n\} \\ 0, \text{ otherwise} \end{cases}$$

statistics reviewed from Lecture 12

The Plug-in principle

Definition

The Plug-in estimate of a parameter $\theta = t(F)$ is defined to be:

$$\hat{\theta} = t(\hat{F}).$$

The function $\theta = t(F)$ of the probability density function F is estimated by the same function t(.) of the empirical density \hat{F} .

- \overline{x} is the plug-in estimate of μ_F .
- $\hat{\sigma}$ is the plug-in estimate of σ_F

statistics reviewed from Lecture 12

Computing the mean knowing F

Example A

Lets assume we know the p.d.f. F:

$$F(x) = 0.2 \mathcal{N}(\mu=1,\sigma=2) + 0.8 \mathcal{N}(\mu=6,\sigma=1)$$

Then the mean is computed:

$$\mu_F = \mathbb{E}_F(x) = \int_{-\infty}^{+\infty} x F(x) dx$$
$$= 0.2 \cdot 1 + 0.8 \cdot 6$$
$$= 5$$



Estimating the mean knowing the observations **x**

Example A

Observations $\mathbf{x} = (x_1, \cdots, x_{100})$:

ſ	7.0411	4.8397	5.3156	6.7719	7.0616
	5.2546	7.3937	4.3376	4.4010	5.1724
	7.4199	5.3677	6.7028	6.2003	7.5707
	4.1230	3.8914	5.2323	5.5942	7.1479
	3.6790	0.3509	1.4197	1.7585	2.4476
	-3.8635	2.5731	-0.7367	0.5627	1.6379
	-0.1864	2.7004	2.1487	2.3513	1.4833
	-1.0138	4.9794	0.1518	2.8683	1.6269
	6.9523	5.3073	4.7191	5.4374	4.6108
	6.5975	6.3495	7.2762	5.9453	4.6993
	6.1559	5.8950	5.7591	5.2173	4.9980
	4.5010	4.7860	5.4382	4.8893	7.2940
	5.5741	5.5139	5.8869	7.2756	5.8449
	6.6439	4.5224	5.5028	4.5672	5.8718
	6.0919	7.1912	6.4181	7.2248	8.4153
	7.3199	5.1305	6.8719	5.2686	5.8055
	5.3602	6.4120	6.0721	5.2740	7.2329
	7.0912	7.0766	5.9750	6.6091	7.2135
	4.9585	5.9042	5.9273	6.5762	5.3702
U	4.7654	6.4668	6.1983	4.3450	5.3261

From the samples, the mean can be computed:

$$\overline{x} = \frac{\sum_{i=1}^{100} x_i}{100}$$

$$= 4.9970$$

Accuracy of estimates $\hat{\theta}$

We can compute an estimate $\hat{\theta}$ of a parameter θ from an observation sample $\mathbf{x} = (x_1, x_2, \dots, x_n)$. But how accurate is $\hat{\theta}$ compared to the real value θ ?

Our attention is focused on questions concerning the probability distribution of $\hat{\theta}$. For instance we would like to know about:

- its standard error
- its confidence interval
- its bias
- etc.

statistics review continued

Standard error of $\hat{\theta}$

Definition

The standard error is the standard deviation of a statistic $\hat{\theta}$. As such, it measures the precision of an estimate of the statistic of a population distribution.

$$se(\hat{ heta}) = \sqrt{var_F[\hat{ heta}]}$$

Standard error of \overline{x}

We have:

$$\mathbb{E}_{F}\left[(\overline{x}-\mu_{F})^{2}\right] = \frac{\sum_{i=1}^{n}\mathbb{E}_{F}\left[(x_{i}-\mu_{F})^{2}\right]}{n^{2}} = \frac{\sigma_{F}^{2}}{n}$$

Then

$$se_F(\overline{x}) = [var_F(\overline{x})]^{1/2} = \frac{\sigma_F}{\sqrt{n}}$$

Plug in estimate of the standard error

Suppose now that F is unknown and that only the random sample $\mathbf{x} = (x_1, \dots, x_n)$ is known. As μ_F and σ_F are unknown, we can use the previous formula to compute a plug-in estimate of the standard error.

Definition

The estimated standard error of the estimator $\hat{\theta}$ is defined as:

$$\hat{\operatorname{se}}(\hat{ heta}) = \operatorname{se}_{\hat{F}}(\hat{ heta}) = [\operatorname{var}_{\hat{F}}(\hat{ heta})]^{1/2}$$

Estimated standard error of \overline{x}

$$\hat{\operatorname{se}}(\overline{x}) = \frac{\hat{\sigma}}{\sqrt{n}}$$

Bias of $\hat{\theta}$

Definition

The Bias is the difference between the expectation of an estimator $\hat{\theta}$ and the quantity θ being estimated:

$$ext{Bias}_{ extsf{F}}(\hat{ heta}, heta) = \mathbb{E}_{ extsf{F}}(\hat{ heta}) - heta$$

Bias of the mean \overline{x}

we have:

$$\mathbb{E}_{F}(\overline{x}) = \mathbb{E}_{F}\left(\frac{\sum_{i=1}^{n} x_{i}}{n}\right) = \frac{\sum_{i=1}^{n} \mathbb{E}_{F}(x_{i})}{n} = \mu_{F}$$

then:

$$\operatorname{Bias}_F(\overline{x},\mu_F) = \mathbb{E}_F(\overline{x}) - \mu_F = 0$$

Bias of $\hat{\theta}$

Bias of $\hat{\sigma}^2$

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2 = \frac{1}{n} \sum_{i=1}^n ((x_i - \mu_F) + (\mu_F - \overline{x}))^2$$

$$= \left(\frac{1}{n}\sum_{i=1}^{n}(x_{i}-\mu_{F})^{2}\right) - (\overline{x}-\mu_{F})^{2}$$

The first term has an expected value of σ_F^2 and the second term has expected value σ_F^2/n . So the bias of $\hat{\sigma}^2$ is:

$$\operatorname{Bias}_{F}(\hat{\sigma}^{2}, \sigma_{F}^{2}) = \sigma_{F}^{2} - \frac{\sigma_{F}^{2}}{n} - \sigma_{F}^{2} = -\frac{\sigma_{F}^{2}}{n}$$

Bias of $\hat{\theta}$

Instead of using $\hat{\sigma}^2$ as an estimate of the variance, you should try to choose an unbiased estimate.

Bias of $\overline{\sigma}^2$

Let define:

$$\overline{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2$$

then by computing its bias:

$$\operatorname{Bias}_{F}(\overline{\sigma}^{2}, \sigma_{F}^{2}) = \mathbb{E}_{F}(\overline{\sigma}^{2}) - \sigma_{F}^{2} = 0$$

 $\overline{\sigma}$ is an unbiased estimator of the standard deviation.

Introduction

The bootstrap method is not always the best one. One main reason is that the bootstrap samples are generated from \hat{F} and not from F. Can we find samples/resamples exactly generated from F?

- If we look for samples of size *n*, then the answer is no!
- If we look for samples of size m (m < n), then we can indeed find (re)samples of size m exactly generated from F simply by looking at different subsets of our original sample x!

Looking at different subsets of our original sample amounts to sampling without replacement from observations x_1, \dots, x_n to get (re)samples (now called subsamples) of size m. This leads us to subsampling and the jackknife.

Jackknife

- The jackknife has been proposed by Quenouille in mid 1950's.
- In fact, the jackknife predates the bootstrap.
- The jackknife (with m = n 1) is less computer-intensive than the bootstrap.
- Jackknife describes a swiss penknife, easy to carry around. By analogy, Tukey (1958) coined the term in statistics as a general approach for testing hypotheses and calculating confidence intervals.

Jackknife samples

Definition

The Jackknife samples are computed by leaving out one observation x_i from $\mathbf{x} = (x_1, x_2, \dots, x_n)$ at a time:

$$\mathbf{x}_{(i)} = (x_1, x_2, \cdots, x_{i-1}, x_{i+1}, \cdots, x_n)$$

- The dimension of the jackknife sample $\mathbf{x}_{(i)}$ is m = n 1
- n different Jackknife samples : {x_(i)}_{i=1...n}.
- No sampling method needed to compute the n jackknife samples.

Available BOOTSTRAP MATLAB TOOLBOX, by Abdelhak M. Zoubir and D. Robert Iskander, http://www.csp.curtin.edu.au/downloads/bootstrap_toolbox.html

Jackknife replications

Definition

The ith jackknife replication $\hat{\theta}_{(i)}$ of the statistic $\hat{\theta} = s(\mathbf{x})$ is:

$$\hat{\theta}_{(i)} = s(\mathbf{x}_{(i)}), \quad \forall i = 1, \cdots, n$$

Jackknife replication of the mean

$$s(\mathbf{x}_{(i)}) = \frac{1}{n-1} \sum_{j \neq i} x_j$$
$$= \frac{(n\overline{x} - x_i)}{n-1}$$
$$= \overline{x}_{(i)}$$

Jackknife estimation of the standard error

- Compute the *n* jackknife subsamples $\mathbf{x}_{(1)}, \dots, \mathbf{x}_{(n)}$ from \mathbf{x} .
- 2 Evaluate the *n* jackknife replications $\hat{\theta}_{(i)} = s(\mathbf{x}_{(i)})$.
- The jackknife estimate of the standard error is defined by:

$$\widehat{\operatorname{se}}_{jack} = \left[\frac{n-1}{n}\sum_{i=1}^{n}(\widehat{\theta}_{(\cdot)} - \widehat{\theta}_{(i)})^{2}\right]^{1/2}$$

where $\hat{\theta}_{(\cdot)} = \frac{1}{n} \sum_{i=1}^{n} \hat{\theta}_{(i)}$.

Jackknife estimation of the standard error of the mean

For $\hat{\theta} = \overline{x}$, it is easy to show that:

$$\begin{cases} \overline{x}_{(i)} = \frac{n\overline{x} - x_i}{n-1} \\ \overline{x}(\cdot) = \frac{1}{n} \sum_{i=1}^{n} \overline{x}_{(i)} = \overline{x} \end{cases}$$

Therefore:

$$\widehat{\operatorname{se}}_{jack} = \left\{ \sum_{i=1}^{n} \frac{(x_i - \overline{x})^2}{(n-1)n} \right\}^{1/2}$$
$$= \frac{\overline{\sigma}}{\sqrt{n}}$$

where $\overline{\sigma}$ is the unbiased variance.

Jackknife estimation of the standard error

- The factor $\frac{n-1}{n}$ is much larger than $\frac{1}{B-1}$ used in bootstrap.
- Intuitively this inflation factor is needed because jackknife deviation
 (θ̂_(i) − θ̂_(·))² tend to be smaller than the bootstrap (θ̂^{*}(b) − θ̂^{*}(·))²
 (the jackknife sample is more similar to the original data x than the
 bootstrap).
- In fact, the factor $\frac{n-1}{n}$ is derived by considering the special case $\hat{\theta} = \overline{x}$ (somewhat arbitrary convention).

Comparison of Jackknife and Bootstrap on an example

Example A: $\hat{\theta} = \overline{x}$

$$F(x) = 0.2 \mathcal{N}(\mu=1,\sigma=2) + 0.8 \mathcal{N}(\mu=6,\sigma=1) \rightsquigarrow \mathbf{x} = (x_1,\cdots,x_{100}).$$

 Bootstrap standard error and bias w.r.t. the number B of bootstrap samples:

В	10	20	50	100	500	1000	10000
sê _B	0.1386	0.2188	0.2245	0.2142	0.2248	0.2212	0.2187
Bias _B	0.0617	-0.0419	0.0274	-0.0087	-0.0025	0.0064	0.0025

• Jackknife: $\widehat{se}_{jack} = 0.2207$ and $\widehat{Bias}_{jack} = 0$

• Using textbook formulas:
$$\operatorname{se}_{\hat{F}} = \frac{\hat{\sigma}}{\sqrt{n}} = 0.2196 \left(\frac{\overline{\sigma}}{\sqrt{n}} = 0.2207\right)$$
.

Jackknife estimation of the bias

- Compute the *n* jackknife subsamples $\mathbf{x}_{(1)}, \dots, \mathbf{x}_{(n)}$ from **x**.
- 2 Evaluate the *n* jackknife replications $\hat{\theta}_{(i)} = s(\mathbf{x}_{(i)})$.
- The jackknife estimation of the bias is defined as:

$$\widehat{\operatorname{Bias}}_{jack} = (n-1)(\widehat{\theta}_{(\cdot)} - \widehat{\theta})$$

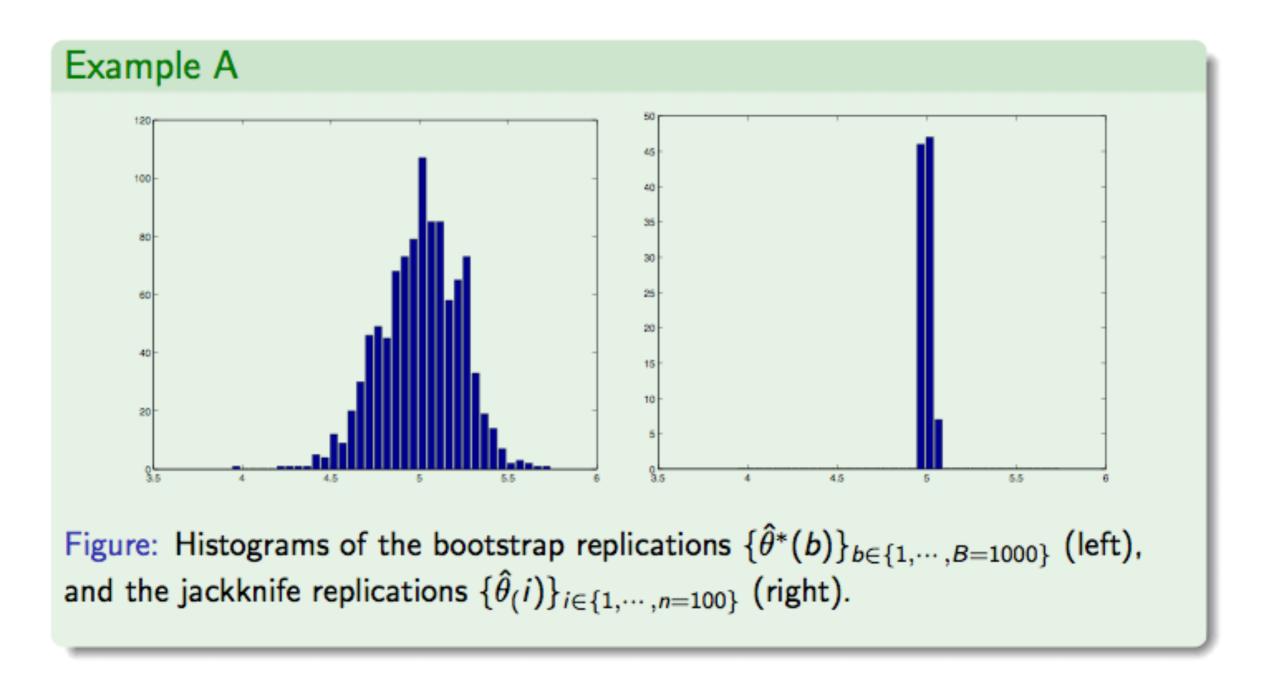
where $\hat{\theta}_{(\cdot)} = \frac{1}{n} \sum_{i=1}^{n} \hat{\theta}_{(i)}$.

Jackknife estimation of the bias

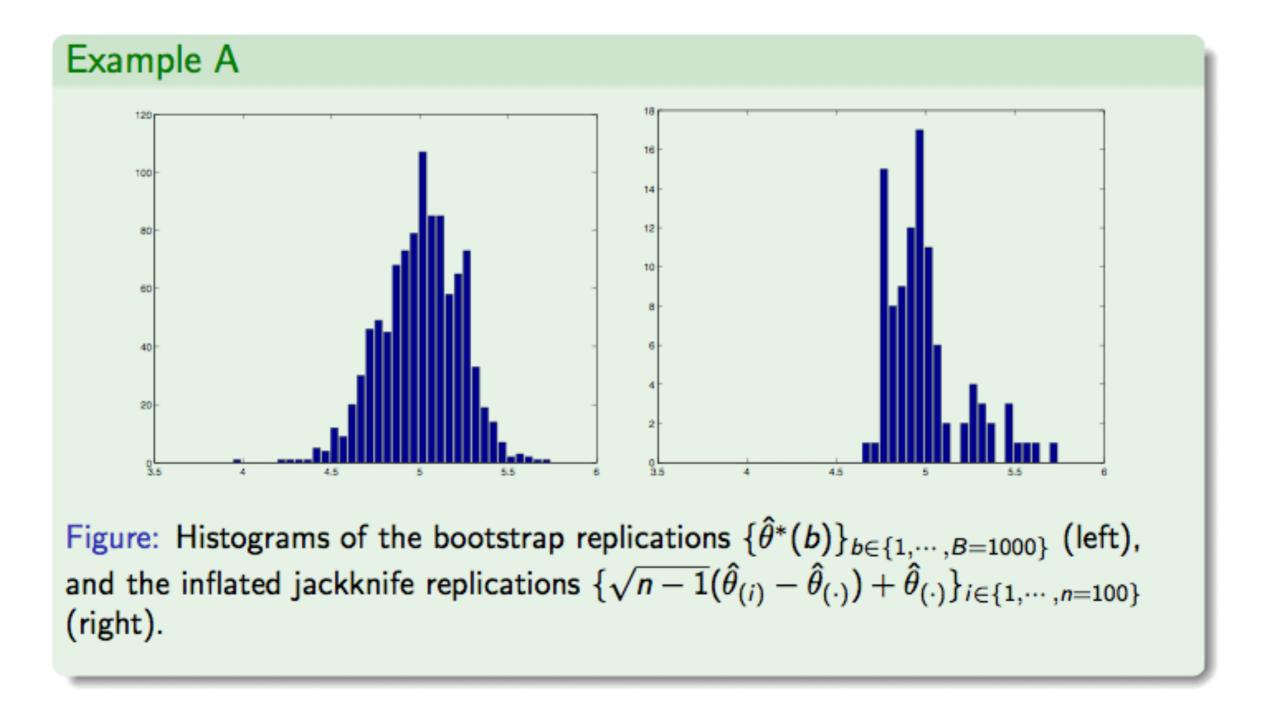
- Note the inflation factor (n 1) (compared to the bootstrap bias estimate).
- $\hat{\theta} = \overline{x}$ is unbiased so the correspondence is done considering the plug-in estimate of the variance $\hat{\sigma}^2 = \frac{\sum_{i=1}^{n} (x_i \overline{x})^2}{n}$.
- The jackknife estimate of the bias for the plug-in estimate of the variance is then:

$$\widehat{\text{Bias}}_{jack} = \frac{\overline{-\sigma}^2}{n}$$

Histogram of the replications



Histogram of the replications



Relationship between jackknife and bootstrap

- When n is small, it is easier (faster) to compute the n jackknife replications.
- However the jackknife uses less information (less samples) than the bootstrap.
- In fact, the jackknife is an approximation to the bootstrap!

Relationship between jackknife and bootstrap

• Considering a linear statistic :

$$\hat{\theta} = s(\mathbf{x}) = \mu + \frac{1}{n} \sum_{i=1}^{n} \alpha(x_i)$$
$$= \mu + \frac{1}{n} \sum_{i=1}^{n} \alpha_i$$

Mean $\hat{\theta} = \overline{x}$

The mean is linear $\mu = 0$ and $\alpha(x_i) = \alpha_i = x_i$, $\forall i \in \{1, \cdot, n\}$.

- There is no loss of information in using the jackknife to compute the standard error (compared to the bootstrap) for a linear statistic. Indeed the knowledge of the n jackknife replications {θ̂_(i)}, gives the value of θ̂ for any bootstrap data set.
- For non-linear statistics, the jackknife makes a linear approximation to the bootstrap for the standard error.

Relationship between jackknife and bootstrap

Considering a quadratic statistic

$$\hat{\theta}_{-} = s(\mathbf{x}) = \mu + \frac{1}{n} \sum_{i=1}^{n} \alpha(x_i) + \frac{1}{n^2} \beta(x_i, x_j)$$

Variance $\hat{\theta} = \hat{\sigma}^2$ $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2$ is a quadratic statistic.

 Again the knowledge of the *n* jackknife replications {s(θ̂_(i))}, gives the value of θ̂ for any bootstrap data set. The jackknife and bootstrap estimates of the bias agree for quadratic statistics.

Delete-d Jackknife samples

Definition

The delete-d Jackknife subsamples are computed by leaving out d observations from x at a time.

- The dimension of the subsample is n d.
- The number of possible subsamples now rises

$$\left(\begin{array}{c}n\\d\end{array}\right)=\frac{n!}{d!(n-d)!}.$$

• Choice: $\sqrt{n} < d < n-1$

Delete-d jackknife

• Compute all
$$\begin{pmatrix} n \\ d \end{pmatrix}$$
 d-jackknife subsamples $\mathbf{x}_{(1)}, \cdots, \mathbf{x}_{(n)}$ from \mathbf{x} .

2 Evaluate the jackknife replications $\hat{\theta}_{(i)} = s(\mathbf{x}_{(i)})$.

Setimation of the standard error (when $n = r \cdot d$):

$$\widehat{\operatorname{se}}_{d-jack} = \left\{ \frac{r}{\binom{n}{d}} \sum_{i} (\widehat{\theta}_{(i)} - \widehat{\theta}(\cdot))^2 \right\}^{1/2}$$

where
$$\hat{\theta}(\cdot) = \frac{\sum_{i} \hat{\theta}_{(i)}}{\begin{pmatrix} n \\ d \end{pmatrix}}$$
.

Summary

- Bias and standard error estimates have been introduced using jackknife replications.
- The Jackknife standard error estimate is a linear approximation of the bootstrap standard error.
- The Jackknife bias estimate is a quadratic approximation of the bootstrap bias.
- Using smaller subsamples (delete-d jackknife) can improve for non-smooth statistics such as the median.

Jackknife sampling Matlab code

%% Jackknife Resampling
%

% Copyright 2015 The MathWorks, Inc.

%%

```
% Similar to the bootstrap is the jackknife, which uses resampling to
% estimate the bias of a sample statistic. Sometimes it is also used to
% estimate standard error of the sample statistic. The jackknife is
% implemented by the Statistics and Machine Learning Toolbox(TM) function
% |jackknife|.
```

%%

% The jackknife resamples systematically, rather than at random as the % bootstrap does. For a sample with |n| points, the jackknife computes % sample statistics on |n| separate samples of size |n|-1. Each sample is % the original data with a single observation omitted.

%%

```
% In the bootstrap example, you measured the uncertainty in estimating the
% correlation coefficient. You can use the jackknife to estimate the bias,
% which is the tendency of the sample correlation to over-estimate or
% under-estimate the true, unknown correlation. First compute the sample
% correlation on the data.
load lawdata
rhohat = corr(lsat,gpa)
```

%%

```
% Next compute the correlations for jackknife samples, and compute their
% mean.
rng default; % For reproducibility
jackrho = jackknife(@corr,lsat,gpa);
meanrho = mean(jackrho)
```

%%

```
% Now compute an estimate of the bias.
n = length(lsat);
biasrho = (n-1) * (meanrho-rhohat)
```

%%

% The sample correlation probably underestimates the true correlation by % about this amount.