Course Topics

Updated 29 January 2018

A) Basics of MHD

 i) MHD equations, content
 ii) Freezing-in Law, Alfven’s Theorem
 iii) Energy and momentum relations, magnetic tension
 iv) Virial Theorem, Stellar Collapse

B) MHD Dynamics I

 i) MHD Waves, Fredericks Diagram
 ii) Reduced MHD, Model Structure, Drift Wave Models
 iii) Nonlinear Alfven waves, basics of collisionless shocks

C) Non-ideal MHD I

 i) Local: Sweet–Parker Model
 ii) Magnetic Helicity
 iii) Global: Prandtl–Batchelor Theorem, Flux Expulsion

D) Wave Interactions

 i) 3-wave interactions, Manly–Rowe relations
 ii) Wave kinetics, non-local interactions, wave cascades
 iii) Decay instability of Alfven wave

E) Basics of MHD Turbulence

 i) Navier–Stokes Turbulence — a very brief review
 ii) MHD turbulence — basic ideas, Alfven effect
 iii) Kraichnan-Iroshnikov and Goldreich-Sridhar Scalings, critical balance

F) Stability I — Ideal

 i) MHD Energy Principle — formulation
 ii) Examples
 a) Rayleigh–Bernard
 b) Rayleigh–Taylor (review)
 c) Interchange, line-tying
 iii) Magnetic instabilities
a) Sausage mode and hydro-analogue
b) Kink, Kruskal–Shafranov Criterion
c) MRI

G) Stability II — Resistive
 i) Basic ideas of resonances, resistive modes
 ii) Fast, slow resistive interchange
 iii) Tearing, magnetic island formation

H) Non-ideal MHD II
 i) Stochastic magnetic fields, transport
 ii) Magnetic helicity, selective decay, Taylor Relaxation II
 iii) Basics of dynamo theory
 iv) Mean field electrodynamics — an introduction

I) MHD Shocks
 i) Gas–dynamic shocks, entropy production, Rankine–Hugoniot conditions
 ii) MHD shocks: parallel, perpendicular, oblique; deHoffmann–Teller Frame
 iii) More on collisionless shocks