19. Table 19-1 gives \(M = 28.0 \) g/mol for nitrogen. This value can be used in Eq. 19-22 with \(T \) in Kelvins to obtain the results. A variation on this approach is to set up ratios, using the fact that Table 19-1 also gives the rms speed for nitrogen gas at 300 K (the value is 517 m/s). Here we illustrate the latter approach, using \(v \) for \(v_{\text{rms}} \):

\[
\frac{v_2}{v_1} = \frac{\sqrt{\frac{3RT_2}{M}}}{\sqrt{\frac{3RT_1}{M}}} = \sqrt{\frac{T_2}{T_1}}.
\]

(a) With \(T_2 = (20.0 + 273.15) \) K \(\approx 293 \) K, we obtain \(v_2 = (517 \text{ m/s}) \sqrt{\frac{293 \text{ K}}{300 \text{ K}}} = 511 \text{ m/s} \).

(b) In this case, we set \(v_3 = \frac{1}{2}v_2 \) and solve \(\frac{v_3}{v_2} = \sqrt{\frac{T_3}{T_2}} \) for \(T_3 \):

\[
T_3 = T_2 \left(\frac{v_3}{v_2} \right)^2 = (293 \text{ K}) \left(\frac{1}{2} \right)^2 = 73.0 \text{ K}.
\]

which we write as \(73.0 - 273 = -200^\circ \text{C} \).

(c) Now we have \(v_4 = 2v_2 \) and obtain

\[
T_4 = T_2 \left(\frac{v_4}{v_2} \right)^2 = (293 \text{ K})(4) = 1.17 \times 10^3 \text{ K}
\]

which is equivalent to \(899^\circ \text{C} \).
21. **THINK** According to kinetic theory, the rms speed is (see Eq. 19-34)
\[v_{\text{rms}} = \sqrt{\frac{3RT}{M}} \], where \(T \) is the temperature and \(M \) is the molar mass.

EXPRESS The rms speed is defined as
\[v_{\text{rms}} = \sqrt{\langle v^2 \rangle_{\text{avg}}} \], where
\[\langle v^2 \rangle_{\text{avg}} = \int_0^\infty v^2 P(v)dv \], with the Maxwell’s speed distribution function given by
\[
P(v) = 4\pi \left(\frac{M}{2\pi RT} \right)^{3/2} v^2 e^{-Mv^2/2RT}.
\]

According to Table 19-1, the molar mass of molecular hydrogen is \(2.02 \text{ g/mol} = 2.02 \times 10^{-3} \text{ kg/mol} \).

ANALYZE At \(T = 2.7 \text{ K} \), we find the rms speed to be
\[
v_{\text{rms}} = \sqrt{\frac{3 \left(8.31 \text{J/mol} \cdot \text{K} \right) (2.7 \text{K})}{2.02 \times 10^{-3} \text{ kg/mol}}} = 1.8 \times 10^2 \text{ m/s}.
\]

LEARN The corresponding average speed and most probable speed are
\[
v_{\text{avg}} = \sqrt{\frac{8RT}{\pi M}} = \sqrt{\frac{8 \left(8.31 \text{J/mol} \cdot \text{K} \right) (2.7 \text{K})}{\pi (2.02 \times 10^{-3} \text{ kg/mol})}} = 1.7 \times 10^2 \text{ m/s}
\]
and
\[
v_p = \sqrt{\frac{2RT}{M}} = \sqrt{\frac{2 \left(8.31 \text{J/mol} \cdot \text{K} \right) (2.7 \text{K})}{2.02 \times 10^{-3} \text{ kg/mol}}} = 1.5 \times 10^2 \text{ m/s},
\]
respectively.
23. In the reflection process, only the normal component of the momentum changes, so for one molecule the change in momentum is \(2mv \cos \theta \), where \(m \) is the mass of the molecule, \(v \) is its speed, and \(\theta \) is the angle between its velocity and the normal to the wall. If \(N \) molecules collide with the wall, then the change in their total momentum is \(2Nmv \cos \theta \), and if the total time taken for the collisions is \(\Delta t \), then the average rate of change of the total momentum is \(2(N/\Delta t)mv \cos \theta \). This is the average force exerted by the \(N \) molecules on the wall, and the pressure is the average force per unit area:

\[
p = \frac{2}{A(\Delta t)} \left(\frac{N}{\Delta t} \right) mv \cos \theta = \left(\frac{2}{2.0 \times 10^{-4} \text{ m}^2} \right) \left(1.0 \times 10^{23} \text{ s}^{-1} \right) \left(3.3 \times 10^{-27} \text{ kg} \right) \left(1.0 \times 10^3 \text{ m/s} \right) \cos 55^\circ
\]

\[
= 1.9 \times 10^3 \text{ Pa}.
\]

We note that the value given for the mass was converted to kg and the value given for the area was converted to m\(^2\).
26. The average translational kinetic energy is given by \(K_{\text{avg}} = \frac{3}{2} kT \), where \(k \) is the Boltzmann constant \((1.38 \times 10^{-23} \text{ J/K}) \) and \(T \) is the temperature on the Kelvin scale. Thus

\[
K_{\text{avg}} = \frac{3}{2} \left(1.38 \times 10^{-23} \text{ J/K} \right) (1600 \text{ K}) = 3.31 \times 10^{-20} \text{ J}.
\]
29. **THINK** Mean free path is the average distance traveled by a molecule between successive collisions.

EXPRESS According to Eq. 19-25, the mean free path for molecules in a gas is given by

\[\lambda = \frac{1}{\sqrt{2\pi d^2 N/V}}, \]

where \(d \) is the diameter of a molecule and \(N \) is the number of molecules in volume \(V \).

ANALYZE (a) Substituting \(d = 2.0 \times 10^{-10} \text{ m} \) and \(N/V = 1 \times 10^6 \text{ molecules/m}^3 \), we obtain

\[\lambda = \frac{1}{\sqrt{2\pi (2.0 \times 10^{-10} \text{ m})^2 (1 \times 10^6 \text{ m}^{-3})}} = 6 \times 10^{12} \text{ m}. \]

(b) At this altitude most of the gas particles are in orbit around Earth and do not suffer randomizing collisions. The mean free path has little physical significance.

LEARN Mean free path is inversely proportional to the number density, \(N/V \). The typical value of \(N/V \) at room temperature and atmospheric pressure for ideal gas is

\[\frac{N}{V} = \frac{p}{kT} = \frac{1.01 \times 10^5 \text{ Pa}}{(1.38 \times 10^{-23} \text{ J/K})(298 \text{ K})} = 2.46 \times 10^{25} \text{ molecules/m}^3 = 2.46 \times 10^{19} \text{ molecules/cm}^3. \]

This is much higher than that in the outer space.

30. We solve Eq. 19-25 for \(d \):

\[d = \sqrt{\frac{1}{\lambda \pi \sqrt{2} (N/V)}} = \sqrt{\frac{1}{(0.80 \times 10^5 \text{ cm}) \pi \sqrt{2} (2.7 \times 10^{19} / \text{cm}^3)}} \]

which yields \(d = 3.2 \times 10^{-8} \text{ cm}, \) or 0.32 nm.
35. (a) The average speed is

\[v_{\text{avg}} = \frac{1}{N} \sum_{i=1}^{N} v_i = \frac{1}{10} [4(200 \text{ m/s}) + 2(500 \text{ m/s}) + 4(600 \text{ m/s})] = 420 \text{ m/s}. \]

(b) The rms speed is

\[v_{\text{rms}} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} v_i^2} = \sqrt{\frac{1}{10} [4(200 \text{ m/s})^2 + 2(500 \text{ m/s})^2 + 4(600 \text{ m/s})^2]} = 458 \text{ m/s} \]

(c) Yes, \(v_{\text{rms}} > v_{\text{avg}}. \)
37. **THINK** From the distribution function \(P(v) \), we can calculate the average and rms speeds.

EXPRESS The distribution function gives the fraction of particles with speeds between \(v \) and \(v + dv \), so its integral over all speeds is unity: \(\int P(v) \, dv = 1 \). The average speed is defined as \(v_{\text{avg}} = \int_0^\infty v P(v) \, dv \). Similarly, the rms speed is given by \(v_{\text{rms}} = \sqrt{(v^2)_{\text{avg}}} \), where \((v^2)_{\text{avg}} = \int_0^\infty v^2 P(v) \, dv \).

ANALYZE (a) Evaluate the integral by calculating the area under the curve in Fig. 19-23. The area of the triangular portion is half the product of the base and altitude, or \(\frac{1}{2} av_0 \). The area of the rectangular portion is the product of the sides, or \(av_0 \). Thus,

\[
\int P(v) \, dv = \frac{1}{2} av_0 + av_0 = \frac{3}{2} av_0 ,
\]

so \(\frac{3}{2} av_0 = 1 \) and \(av_0 = 2/3 = 0.67 \).

(b) For the triangular portion of the distribution \(P(v) = av/v_0 \), and the contribution of this portion is

\[
\frac{a}{v_0} \int_0^{v_0} v^2 \, dv = \frac{a}{3v_0} v_0^3 = \frac{av_0^2}{3} = \frac{2}{9} v_0 ,
\]

where \(2/3v_0 \) was substituted for \(a \). \(P(v) = a \) in the rectangular portion, and the contribution of this portion is

\[
a \int_{v_0}^{2v_0} v \, dv = \frac{a}{2} \left(4v_0^2 - v_0^2 \right) = \frac{3a}{2} v_0^2 = v_0 .
\]

Therefore, we have

\[
v_{\text{avg}} = \frac{2}{9} v_0 + v_0 = 1.22v_0 \quad \Rightarrow \quad \frac{v_{\text{avg}}}{v_0} = 1.22 .
\]
(c) In calculating $v_{\text{avg}}^2 = \int v^2 P(v) \, dv$, we note that the contribution of the triangular section is

$$\frac{a}{v_0} \int_0^{v_0} v^3 \, dv = \frac{a}{4v_0} v_0^4 = \frac{1}{6} v_0^2.$$

The contribution of the rectangular portion is

$$a \int_{v_0}^{2v_0} v^2 \, dv = \frac{a}{3} \left(8v_0^3 - v_0^3 \right) = \frac{7a}{3} v_0^3 = \frac{14}{9} v_0^2.$$

Thus,

$$v_{\text{rms}} = \sqrt{\frac{1}{6} v_0^2 + \frac{14}{9} v_0^2} = 1.31v_0 \quad \Rightarrow \quad \frac{v_{\text{rms}}}{v_0} = 1.31.$$

(d) The number of particles with speeds between $1.5v_0$ and $2v_0$ is given by $N \int_{1.5v_0}^{2v_0} P(v) \, dv$. The integral is easy to evaluate since $P(v) = a$ throughout the range of integration. Thus the number of particles with speeds in the given range is

$$Na(2.0v_0 - 1.5v_0) = 0.5N \, a v_0 = N/3,$$

where $2/3v_0$ was substituted for a. In other words, the fraction of particles in this range is $1/3$ or 0.33.
40. We divide Eq. 19-31 by Eq. 19-22:

\[
\frac{v_{\text{avg}2}}{v_{\text{rms}1}} = \sqrt{\frac{8RT/\pi M_2}{3RT/M_1}} = \sqrt{\frac{8M_1}{3\pi M_2}}
\]

which, for \(v_{\text{avg}2} = 2v_{\text{rms}1} \), leads to

\[
\frac{m_1}{m_2} = \frac{M_1}{M_2} = \frac{3\pi}{8} \left(\frac{v_{\text{avg}2}}{v_{\text{rms}1}} \right)^2 = \frac{3\pi}{2} = 4.7
\]