15-5 Damped Simple Harmonic Motion

« When an external force reduces the motion of an
oscillator, its motion is damped

« Assume the liquid exerts a damping force proportional
to velocity (accurate for slow motion)

F, = —bv, Eq.(1539)
. b is a damping constant, depends
on the vane and the viscosity of the fluid

Mass m

Vane

Damping, b

-
Figure 15-16
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15-5 Damped Simple Harmonic Motion

« We use Newton's second law and rearrange to find:

d’x + b i + k 0. Eq. (15-41
m — X = ] -
dt? dt % (15-41)

« The solution to this differential equation is:

x(1) = x,, e """ cos(w't + ¢),) Ea.(15-42)
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15-6 Forced Oscillations and Resonance

o 1his condition is called resonance

. This is also approximately when the displacement
amplitude is largest

« Resonance has important implications for the stability

of structures Am \ ’(912 355(3 g/

. Forced oscillations at resonant . damping)
frequency may result in rupture E | 0= 708/s
or collapse :%‘* b= 140gqs
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Figure 15-18 0,/ ®
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15 Summary

Frequency Simple Harmonic Motion
. 1 Hz = 1 cycle per second . Find v and a by
Period 1 x(t) = x,, cos(wt + ¢) Eq.(15-3)
I = 7 Eq. (15-2) 277
W= = 27f. Eq. (15-5)
The Linear Oscillator Energy
k . Mechanical energy remains
= Eq. (15-12) constant as K and U change

. K="%mv2 U= kx?

T =2 /% Eq. (15-13)
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15 Summary

Pendulums Simple Harmonic Motion
; . .
_ 277\/: Eq. (15-23) and_Unlform Circular
']i Motion
1= 2oy ¢ Ea.(15-28) .SHM is the projection of UCM
7 onto the diameter of the circle in
T=2m P Eq. (15-29) which the UCM occurs

Damped Harmonic Motion Forced Oscillations and
X(f) = X, e_b[/zm COS((U’[ L (]5), Resonance

Eq. (15-42) .The velocity gmplitudg IS greatest
when the driving force is related to
the natural frequency by:

[k DB
o === > Eq.(15-43)

W; = W  Eq.(15-46)
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16-1 Transverse Waves

Types of Waves

1. Mechanical Waves: They are governed by Newton’s laws, and they
can exist only within a material medium, such as water, air, and
rock. Examples: water waves, sound waves, and seismic waves.

2. Electromagnetic waves: These waves require no material medium
to exist. Light waves from stars, for example, travel through the
vacuum of space to reach us. All electromagnetic waves travel
through a vacuum at the same speed c = 299 792 458 m/s.

3. Matter waves: These waves are associated with electrons,
protons, and other fundamental particles, and even atoms and
molecules. Because we commonly think of these particles as
constituting matter, such waves are called matter waves.



Transverse and Longitudinal Waves

A sinusoidal wave is sent along the string
(Figure (a)). A typical string element moves
up and down continuously as the wave
passes. This is transverse wave.

A sound wave is set up in an air- filled pipe
by moving a piston back and forth (Figure
(b)). Because the oscillations of an element of
the air (represented by the dot) are parallel
to the direction in which the wave travels,

the wave is a longitudinal wave.

© 2014 John Wiley & Sons, Inc. All rights
reserved.
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(a) Transverse Wave

(b) Longitudinal Wave



Sinusoidal Function

Five “snapshots” (y vs x each at a constant time) of a
string wave traveling in the positive direction along
an x axis. The amplitude y_ is indicated. A typical
wavelength A, measured from an arbitrary position
X4, is also indicated.
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Period, Wave Number, Angular
Frequency and Frequency

2

=X

(angular wave number).

w = T (angular frequency).

f=L_2
T Py (frequency).
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The Speed of a Traveling Wave

Y Ax
f ’Téix“ YN\
Wave at = At

Wave at t=0

Two snapshots of the wave: at time t=0, and then
at time t=At. As the wave moves to the right at
velocity v, the entire curve shifts a distance Ax
during At.

® A

V= % =7 = Af  (wavespeed).
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16-2 Wave Speed on a Stretched String

Learning Objectives

The speed of a wave on a stretched string is set by properties of the
string (i.e. linear density), not properties of the wave such as frequency
or amplitude. Tau is the tension (in N) in the string.

(linear density)

© 2014 John Wiley & Sons, Inc. All rights
reserved.
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16-3 Energy and Power of a Wave Traveling along a
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-16.16 Calculate the average rate at which energy is transported by a
transverse wave.
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