A statistical view of entropy

The entropy of a system can be defined in terms of the possible
distributions of its molecules. For identical molecules, each possible
distribution of molecules is called a microstate of the system. All
equivalent microstates are grouped into a configuration of the system.
The number of microstates in a configuration is the multiplicity W of
the configuration.

For a system of N molecules that may be distributed between the two
halves of a box, the multiplicity is given by

N!
W =

(multiplicity of configuration).
n,! n,!

Here n, is the number of molecules in one half of the box and n, is the
number in the other half. A basic assumption of statistical mechanics is

that all the microstates are equally probable. S kk
= khal)



A Statistical View of Entropy

In Chapter 19 we saw that the macroscopic properties of gases can be explained in terms of their microscopic, or molecular, behavior. Such explanations are
part of a study called statistical mechanics. Here we shall focus our attention on a single problem, one involving the distribution of gas molecules between
the two halves of an insulated box. This problem is reasonably simple to analyze, and it allows us to use statistical mechanics to calculate the entropy
change for the free expansion of an ideal gas. You will see that statistical mechanics leads to the same entropy change as we would find using
thermodynamics.

Figure 20-17 shows a box that contains six identical (and thus indistinguishable) molecules of a gas. At any instant, a given molecule will be in either the
left or the right half of the box; because the two halves have equal volumes, the molecule has the same likelihood, or probability, of being in either half.

=
:
N
=
=
A\
‘N
23
;
N
=
A
W\
‘N

—cs AP R LT 7 v LYy <7
M 2T T Ve Z T I e e - =00
:‘:\;/,\&O\\y{”' IT-\\/“’}\M(”' \1: -\f e TR P T T L T ll‘\/,_l’
1% A
0 9 |
O =
|3 : =
* . 4
o | o7
= \| )5
5 @ @ X
:'\\." | \-4',«\
e [ b
13 I =
'/.\\ T M2 d O NS ZERS NN 4 O NeT: \\‘;
T T = I e S T e o T T

B R B A e B R B S

(a)

b e v Lo U \u.". \
NN AN S AN >

[ |
o |
= |
3 |
N
117 o I
7\\;' |
|
|
]

by N
YIS
Al

Figure 20-17
An insulated box contains six gas molecules. Each molecule has the same probability of being in the left half of the box as in the right half. The arrangement in (a)
corresponds to configuration Il in Table 20-1, and that in (b) corresponds to configuration IV.



Molecules are distinguishable

N!
W= — (multiplicity of configuration).
An insulated box col e the same probability of being

in the left half of the box as in the right half. The arrangement in
(a) corresponds to configuration Il in Table 20-1
(b) corresponds to configuration IV.
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Probability and Entropy

The multiplicity W of a configuration of a system and the entropy S of
the system in that configuration are related by Boltzmann’s entropy
equation:

S=kInW (Boltzmann’s entropy equation).

Here k=1.38 x 10723 J/K is the Boltzmann constant.

When N is very large (the usual case), we can approximate In N/ with
Stirling’s approximation:

InN!= N(InN) — N (Stirling’s approximation).

© 2014 John Wiley & Sons, Inc. All rights
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Chapter summary

Irreversible (one-way) Process

* |fanirreversible process occurs in
a closed system, the entropy of
the system always increases.

Entropy Change
* Entropy change for reversible
process is given by

AS = §;— 8 = j% Eq. 20-1

Second Law of Thermodynamics

* |f a process occurs in a closed system,
the entropy of the system increases
for irreversible processes and
remains constant for reversible

processes.

AS=0 Eq. 20-5
Entropy Change
* The efficiency € of any engine
, — _ cmergyweget |W Eq. 20-11
energy we pay for |0y
* Efficiency of Carnot engine
eo=1-J2l 4 T Eq. 20-12&13
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Chapter summary

Refrigerator

* Coefficient of performancegti}opy from Statistical Point of
refrigerator:

View

what we want Q * 5grna system of N molecul '

- = | ! N!
what we pay for W Eq. 2648 W= — Eqg. 20-20

* Carnot Refrigerator o
T,
Ke=15 ll({'l'll ol =T —+ Eq.20-15816

i - * 7% e Boltzmann’s entropy equati § — x1n w Eq. 20-21

 Stirling’s approximati
InN! = N(InN) - N Eq.20-22
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Fluids
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14-1 Fluid Density and Pressure

Learning Objectives

14.01 Distinguish fluids from 14.03 Apply the relationship
solids. between hydrostatic

pressure, force, and the

surface area over which that

force acts.

14.02 When mass is uniformly
distributed, relate density to
mass and volume.

- M _AM  g/m 3
S= o

© 2014 John Wiley & Sons, Inc. All rights reserved.



14-1 Fluid Density and Pressure

« Physics of fluids is the basis of hydraulic engineering

« Afluid is a substance that can flow, like water or air,
and conform to a container

« This occurs because fluids cannot sustain a shearing
force (tangential to the fluid surface)

« They can however apply a force perpendicular to the
fluid surface

« Some materials (pitch) take a long time to conform to a
container, but are still fluids

« The essential identifier is that fluids do not have a
crystalline structure



14-1 Fluid Density and Pressure

. The density, p, is defined as:
 Am
SN

« In theory the density at a point is the limit for an
Infinitesimal volume, but we assume a fluid sample is
large relative to atomic dimensions and has uniform

density. Then

Eq. (14-1)

_m
P~y

Eq. (14-2)

« Density is a scalar quantity

o Units kg/m?



14-1 Fluid Density and Pressure

« The pressure, force acting on an area, is defined as:

& Eq. (14-3)
= —— q. -
P A 3
. We could take the limit of this for | @ f
infinitesimal area, but if the force dars
is uniform over a flat area A we write
F
= — Eq. (14-4)
P="4

« We can measure pressure with a
sensor

Figure 14-1 (b)
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14-1 Fluid Density and Pressure

. We find by experiment that for a fluid at rest, pressure
has the same value at a point regardless of sensor
orientation

« Therefore static pressure is scalar, even though force
IS not

« Only the magnitude of the force is involved

« Units: the pascal (1 Pa =1 N/m?)
the atmosphere (atm)
the torr (1 torr = 1 mm Hg)

tha nAiinA nar eniliara iInArh nei)

1 atm = 1.01 X 10° Pa = 760 torr = 14.7 1b/in.2.

© 2014 John Wiley & Sons, Inc. All rights reserved.



14-2 Fluids at Rest

Learning Objectives
14.04 Apply the relationship 14.05 Distinguish between

between the hydrostatic total pressure (absolute
pressure, fluid density, and pressure) and gauge
the height above or below a pressure.

reference level.

© 2014 John Wiley & Sons, Inc. All rights reserved.



14-2 Fluids at Rest

« Hydrostatic pressures are those caused by fluids at

rr P R S I N | G R OS This downward force is due to the water tan k
Three farces act on this sample of water. - I pressure pushing on the top surface. 3
Air y=0 y=0
T e ——
Water
N BT Level 1, p
|
el -];--J
I

(0)

(@)

This upward force is due to the water
pressure pushing on the bottom surface.

A%
= &
F y=0 y=0
. ——
The three forces
e e e S ) balance.
| : | : Sample L
o T— R
v
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14-2 Fluids at Rest

. Write the balance of forces:
172 — I:1 - mg. Eq. (14-5)

« Rewrite: forces with pressures, mass with density
P2A = p1A + pAg(y: — ¥2)
p2=p1 + pg(y1 — y2) Eq. (14-7)

« For a depth h halnw tha enirfare in g liquid this

becomes: p = py + pgh Eq. (14-8)
an

"' The pressure at a point in a fluid in static equilibrium depends on the depth of
that point but not on any horizontal dimension of the fluid or its container.

© 2014 John Wiley & Sons, Inc. All rights reserved.



14-2 Fluids at Rest

« The pressure in 14-8 is the absolute pressure

« Consists of p,, the pressure due to the atmosphere,
and the additional pressure from the fluid

« The difference between absolute pressure and
atmospheric pressure is called the gauge pressure
because we use a gauge to measure this pressure
difference

« The equation can be turned around to calculate the
atmospheric pressure at a given height above ground:

P = Do~ Par8d.



14-2 Fluids at Rest

|ZI Checkpoint 1 (o N\ L

The figure shows four 7
containers of olive oil. J_ )

Rank them according
to the pressure at
depth i, greatest first.

(a) (0) (d)

Answer: All the pressures will be the same. All that matters is the distance h,
from the surface to the location of interest, and h is the same in all cases.

© 2014 John Wiley & Sons, Inc. All rights reserved.



14-3 Measuring Pressure

Learning Objectives

14.06 Describe how a 14.07 Describe how an open-
barometer can measure tube manometer can
atmospheric pressure. measure the gauge pressure

of a gas.

© 2014 John Wiley & Sons, Inc. All rights reserved.



14-3 Measuring Pressure

« Figure 14-5 shows mercury barometers

« The height difference between the air-mercury
interface and the mercury level is h:

po = pgh, Eq. (14-9)

y

Level 2 |

L
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14-3 Measuring Pressure

« Only the height matters, not the cross-sectional area

« Height of mercury column is numerically equal to torr
pressure only if:

. Barometer is at a place where g has its standard
value

. Temperature of mercury is 0°C



14-3 Measuring Pressure

Figure 14-6 shows an open-tube manometer
Po
Fig /

The height difference between Level 1

the two interfaces, h, is related

to the gauge pressure:

Pe =P —Po=pgh, Equs|

Y Level 2

Manometer
Il rights reserved.

The gauge pressure can be positive or negative,
depending on whether the pressure being measured is
areater or less than atmospheric'pressure



11-4 Pascal's Principle

Learning Objectives

14.08 ldentify Pascal's 14.09 For a hydraulic lift, apply
principle. the relationship between the
iInput area and displacement
and the output area and
displacement.

© 2014 John Wiley & Sons, Inc. All rights reserved.



11-4 Pascal's Principle

« Pascal's principle governs the transmission of
o, Pressure through an incompressible fluid:

." A change in the pressure applied to an enclosed incompressible fluid is transmit-
ted undiminished to every portion of the fluid and to the walls of its container.

« Consider a cylinder of fluid (Figure 14-7) Lead shot

Piston

« Increase p_,,, and p at
any point must change

Ap — Apext. Eq. (14-12)

T pext

. Independent of h

-~ >
>

-
Figure 14-7
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11-4 Pascal's Principle

« Describes the basis for a hydraulic lever

« Input and output forces related by:

F,=k A Eq. (14-13)

« The distances of movement are related bv:

... a large output A
force. — [
r d, = d, Eq. (14-14)
A small input Output AF AO
force produces ... 0
Input ]_:Z A,

Figure 14-8

© 2014 John Wiley & Sons, Inc. All rights reserved.



11-4 Pascal's Principle

« So the work done on the input piston equals the work
output

Ao Ai
W=Fd, = (F, 1 )(d,- A0> = Fd;, Eq.(14-15)

l

« The advantage of the hydraulic lever is that:
AN

"' With a hydraulic lever, a given force applied over a given distance can be
transformed to a greater force applied over a smaller distance.

© 2014 John Wiley & Sons, Inc. All rights reserved.



14-5 Archimedes' Principle

Learning Objectives

14.10 Describe Archimedes' 14.13 For a floating body,
principle. relate the gravitational force
to the mass of the fluid

14.11 Apply the relationship displaced by the body.

between the buoyant force

on a body and the mass of 14.14 Distinguish between
the fluid displaced by the apparent weight and actual
body. weight.

14.12 For a floating body, 14.15 Calculate the apparent
relate the buoyant force to weight of a body that is fully

the gravitational force. or partially submerged.

© 2014 John Wiley & Sons, Inc. All rights reserved.



14-5 Archimedes' Principle

« The buoyant force is the net upward force on a
submerged object by the fluid in which it is submerged

« This force opposes the weight of the object

It comes fror_n the increase in pressure with depth

e 7 7 .
- » The buoyant force : S[{()nv The net force is
~ 8 is due to the o ~ downward, so the
f [\ pressure of the £, stone accelerates
surrounding water. downward.
(a) (b)
% a’ The net force
i jood |
{ % > is upward, so the
& wood accelerates
upward.
Figure 14-10

(o)
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