
15-5  Damped Simple Harmonic Motion 

l  When an external force reduces the motion of an 
oscillator, its motion is damped 

l  Assume the liquid exerts a damping force proportional 
to velocity (accurate for slow motion) 
 
 

l  b is a damping constant, depends  
on the vane and the viscosity of the fluid 
 

 
 

 

 
 

 
 

 

 
 

 

Eq. (15-39) 

Figure 15-16 
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15-5  Damped Simple Harmonic Motion 

l  We use Newton's second law and rearrange to find: 
 
 

l  The solution to this differential equation is: 
 
 

l  With angular frequency: 
 

 
 

 

 
 

 
 

 

 
 

 

Eq. (15-41) 

Figure 15-17 

Eq. (15-42) 

Eq. (15-43) 
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15-6  Forced Oscillations and Resonance 

l  This condition is called resonance 
l  This is also approximately when the displacement 

amplitude is largest 

l  Resonance has important implications for the stability 
of structures 

l  Forced oscillations at resonant  
frequency may result in rupture  
or collapse 
 

 
 

 

 
 

 
 

 

 
 

 

Figure 15-18 
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Simple Harmonic Motion 
l  Find v and a by 

differentiation 

 

 

15     Summary 

Eq. (15-12) 

The Linear Oscillator 
 

 

 

 

  

Eq. (15-2) 

Energy 
l  Mechanical energy remains 

constant as K and U change 

l  K = ½ mv2, U = ½ kx2 

 

 

Frequency 
l  1 Hz = 1 cycle per second 

 

 

 

Period 
 

 

 

Eq. (15-3) 

Eq. (15-5) 

Eq. (15-13) 

©	2014	John	Wiley	&	Sons,	Inc.	All	rights	reserved.	

15     Summary 



Pendulums 
 

 

15     Summary 

Damped Harmonic Motion 
 

 Eq. (15-42) 

Eq. (15-23) 

Eq. (15-28) 

Eq. (15-46) 

Eq. (15-29) 

Simple Harmonic Motion 
and Uniform Circular 
Motion 
l SHM is the projection of UCM 
onto the diameter of the circle in 
which the UCM occurs 

 

 

Eq. (15-43) 

Forced Oscillations and 
Resonance 
l The velocity amplitude is greatest 
when the driving force is related to 
the natural frequency by: 

 

 ©	2014	John	Wiley	&	Sons,	Inc.	All	rights	reserved.	

15     Summary 



Waves	-	I	
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16-1		Transverse	Waves	

Types	of	Waves	
1.   Mechanical	Waves:	They	are	governed	by	Newton’s	laws,	and	they	

can	exist	only	within	a	material	medium,	such	as	water,	air,	and	
rock.	Examples:	water	waves,	sound	waves,	and	seismic	waves.	

2.   Electromagne>c	waves:	These	waves	require	no	material	medium	
to	exist.	Light	waves	from	stars,	for	example,	travel	through	the	
vacuum	of	space	to	reach	us.	All	electromagneOc	waves	travel	
through	a	vacuum	at	the	same	speed	c	=	299	792	458	m/s.	

3.   MaAer	waves:		These	waves	are	associated	with	electrons,	
protons,	and	other	fundamental	parOcles,	and	even	atoms	and	
molecules.	Because	we	commonly	think	of	these	parOcles	as	
consOtuOng	maWer,	such	waves	are	called	maWer	waves.	
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16-1		Transverse	Waves	

(a)	Transverse	Wave	

(b)		Longitudinal	Wave	

• A	sinusoidal	wave	is	sent	along	the	string	
(Figure	(a)).	A	typical	string	element	moves	
up	and	down	conOnuously	as	the	wave	
passes.	This	is	transverse	wave.	

• A	sound	wave	is	set	up	in	an	air-	filled	pipe	
by	moving	a	piston	back	and	forth	(Figure	
(b)).	Because	the	oscillaOons	of	an	element	of	
the	air	(represented	by	the	dot)	are	parallel	
to	the	direcOon	in	which	the	wave	travels,	
the	wave	is	a	longitudinal	wave.	

Transverse	and	Longitudinal	Waves	
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16-1		Transverse	Waves	

Sinusoidal	Func>on	

The	sine	func+on	describes	
	
	the	shape	of	the	wave	

Five	“snapshots”	(y	vs	x	each	at	a	constant	Ome)	of	a	
string	wave	traveling	in	the	posiOve	direcOon	along	
an	x	axis.	The	amplitude	ym	is	indicated.	A	typical	
wavelength	λ,	measured	from	an	arbitrary	posiOon	
x1,	is	also	indicated.	
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16-1		Transverse	Waves	

Period,	Wave	Number,	Angular	
Frequency	and	Frequency	
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16-1		Transverse	Waves	

The	Speed	of	a	Traveling	Wave	

Two	snapshots	of	the	wave:	at	Ome	t=0,	and	then	
at	Ome	t=Δt.	As	the	wave	moves	to	the	right	at	
velocity	ν,	the	enOre	curve	shi_s	a	distance	Δx	
during	Δt.		
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16-2		Wave	Speed	on	a	Stretched	String	

Learning	Objec>ves	

The	speed	of	a	wave	on	a	stretched	string	is	set	by	properOes	of	the	
string	(i.e.	linear	density),	not	properOes	of	the	wave	such	as	frequency	
or	amplitude.		Tau	is	the	tension	(in	N)	in	the	string.	

€ 

µ =
m
l

(linear	density)	
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16-3		Energy	and	Power	of	a	Wave	Traveling	along	a				 		
String	

Learning	Objec>ve	

• 16.16	Calculate	the	average	rate	at	which	energy	is	transported	by	a	
transverse	wave.	

16-3		Energy	and	Power	of	a	Wave	Traveling	along	a				 		
String	
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