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15-5 Damped Simple Harmonic Motion

Learning Objectives

15.38 Describe the motion of a 15.41 Calculate the angular

damped simple harmonic
oscillator and sketch a graph
of the oscillator's position as

frequency of a damped
simple harmonic oscillator in
terms of the spring constant,

a function of time. the damping constant, and
the mass, and approximate
the angular frequency when
the damping constant is

small.

15.39 For any particular time,
calculate the position of a
damped simple harmonic
oscillator.

15.40 Determine the
amplitude of a damped
simple harmonic oscillator at
any given time.

15.42 Apply the equation
giving the (approximate)
total energy of a damped
simple harmonic oscillator as

© 2014 John Wiley & Sons, Inc. AlaingBQtieQn of time.



15-5 Damped Simple Harmonic Motion

« When an external force reduces the motion of an
oscillator, its motion is damped

« Assume the liquid exerts a damping force proportional
to velocity (accurate for slow motion)

F, = —bv, Eq.(1539)
. b is a damping constant, depends
on the vane and the viscosity of the fluid

Mass m

Vane

Damping, b

-
Figure 15-16
Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
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15-5 Damped Simple Harmonic Motion

« We use Newton's second law and rearrange to find:

d’x + b i + k 0. Eq. (15-41
m — X = ] -
dt? dt % (15-41)

« The solution to this differential equation is:

x(1) = x,, e """ cos(w't + ¢),) Ea.(15-42)

o

k b
I " / = —_ E . 15'43
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Figure 15-17
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15-5 Damped Simple Harmonic Motion

. If the damping constant is small, w'= w

« For small damping we find mechanical energy by
substituting our new, decreasing amplitude:

E(t) = skx2,e """, Eq. (15-44)

IZ Checkpoint 6

Here are three sets of values for the spring constant, damping constant, and mass
for the damped oscillator of Fig. 15-16. Rank the sets according to the time re-
quired for the mechanical energy to decrease to one-fourth of its initial value,
greatest first.

Set 1 2k0 bo my
Set 2 k() 6b0 4m0
Set 3 3k, 3b, o

Answer: 1,23
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15-6 Forced Oscillations and Resonance

Learning Objectives

15.43 Distinguish between 15.45 For a given natural
natural angular frequency angular frequency, identify
and driving angular the approximate driving
frequency. angular frequency that gives

15.44 For a forced oscillator, resonance.

sketch a graph of the
oscillation amplitude versus
the ratio of the driving
angular frequency to the
natural angular frequency,
identify the approximate
location of resonance, and
indicate the effect of

|ncreaS|ng the dammmwney & Sons, Inc. All rights reserved.



15-6 Forced Oscillations and Resonance

. Forced, or driven, oscillations are subject to a periodic
applied force

« A forced oscillator oscillates at the angular frequency
of its driving force:

x(t) = x,,cos(wyt + @), Eq.(15-45)

« The displacement amplitude is a complicated function
of w and w,

« The velocity amplitude of the oscillations is greatest

when:
Wy — W Eq.(15-46)

© 2014 John Wiley & Sons, Inc. All rights reserved.



15-6 Forced Oscillations and Resonance

o 1his condition is called resonance

. This is also approximately when the displacement
amplitude is largest

« Resonance has important implications for the stability

of structures Am \ ’(912 355(3 g/

. Forced oscillations at resonant . damping)
frequency may result in rupture E | 0= 708/s
or collapse :%‘* b= 140gqs

06 08 10 12 14
Figure 15-18 0,/ ®
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15 Summary

Frequency Simple Harmonic Motion
. 1 Hz = 1 cycle per second . Find v and a by
Period 1 x(t) = x,, cos(wt + ¢) Eq.(15-3)
I = 7 Eq. (15-2) 277
W= = 27f. Eq. (15-5)
The Linear Oscillator Energy
k . Mechanical energy remains
= Eq. (15-12) constant as K and U change

. K="%mv2 U= kx?

T =2 /% Eq. (15-13)
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15 Summary

Pendulums Simple Harmonic Motion
; . .
_ 277\/: Eq. (15-23) and_Unlform Circular
']i Motion
1= 2oy ¢ Ea.(15-28) .SHM is the projection of UCM
7 onto the diameter of the circle in
T=2m P Eq. (15-29) which the UCM occurs

Damped Harmonic Motion Forced Oscillations and
X(f) = X, e_b[/zm COS((U’[ L (]5), Resonance

Eq. (15-42) .The velocity gmplitudg IS greatest
when the driving force is related to
the natural frequency by:

[k DB
o === > Eq.(15-43)

W; = W  Eq.(15-46)



