Exercises (October 30, 2017):

1. Exercise: try typesetting this
 It does not work with beamer

 > The first entry here
 > Then the second
 > etc

 • The first entry here
 • Then the second
 • etc

 Hint: Use `\textgreater` for “>” and `\bullet” for “•”.

2. Make a triple nested list.

3. How do you get this default:

 > First level
 † Second level
 ‡ Third level

 Check that it works by typesetting the triple nested list of the previous exercise.

 Hint: Symbols used: `\textgreater`, `\star`, `\bullet`.

4. Typeset this:

 First The first entry here
 Second Then the second
 Last Then the last

 with the descriptors “First” in red color, “Second” in blue and “Last” in black.

 Hint: `\usepackage{color}`
Solutions

Exercise 1: \renewcommand{\labelitemi}{\textgreater}

\begin{itemize}
\item The first entry here
\item Then the second
\item etc
\end{itemize}

\renewcommand{\labelitemi}{\bullet}

\begin{itemize}
\item The first entry here
\item Then the second
\item etc
\end{itemize}

Exercise 2: Here is an example of a triple nested list:

\begin{itemize}
\item The first entry here
\begin{itemize}
\item The first sub-entry here
\item Then the second sub-entry
\begin{itemize}
\item The first sub-sub-entry here
\item Then the second sub-sub-entry
\end{itemize}
\item etc
\end{itemize}
\item Return to original list, etc
\end{itemize}

Exercise 3: \renewcommand{\labelitemi}{\textgreater} \renewcommand{\labelitemii}{\star} \renewcommand{\labelitemiii}{\bullet}

Exercise 4: Per the hint place \usepackage{color} in the preamble. Then

\begin{description}
\item[\color{red}First] The first entry here
\item[\color{blue}Second] Then the second
\item[\color{black}Last] Then the last
\end{description}
Exercises (February 14, 2018):

1. Typeset
 \[\begin{align*}
 a &= b \\
 c &= d \\
 e &= f \\
 g &= b \\
 h &= d \\
 k &= f
 \end{align*} \]

2. Typeset
 \[a^2 = b^2 + c^2 \]

3. Typeset two of these: \(\varphi, \sigma, \mathcal{O}, \Xi, \vartheta \)

4. Typeset
 \[F = G \frac{m_1 m_2}{r^2} \]

5. Typeset
 \[n_{\pm}(E, T) = \frac{1}{e^{\frac{E}{k_B T}} \pm 1} = \frac{1}{e^{\frac{\hbar \omega}{k_B T}} \pm 1} \]
 \text{Note: This uses the greek letter \(\omega \) and the symbol \(\hbar \).}

6. Typeset
 \[F_{\mu\nu} = [D_{\mu}, D_{\nu}] = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} = \partial_{[\mu} A_{\nu]} \]
 \text{Note: This uses the greek letters \(\mu \) and \(\nu \), and the symbol \(\partial \).}

7. Typeset these (the first is inline, the next two are separate displayed equations):
 "Taylor expansion \(e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n \)."
 \[\int_0^1 \frac{df}{dx} \, dx = f(1) - f(0) \]
 \[e^{\zeta(s)} = \prod_{n=1}^{\infty} e^{1/n^s} \]
 (This uses the greek letter zeta).
Solutions

Exercise 1: \begin{align*}
a &= b & c &= d & e &= f \\
g &= b & h &= d & k &= f
\end{align*}

Note: the star in align* is used in order to omit equation numbering.

Exercise 2: \item Typeset
\[
\begin{align*}
a^2 &= b^2 + c^2
\end{align*}
\]

Exercise 3: Use package wasysym for \texttt{\female, \male, \taurus, amssymb} for \$\boxminus\$, and tipa for \texttt{\textschwa}

Exercise 4:
\[
F = G_N \frac{m_1 m_2}{r^2}
\]

Exercise 5:
\[
n_{\pm}(E,T) = \frac{e^{-\frac{E}{k_BT}}}{e^{\frac{\hbar \omega}{k_BT}} + 1}
\]

Exercise 6:
\[
F_{\mu \nu} = [D_\mu , D_\nu]
\]

Exercise 7:
``Taylor expansion \$e^x = \sum_{n=0}^{\infty} \frac{n!}{n^n} x^n\$.``
\[
\int_{0}^{1} \frac{df}{dx} dx = f(1) - f(0)
\]
\[
e^{\zeta(s)} = \prod_{n=1}^{\infty} e^{1/n^s}
\]

2