# From Reconnection to Relaxation: A Pedagogical Tale of Two Taylors

or: The Physics Assumptions Behind the Color VG



P.H. Diamond



## W.C.I. Center for Fusion Theory, N.F.R.I., RoK and C.M.T.F.O., U.C.S.D.

Ackn:Y. Kosuga, O.D. Gurcan, T.S. Hahm, L. Wang, Z. Guo, X.G. Wang

This talk focuses on:

- what is the connection between local reconnection and global relaxation?

- how do highly localized reconnection processes, for large Rm, Re, produce global self-organization and structure formation? We attempt to:

- describe both magnetic fields and flows with similar concepts
- connect and relate to talks by H. Ji, D. Hughes, H. Li, O.D. Gurcan...
  - describe self-organization principles

#### <u>Outline</u>

i.) Preamble: → From Reconnection to Relaxation and Self-Organization

- → What 'Self-Organization' means
- $\rightarrow$  Why Principles are important
- $\rightarrow$  Examples of turbulent self-organization

→ Preview

ii.) Focus I: Relaxation in R.F.P. (J.B. Taylor)

 $\rightarrow$  RFP relaxation, pre-Taylor

- → Taylor Theory Summary
  - Physics of helicity constraint + hypothesis
  - Outcome and Shortcomings
- $\rightarrow$  Dynamics  $\rightarrow$  Mean Field Theory Theoretical Perspective
  - Pinch's Perspective
  - Some open issues

→ Lessons Learned and Unanswered Questions

#### <u>Outline</u>

iii.) Focus II: PV Transport and Homogenization (G.I. Taylor)

→ Shear Flow Formation by (Flux-Driven) Wave Turbulence

 $\rightarrow$  PV and its meaning; representative systems

→ Original Idea: G.I. Taylor, Phil. Trans, 1915, 'Eddy Motion in the Atmosphere'

- Eddy Viscosity, PV Transport and Flow Formation
- Application: Rayleigh from PV perspective
- →Relaxation: PV Homogenization (Prandtl, Batchelor, Rhines, Young)
  - Basic Ideas
  - Proof of PV Homogenization
  - Time Scales
  - Relation to Flux Expulsion
  - Relation to Minimum Enstrophy states

#### **Outline**

- → Does PV Homogenize in Zonal Flows?
  - Physical model and Ideas
  - PV Transport and Potential Enstrophy Balance
  - Momentum Theorems (Charney-Drazin) and Incomplete Homogenization
  - RMP Effects
  - $\mathbf{B}_0$  Effects
  - Lessons Learned and Unanswered Questions
  - → Discussion and General Lessons Learned

#### I.) Preamble

- → From Reconnection to Relaxation
- Usually envision as localized event involving irreversibility, dissipation etc. at a singularity



S.-P.

 $V = V_A / Rm^{1/2}$ 

- ??? - how describe global dynamics of relaxation and self-organization

- multiple, interacting/overlapping reconnection events
  - $\rightarrow$  turbulence, stochastic lines, etc

#### I.) Preamble, cont'd

- → What does 'Self-Organization' mean?
  - context: driven, dissipative, open system
  - turbulence/stochasticity multiple reconnection states
  - Profile state (resilient, stiff) attractors
  - usually, multiple energy channels possible
  - bifurcations between attractor states possible
  - attractor states macroscopically stable, though may support microturbulence
- → Elements of Theory
  - universality (or claims thereof)
  - coarse graining i.e., diffusion
  - constraint release i.e., relaxation of freezing-in law
    - selective decay hypothesis

| RFP                                                      | Tokamak                                      |
|----------------------------------------------------------|----------------------------------------------|
| Taylor/BFM                                               | Stiff core + edge                            |
| $I_p \qquad \qquad \qquad P_{OH} \\ \textbf{B profile} $ | Q                                            |
| axisymmetric → helical OH                                | L → H                                        |
| nearly marginal $m = 1$ 's + resistive interchange +     | ITG, CTEM,<br>Issue: ELMs?! (domain limited) |

- Universality:

Taylor State (Clear)

 $H_M = \int d^3 x \mathbf{A} \cdot \mathbf{B}$ only constraint

Magnetic energy dissipated as  $H_M$  conserved

Profile Consistency (soft) (soft)

PV mixed, subject dynamical constraints

Enstrophy (Turbulence) mixed, dissipated, as macroscopic flow emerges

Why Principles?

- → INSIGHT
- → Physical ideas necessary to guide both physical and digital experiments

→ Principles + Reduced Models required to extract and synthesize lessons from case-by-case analysis

→ Principles guide approach to problem reduction

## **Examples of Self-Organization Principles**

 $\rightarrow$  Turbulent Pipe Flow: (Prandtl  $\rightarrow$  She)

$$\sigma = -\nu_T \frac{\partial \langle v_y \rangle}{\partial x} \qquad \qquad \nu_T \sim v_* x$$

 $\Rightarrow \langle v_y \rangle \sim v_* \ln x$ 

Streamwise Momentum undergoes scale invariant mixing

→ Magnetic Relaxation: (Woltjer-Taylor)

(RFP, etc) (Focus I) Minimize  $E_M$  at conserved global  $H_M \Rightarrow$  Force-Free RFP profiles

- → PV Homogenization/Minimum Enstrophy: (Taylor, Prandtl, Batchelor, Bretherton, ...)
- (Focus 2)
   → PV tends to mix and homogenize
   → Flow structures emergent from selective decay of potential enstrophy relative energy
  - → Shakura-Sunyaev Accretion
    - $\rightarrow$  disk accretion enabled by outward viscous angular momentum flux

#### **Preview**

- Will show many commonalities - though NOT isomorphism - of magnetic and flow self-organization

-Will attempt to expose numerous assumptions in theories thereof

|            | Magnetic (JB)                                        | Flow (GI)                                         |
|------------|------------------------------------------------------|---------------------------------------------------|
| concept    | topology                                             | symmetry                                          |
| process    | turbulent reconnection                               | PV mixing                                         |
| players    | tearing modes, Alfven waves                          | drift wave turbulence                             |
| mean field | $EMF = \left< \tilde{v} \times \tilde{B} \right>$    | PV Flux = $\langle \tilde{v}_r \tilde{q} \rangle$ |
| constraint | $\int d^3x \mathbf{A} \cdot \mathbf{B}$ conservation | Potential Enstrophy balance                       |
| NL         | Helicity Density Flux                                | Pseudomomentum Flux                               |
| outcome    | B-profiles                                           | zonal flow                                        |

## II.) Focus I - Magnetic Relaxation

 $\rightarrow$  Prototype of RFP's: Zeta (UK: late 50's - early 60's)

- toroidal pinch = vessel + gas + transformer
- initial results  $\rightarrow$  violent macro-instability, short life time
- weak  $B_T \rightarrow$  stabilized pinch  $\leftrightarrow$  sausage instability eliminated
- $I_p > Ip, crit$  (  $\theta > 1+$  )  $\rightarrow$  access to "Quiescent Period"
- $\rightarrow$  Properties of Quiescent Period:
  - macrostability reduced fluctuations
  - $\tau_E \sim 1 \ msec$   $T_e \sim 150 eV$
  - $B_T(a) < 0 \rightarrow \text{reversal}$
  - $\rightarrow$  Quiescent Period is origin of RFP



#### (Derek C Robinson)

## Further Developments

- Fluctuation studies:

turbulence = m = 1 kink-tearing  $\rightarrow$  tend toward force-free state resistive interchange, ...

- Force-Free Bessel Function Model

$$B_{\theta} = B_0 J_1(\mu r) \qquad B_z = B_0 J_0(\mu r)$$

 $\mathbf{J} = \alpha \mathbf{B}$ 

observed to correlate well with observed B structure

- L.Woltjer (1958) : Force-Free Fields at constant  $\alpha$ 

 $\rightarrow$  follows from minimized  $E_M$  at conserved  $\int d^3x \mathbf{A} \cdot \mathbf{B}$ 

- steady, albeit modest, improvement in RFP performance, operational space

→ Needed: Unifying Principle

#### Theory of Turbulent Relaxation (J.B. Taylor, 1974)

 $\rightarrow$  hypothesize that relaxed state minimizes magnetic energy subject to constant global magnetic helicity

i.e. profiles follow from: 
$$\delta \left[ \int d^3x \frac{B^2}{8\pi} + \lambda \int d^3x \mathbf{A} \cdot \mathbf{B} \right] = 0$$

$$\Rightarrow \nabla \times \mathbf{B} = \mu \mathbf{B} \quad ; \quad J_{\parallel}/B = \frac{\mathbf{J} \cdot \mathbf{B}}{B^2} = const$$

Taylor state is:

- force free
- flat/homogenized  $~J_{\parallel}/B$

- recovers BFM, with reversal for 
$$\theta = \frac{2I_p}{aB_0} > 1.2$$

- Works amazingly well

#### Result:



$$\theta = \mu a/2 = \frac{2I_p}{aB_0}$$

$$F = B_{z,wall} / \langle B \rangle$$

and numerous other success stories

#### $\rightarrow$ Questions:

- what is magnetic helicity and what does it mean?
- why only global magnetic helicity as constraint?
- Theory predicts end state  $\rightarrow$  what can be said about dynamics?
- What does the pinch say about dynamics?
- → Central Issue: Origin of Irreversibility

#### Magnetic helicity - what is it?

- consider two linked, closed flux tubes

Tube I: Flux  $\phi_1$  , contour  $C_1$ 

Tube 2: Flux  $\phi_2$  , contour  $C_2$ 



if consider tube I: 
$$H_{M}^{1} = \int_{V_{1}} d^{3}x \mathbf{A} \cdot \mathbf{B} = \oint_{C_{1}} d\mathbf{l} \int_{A_{1}} dS \mathbf{A} \cdot \mathbf{B}$$
$$= \oint_{C_{1}} d\mathbf{l}_{1} \cdot \mathbf{A} \int_{A_{1}} d\mathbf{a} \cdot \mathbf{B}$$
$$= \phi_{1} \oint_{C_{1}} d\mathbf{l}_{1} \cdot \mathbf{A} = \phi_{1} \phi_{2}$$

similarly for tube 2:  $H_M^2 = \phi_1 \phi_2$ 

so  $H_M = 2\phi_1\phi_2$  generally:  $H_M = \pm 2n\phi_1\phi_2$ 

- Magnetic helicity measures self-linkage of magnetic configuration
- conserved in ideal MHD topological invariant

$$\frac{d}{dt}H_M = -2\eta c \int d^3x \mathbf{J} \cdot \mathbf{B}$$

- consequence of Ohm's Law structure, only

#### N.B.

- can attribute a finite helicity to each closed flux tube with non-constant q(r)
- in ideal MHD  $\rightarrow ~\infty$  number of tubes in pinch. Can assign infinitesimal tube to each field line
- $\infty$  number of conserved helicity invariants
  - $\rightarrow$  Follows from freezing in



# How many magnetic field lines in the universe?

# (E. Fermi to M.N. Rosenbluth, oral exam at U. Chicago, late 1940's...)

#### Why Global helicity, Only?

- in ideal plasma, helicity conserved for each line, tube

i.e. 
$$\mathbf{J} = \mu(\alpha, \beta)\mathbf{B}$$
  $\mu(\alpha', \beta') \neq \mu(\alpha, \beta)$ 

- Turbulent mixing eradicates identity of individual flux tubes, lines!

<u>i.e.</u>

- if turbulence s/t field lines stochastic, then 'I field line' fills pinch.
  - I line  $\leftrightarrow$  I tube  $\rightarrow$  only global helicity meaningful.
- in turbulent resistive plasma, reconnection occurs on all scales, but:  $\tau_R \sim l^{\alpha}$   $\alpha > 0$ (  $\alpha = 3/2$  for S-P reconnection)

Thus larger tubes persist longer. Global flux tube most robust

- selective decay: absolute equilibrium stat. mech. suggests possibility of inverse cascade of magnetic helicity (Frisch '75)  $\rightarrow$  large scale helicity most rugged.

#### **Comments and Caveats**

→ Taylor's conjecture that global helicity is most rugged invariant remains a conjecture

→ unproven in any rigorous sense

→ many attempts to expand/supplement the Taylor conjecture have had little lasting impact (apologies to some present....)

→ Most plausible argument for global  $H_M$  is stochastization of field lines → forces confinement penalty. No free lunch!

→ Bottom Line:

- Taylor theory, simple and successful
- but, no dynamical insight!

#### Dynamics I:

- The question of Dynamics brings us to mean field theory (c.f. Moffat '78 and an infinity of others - see D. Hughes, Thursday Lecture)

- Mean Field Theory  $\rightarrow$  how represent  $\langle \tilde{v} \times \tilde{B} \rangle$  ?

 $\rightarrow$  how relate to relaxation?

- Caveat: - MFT assumes fluctuations are small and quasi-Gaussian. They are often NOT

- MFT is often very useful, but often fails miserably

- Structural Approach (Boozer): (plasma frame)

 $\langle \mathbf{E} \rangle = \eta \langle \mathbf{J} \rangle + \langle \mathbf{S} \rangle$  $\rightarrow$  something  $\rightarrow$  related to  $\langle \tilde{v} \times \tilde{B} \rangle$ 

$$\langle {f S} 
angle$$
 conserves  $H_M$   
 $\langle {f S} 
angle$  dissipates  $E_M$ 

Note this is ad-hoc, forcing  $\langle S \rangle$  to fit the conjecture. Not systematic, in sense of perturbation theory

Now

$$\partial_t H_M = -2c\eta \int d^3x \langle \mathbf{J} \cdot \mathbf{B} \rangle - 2c \int d^3x \langle \mathbf{S} \cdot \mathbf{B} \rangle$$

$$\therefore \langle \mathbf{S} \rangle = \frac{\mathbf{B}}{B^2} \nabla \cdot \mathbf{\Gamma}_H$$

Conservation  $H_M \rightarrow \langle S \rangle \sim \nabla \cdot$  (Helicity flux)

$$\partial_t \int d^3x \frac{B^2}{8\pi} = -\int d^3x \left[ \eta J^2 - \mathbf{\Gamma}_H \cdot \nabla \frac{\langle \mathbf{J} \rangle \cdot \mathbf{B}}{B^2} \right]$$

SO

$$oldsymbol{\Gamma}_{H}=-\lambda 
abla (J_{\parallel}/B)$$
 , to dissipate  $E_{M}$ 

 $\rightarrow$  simplest form consistent with Taylor hypothesis

ightarrow turbulent hyper-resistivity  $\lambda = \lambda [\langle \tilde{B}^2 \rangle]$  - can derive from QLT

→ Relaxed state:  $\nabla(J_{\parallel}/B) \rightarrow 0$  homogenized current → flux vanishes

#### **Dynamics II: The Pinch's Perspective**

- Boozer model not based on fluctuation structure, dynamics
- Aspects of hyper-resistivity do enter, but so do other effects
  - → Point: Dominant fluctuations controlling relaxation are m=1 tearing modes resonant in core → global structure
  - $\rightarrow$  Issue:What drives reversal  $B_z$  near boundary?

Approach: QL  $\langle \tilde{v} \times \tilde{B} \rangle$  in MHD exterior - exercise: derive!

$$\langle \tilde{\mathbf{v}} \times \tilde{\mathbf{B}} \rangle \cong \sum_{k} |\gamma_k| \frac{R}{r} (q_{res} - q(r)) \langle B_\theta \rangle \partial_r (|\tilde{\xi}_r|_k^2)$$

i.e.  $\langle J_{\theta} \rangle$  driven opposite  $\langle B_{\theta} \rangle \rightarrow$  drives/sustains reversal

 $\rightarrow$  What of irreversibility - i.e. how is kink-driven reversal 'locked-in'?



→ Bottom Line: How Pinch 'Taylors itself' remains unclear, in detail

#### Summary of Magnetic Relaxation

concept: topology

process: stochastization of fields, turbulent reconnection

constraint released: local helicity

players: tearing modes

Mean Field: EMF =  $\langle \tilde{v} \times \tilde{B} \rangle$ 

Global Constraint:  $\int d^3x \mathbf{A} \cdot \mathbf{B}$ 

NL: Helicity Density Flux

Outcome: B-Profile

Shortcoming: Rates, confinement  $\rightarrow$  turbulent transport

Focus II: Potential Vorticity Mixing ↔ Isovorticity Contour Reconnection

→ Prandtl-Batchelor Theorem and PV Homogenization

→ Self-Organization of Zonal Flows

#### PV and Its Meaning: Representative Systems

#### The Fundamentals

- Kelvin's Theorem for rotating system

$$\begin{split} \omega &\to \omega + 2\Omega & \longrightarrow & \oint \mathbf{v} \cdot d\mathbf{l} = \int d\mathbf{a} \cdot (\omega + 2\Omega) \equiv C \\ \text{relative planetary} & & \overleftarrow{C} = 0 \text{ , to viscosity (vortex reconnection)} \\ Ro &= V/(2\Omega L) \ll 1 & \rightarrow \mathbf{V} \cong -\nabla_{\perp} p \times \hat{z}/(2\Omega) & \text{geostrophic balance} \end{split}$$

$$\rightarrow$$
 2D dynamics

- Displacement on beta plane

$$\dot{C} = 0 \quad \rightarrow \quad \frac{d}{dt} \omega \cong -\frac{2\Omega}{A} \sin \theta_0 \frac{dA}{dt}$$
$$= -2\Omega \frac{d\theta}{dt} = -\beta V_y$$
$$\omega = \nabla^2 \phi, \quad \beta = 2\Omega \sin \theta_0 / R$$



#### Fundamentals II

- Q.G. equation 
$$\frac{d}{dt}(\omega + \beta y) = 0$$

- Locally Conserved PV  $q = \omega + \beta y$ 

n.b. topography

$$q = \omega/H + \beta y$$

- Latitudinal displacement  $\rightarrow$  change in relative vorticity
- Linear consequence → Rossby Wave

$$\omega = -\beta k_x / k^2$$

observe:  $v_{g,y} = 2\beta k_x k_y/(k^2)^2$ 

Rossby wave intimately connected to momentum transport

- Latitudinal PV Flux  $\rightarrow$  circulation

- Obligatory re: 2D Fluid

- → Isn't this Meeting about Plasma?
- → 2 Simple Models
   a.) Hasegawa-Wakatani (collisional drift inst.)
   b.) Hasegawa-Mima (DW)

$$\begin{array}{ll} \mathbf{a.)} \ \mathbf{V} = \frac{c}{B} \hat{z} \times \nabla \phi + \mathbf{V}_{pol} \\ & \sim (\omega/\Omega) \\ L > \lambda_D \rightarrow \nabla \cdot \mathbf{J} = 0 \rightarrow \nabla_{\perp} \cdot \mathbf{J}_{\perp} = -\nabla_{\parallel} J_{\parallel} \\ J_{\perp} = n|e|V_{pol}^{(i)} \\ J_{\parallel} : \eta J_{\parallel} = -(1/c) \partial_{t} A_{\parallel} - \nabla_{\parallel} \phi + \nabla_{\parallel} p_{e} \\ \mathbf{b.)} \quad dn_{e}/dt = 0 \\ \end{array} \qquad \begin{array}{ll} \mathbf{n.b.} \\ \mathsf{MHD:} \ \partial_{t} A_{\parallel} \ \mathrm{v.s.} \ \nabla_{\parallel} \phi \\ \mathsf{DW:} \ \nabla_{\parallel} p_{e} \ \mathrm{v.s.} \ \nabla_{\parallel} \phi \end{array}$$

$$\rightarrow \quad \frac{dn_e}{dt} + \frac{\nabla_{\parallel} J_{\parallel}}{-n_0 |e|} = 0$$

<u>So H-W</u>

$$\begin{split} \rho_s^2 \frac{d}{dt} \nabla^2 \hat{\phi} &= -D_{\parallel} \nabla_{\parallel}^2 (\hat{\phi} - \hat{n}/n_0) + \nu \nabla^2 \nabla^2 \hat{\phi} \\ \frac{d}{dt} n - D_0 \nabla^2 \hat{n} &= -D_{\parallel} \nabla_{\parallel}^2 (\hat{\phi} - \hat{n}/n_0) & \text{is key parameter} \\ \text{n.b.} \quad PV &= n - \rho_s^2 \nabla^2 \phi & \frac{d}{dt} (PV) = 0 \\ & \rightarrow \text{ total density} & \text{b.)} \quad D_{\parallel} k_{\parallel}^2 / \omega \gg 1 \rightarrow \hat{n}/n_0 \sim e \hat{\phi} / T_e & (m, n \neq 0) \\ & \frac{d}{dt} (\phi - \rho_s^2 \nabla^2 \phi) + v_* \partial_y \phi = 0 & \rightarrow \text{H-M} \end{split}$$

**n.b.**  $PV = \phi - \rho_s^2 \nabla^2 \phi + \ln n_0(x)$ 

An infinity of models follow:

- MHD: ideal ballooning resistive → RBM
- HW +  $A_{\parallel}$ : drift Alfven
- HW + curv. : drift RBM
- HM + curv. + Ti: Fluid ITG
- gyro-fluids
- GK

N.B.: Most Key advances appeared in consideration of simplest possible models

#### Homogenization Theory (Prandtl, Batchelor, Rhines, Young)

 $\partial_t q + \nabla \phi \times \hat{z} \cdot \nabla q = \nu \nabla^2 q$ 

Now:  $t \to \infty$   $\partial_t q \to 0$ 

For 
$$\nu = 0$$
  $q = q(\phi)$ 







- $\label{eq:q_approx_solution} \bullet \quad q = q(\phi) \quad \text{ is arbitrary solution}$
- $\rightarrow$  can develop arbitrary fine scale  $\,q=q(\phi)\,$ 
  - $\rightarrow$  closed stream lines,  $\nu = 0$
  - $\rightarrow$  no irreversibility

i.e.



Now  $\nu \neq 0$ 



 $\rightarrow$  non-diffusive stretching produces arbitrary fine scale structure

 $\rightarrow$  for small, but finite  $\nu$ , instead of fine scale structure, must have:

 $q(\phi) \rightarrow const$   $t \rightarrow \infty$  small  $\nu \rightarrow global behavior$ 

i.e. finite  $\nu$  at large  $Re \rightarrow PV$  homogenization

analogy in MHD?  $\rightarrow$  Flux Expulsion
#### Prandtl - Batchelor Theorem:

Consider a region of 2D incompressible flow (i.e. vorticity advection) enclosed by closed streamline  $C_0$ . Then, if diffusive dissipation, i.e.  $\partial_t q + \nabla \phi \times \hat{z} \cdot \nabla q = \nu \nabla^2 q$ then vorticity  $\rightarrow$  uniform (homogenization), as  $t \rightarrow \infty$ within  $C_0$ 

 $\rightarrow$  underpins notion of PV mixing  $\rightarrow$  basic trend

→ fundamental to selective decay to minimum enstrophy state in 2D fluids (analogue of Taylor hypothesis)



Proof:

$$\begin{split} \int_{A_n} \nabla \cdot (\mathbf{v}q) &= 0 \quad \text{(closed streamlines)} \\ 0 &= \int_{A_n} \nabla \cdot (\nu \nabla q) \\ &= \nu \int_{C_n} dl \hat{n} \cdot \nabla q \quad \text{(form of dissipation relevant!)} \end{split}$$





 $C_0 \equiv$ 

bounding streamline

$$0 = \nu \int_{C_n} dl\hat{n} \cdot \nabla \phi_n \frac{\delta q}{\delta \phi_n}$$
$$= \nu \frac{\delta q}{\delta \phi_n} \int_{C_n} dl\hat{n} \cdot \nabla \phi_n$$

$$\therefore 0 = \nu \frac{\delta q}{\delta \phi_n} \Gamma_n$$
  
$$\therefore \frac{\delta q}{\delta \phi_n} = 0 \quad \rightarrow \text{q homogenized, within } C_0$$
  
$$\rightarrow \text{q' tends to flatten!}$$

How long to homogenize?  $\leftrightarrow$  What are the time scales?

Key: Differential Rotation within Eddy



Key: synergism between shear and diffusion

$$1/\tau_{mix} \sim 1/\tau_c (Re)^{-1/3}$$

 $au_c \equiv ext{ circulation time }$ 

PV homogenization occurs on hybrid decorrelation rate

but  $\tau_{mix} \ll \tau_D$  for  $Re \gg 1$   $\longrightarrow$  time to homogenize is finite

Point of the theorem is global impact of small dissipation - akin Taylor

PV Transport and Potential Enstrophy Balance → Zonal Flow

## **Preamble I**

- Zonal Flows Ubiquitous for:
  - ~ 2D fluids / plasmas  $R_0 < 1$ Rotation  $\vec{\Omega}$ , Magnetization  $\vec{B}_0$ , Stratification Ex: MFE devices, giant planets, stars...





## **Preamble II**

- What is a Zonal Flow?
  - n = 0 potential mode; m = 0 (ZFZF), with possible sideband (GAM)
  - toroidally, poloidally symmetric *ExB* shear flow
- Why are Z.F.'s important?
  - Zonal flows are secondary (nonlinearly driven):
    - modes of minimal inertia (Hasegawa et. al.; Sagdeev, et. al. '78)
    - modes of minimal damping (Rosenbluth, Hinton '98)
    - drive zero transport (n = 0)
  - natural predators to feed off and retain energy released by gradient-driven microturbulence



#### Heuristics of Zonal Flows a):

# Simplest Possible Example: Zonally Averaged Mid-Latitude Circulation

- classic GFD example: Rossby waves + Zonal flow (c.f. Vallis '07, Held '01)
- Key Physics:



Rossby Wave:  

$$\omega_{k} = -\frac{\beta k_{x}}{k_{\perp}^{2}}$$

$$v_{gy} = 2\beta \frac{k_{x}k_{y}}{k_{\perp}^{2}} \quad \langle \widetilde{v}_{y}\widetilde{v}_{x} \rangle = \sum_{k} -k_{x}k_{y} |\hat{\varphi}_{\vec{k}}|^{2}$$

$$\therefore v_{gy}v_{phy} < 0$$

$$\rightarrow \text{Backward wave!}$$

$$\Rightarrow \text{Momentum convergence}$$
at stirring location

- … "the central result that a rapidly rotating flow, when stirred in a localized region, will converge angular momentum into this region." (I. Held, '01)
- ► Outgoing waves ⇒ incoming wave momentum flux



- Local Flow Direction (northern hemisphere):
  - eastward in source region
  - westward in sink region
  - ► set by β > 0
  - Some similarity to spinodal decomposition phenomena → both `negative diffusion' phenomena



Key Point: Finite Flow Structure requires separation of

excitation and dissipation regions.

- => Spatial structure and wave propagation within are central.
- $\rightarrow$  momentum transport by waves

Key Elements:

► Waves → propagation transports momentum ↔ stresses

 $\rightarrow$  modest-weak turbulence

- vorticity transport  $\rightarrow$  momentum transport  $\rightarrow$  Reynolds force
  - $\rightarrow$  the Taylor Identity
- $\blacktriangleright$  Irreversibility  $\rightarrow$  outgoing wave boundary conditions
  - ► symmetry breaking → direction, boundary condition

 $\rightarrow \beta$ 

- Separation of forcing, damping regions
  - $\rightarrow$  need damping region broads than source region
  - $\rightarrow$  akin intensity profile...

All have obvious MFE counterparts...

# Heuristics of Zonal Flows b.)

- 2) MFE perspective on Wave Transport in DW Turbulence
- localized source/instability drive intrinsic to drift wave structure



• outgoing wave energy flux  $\rightarrow$  incoming wave momentum flux  $\rightarrow$  counter flow spin-up!

zonal flow layers form at excitation regions



# Heuristics of Zonal Flows b.) cont'd

• So, if spectral intensity gradient  $\rightarrow$  net shear flow  $\rightarrow$  mean shear formation

- Reynolds stress proportional radial wave energy flux  $\vec{S}$ , mode propagation physics (Diamond, Kim '91)
- Equivalently:  $\partial_t E + \nabla \cdot \mathbf{S} + (\omega \mathrm{Im}\omega)E = 0$  (Wave Energy Theorem)

- ... Wave dissipation coupling sets Reynolds force at stationarity

- Interplay of drift wave and ZF drive originates in mode dielectric
- Generic mechanism...



## <u>Towards Calculating Something: Revisiting</u> <u>Rayleigh from PV Perspective</u>

- G.I. Taylor's take on Rayleigh criterion
  - consider effect on (zonal) flow by displacement of PV:  $\delta y$

$$\frac{\partial}{\partial t} \langle v_x \rangle = \langle \widetilde{v}_y \widetilde{q} \rangle$$

 $\widetilde{q} = (PV \text{ of vorticity blob at y}) - (mean PV at y)$ 

$$\swarrow \langle q(y) \rangle = \langle q(y_0) \rangle + (y - y_0) \frac{d\langle q \rangle}{dy} \Big|_{y_0}$$

Small displacement

$$:\frac{\partial}{\partial t} \langle v_x \rangle = -\langle \widetilde{v}_y \delta y \rangle \frac{d \langle q \rangle}{dy} = -\left( \partial_t \frac{\langle \widetilde{\varepsilon}^2 \rangle}{2} \frac{d \langle q \rangle}{dy} \right)$$



Flow driven by PV Flux

# So, for instability $\int \partial_t \langle \tilde{\varepsilon}^2 \rangle > 0$ ; growing displacement $\frac{\partial}{\partial t} \int_{-a}^{a} dy \langle v_x \rangle = 0$ ; momentum conservation

$$-\int_{-a}^{a} dy \left(\partial_{t} \frac{\langle \widetilde{\varepsilon}^{2} \rangle}{2}\right) \frac{d\langle q \rangle}{dy} = 0$$

 $\frac{d\langle q\rangle}{dv}$  must change sign within flow interval  $\Rightarrow$  inflection point

also,

$$\frac{\partial}{\partial t} \left\{ \langle v_x \rangle + \frac{\langle \widetilde{\varepsilon}^2 \rangle}{2} \frac{d \langle q \rangle}{dy} \right\} = 0 \qquad \qquad \widetilde{q} = -\widetilde{\varepsilon} \frac{d \langle q}{dy}$$



 $\rightarrow$  no slip condition of flow + quasi-particle gas  $\rightarrow$  (significant) step toward momentum theorem 11 i.e. ties flow to wave momentum density

## Zonal Flows I

- Fundamental Idea:
  - Potential vorticity transport + 1 direction of translation symmetry
    - $\rightarrow$  Zonal flow in magnetized plasma / QG fluid
  - Kelvin's theorem is ultimate foundation
- G.C. ambipolarity breaking  $\rightarrow$  polarization charge flux  $\rightarrow$  Reynolds force
  - Polarization charge  $\rho^2 \nabla^2 \phi = n_{i,GC}(\phi) n_e(\phi)$ polarization length scale  $\rho^2 \nabla^2 \phi = n_{i,GC}(\phi) - n_e(\phi)$

– If 1 direction of symmetry (or near symmetry):

$$-\rho^{2}\left\langle \widetilde{v}_{rE}\nabla_{\perp}^{2}\widetilde{\phi}\right\rangle = -\partial_{r}\left\langle \widetilde{v}_{rE}\widetilde{v}_{\perp E}\right\rangle \quad \text{(Taylor, 1915)}$$

$$-\partial_r \langle \widetilde{v}_{rE} \widetilde{v}_{\perp E} \rangle$$
 **Heynolds force Heynolds force**



#### Notable by Absence: Three "Usual Suspects"

- "Inverse Cascade"
  - Wave mechanism is essentially linear
    - $\rightarrow$  scale separation often dubious
  - PV transport is sufficient / fundamental
- "Rhines Mechanism"
  - requires very broad dynamic range
  - Waves  $\Leftrightarrow k_R \Leftrightarrow$  forced strong turbulence
  - strong turbulence model
- ▶ "Modulational Instability"  $\rightarrow$  see P.D. et al. PPCF'05, CUP'10 for detailed discussion
  - coherent, quasi-coherent wave process
  - useful concept, but not fundamental

Lesson: Formation of zonal bands is generic to the response of a rapidly rotationg fluid to any localized perturbation

#### Inverse Cascade/Rhines Mechanism

$$k < \underbrace{ \begin{array}{c} \omega_k \sim -\beta k_x/k^2 \\ 1/\tau_k \end{array} }$$

transfer <=> triad couplings



eddy transfer:  $\omega_{MM} < 1/\tau_c$ wave transfer:  $\omega_{MM} > 1/\tau_c$ cross over:  $\omega_{MM} \sim 1/\tau_c$ 



$$l_R \sim (\tilde{v}/\beta)^{1/2} \sim \epsilon^{1/5}/\beta^{3/5}$$

Contrast: Rhines mechanism vs critical balance



#### $\rightarrow$ Caveat Emptor:

- often said `Zonal Flow Formation  $\cong$  Inverse Cascade'

#### but

- anisotropy crucial  $\rightarrow \langle \tilde{V}^2 \rangle$ ,  $\beta$ , forcing  $\rightarrow$  ZF scale

- numerous instances with:  $\langle \begin{array}{c} no \text{ inverse inertial range} \\ \overline{\mathsf{ZF}} \text{ formation} \leftrightarrow \text{quasi-coherent} \end{array}$ 

all really needed:

$$\langle \tilde{V}_y \tilde{q} \rangle \rightarrow \mathsf{PV} \operatorname{Flux} \rightarrow \langle \tilde{V}_y \tilde{V}_x \rangle \rightarrow \mathsf{Flow}$$

 $\rightarrow$  transport and mixing of PV are fundamental elements of dynamics

# **Zonal Flows II**

- Potential vorticity transport and momentum balance
  - Example: Simplest interesting system  $\rightarrow$  Hasegawa-Wakatani
    - Vorticity:  $\frac{d}{dt}\nabla^2\phi = -D_{\parallel}\nabla_{\parallel}^2(\phi n) + D_0\nabla^2\nabla^2\phi$  Density:  $\frac{dn}{dt} = -D_{\parallel}\nabla_{\parallel}^2(\phi n) + D_0\nabla^2n$   $\begin{bmatrix} D_0 \text{ classical, feeble} \\ Pr = 1 \text{ for simplicity} \end{bmatrix}$

- Locally advected PV:  $q = n \nabla \phi^2$ 
  - PV: charge density  $\begin{bmatrix} n \rightarrow \text{guiding centers} \\ -\nabla \phi^2 \rightarrow \text{polarization} \end{bmatrix}$
  - conserved on trajectories in inviscid theory dq/dt=0
  - $\begin{array}{ccc} \mathsf{PV} \mbox{ conservation} \rightarrow & \begin{array}{c} \mathsf{Freezing-in} \mbox{ law} \\ \mathsf{Kelvin's} \mbox{ theorem} \end{array} \end{array} \xrightarrow[]{} & \begin{array}{c} \mathsf{Dynamical} \\ \mbox{ constraint} \end{array}$





# Zonal Flow II, cont'd

• Potential Enstrophy (P.E.) balance

- $\therefore$  P.E. production directly couples driving transport and flow drive
- Fundamental Stationarity Relation for Vorticity flux

$$\left\langle \widetilde{V}_{r} \nabla^{2} \widetilde{\phi} \right\rangle = \left\langle \widetilde{V}_{r} \widetilde{n} \right\rangle + \left( \delta_{t} \left\langle \widetilde{q}^{2} \right\rangle \right) / \left\langle q \right\rangle'$$
**Reynolds force** Relaxation Local PE decrement

↔ Reynolds force locked to driving flux and P.E. decrement; transcends quasilinear theory

•



Contrast: Implications of PV Freezing-in Law



Lesson: Even if  $\langle q \rangle \cong \langle n \rangle$ , PV conservation must channel free energy into zonal flows! Key Question: Branching ratio of energy coupled to flow vs transport-inducing fluctuations?

► Combine: 
$$\begin{cases} \mathsf{PE \ balance} \\ \partial_t \langle V_\theta \rangle = -\langle \tilde{V}_r \nabla^2 \tilde{\phi} \rangle - \nu \langle V_\theta \rangle \end{cases} \text{ yields...}$$

Charney-Drazin Momentum Theorem

(1960, et.seq., P.D., et.al. '08, for HW)

Pseudomomentum local P.E. decrement  $\partial_t \{ (\widetilde{\mathsf{WAD}}) + \langle V_\theta \rangle \} = - \langle \widetilde{V}_r \widetilde{n} \rangle - \delta_t \langle \widetilde{q}^2 \rangle / \langle q \rangle' - \nu \langle V_\theta \rangle$ 

#### driving flux

drag

WAD = Wave Activity Density,  $\langle \tilde{q}^2 \rangle / \langle q \rangle'$ 

- > pseudomomentum in  $\theta$ -direction (Andrews, McIntyre '78)
- Generalized Wave Momentum Density

- i) momentum of quasi-particle gas of waves, turbulenceii) consequence of azimuthal/poloidal symmetryiii) not restricted to linear response, but reduces correctly

► What Does it Mean ? → "Non-Acceleration Theorem":

$$\partial_t \{ (\mathsf{WAD}) + \langle V_\theta \rangle \} = -\langle \tilde{V}_r \tilde{n} \rangle - \delta_t \langle \tilde{q}^2 \rangle / \langle q \rangle' - \nu \langle V_\theta \rangle$$

$$\bullet \text{ absent} \begin{cases} \langle \tilde{V}_r \tilde{n} \rangle, \text{ driving flux} \\ \delta_t \langle \tilde{q}^2 \rangle, \text{ local potential enstrophy decrement} \\ \rightarrow \text{cannot} \begin{cases} \text{ accelerate} \\ \text{ maintain} \end{cases} \text{ Z.F. with stationary fluctuations!} \\ \bullet \text{ Essential physics is PV conservation and translational} \\ \text{ invariance in } \theta \rightarrow \text{ freezing quasi-particle gas momentum into} \\ \text{ flow} \rightarrow \text{ relative "slippage" required for zonal flow growth} \end{cases}$$

 $\leftrightarrow$  need explicit connection to relaxation, dissipation

N.B. Inhomogeneous dissipation  $\rightarrow$  incomplete homogenization!?



C-D Theorem for HM

$$\partial_t \{ \mathsf{WAD} + \langle V_\theta \rangle \} = \frac{\langle \tilde{f}^2 \rangle \tau_c}{\langle q \rangle'} - \frac{1}{\langle q \rangle'} \left\{ \partial_r \langle \tilde{V}_r \delta q^2 \rangle + \mu \langle (\nabla \delta q)^2 \rangle \right\} - \nu \langle V_\theta \rangle$$

▶ C-D prediction for  $\langle V_{\theta} \rangle$  at stationary state, HM model

$$\langle V_{\theta} \rangle = \frac{1}{\nu \langle q \rangle'} \left\{ \langle \tilde{f}^2 \rangle \tau_c - \partial_r \langle \tilde{V}_r \delta q^2 \rangle + \mu \langle (\nabla \delta q)^2 \rangle \right\}$$

- → Note: Flow direction set by:  $\langle q \rangle'$ , source, sink distribution
- → Forcing, damping profiles determine shear
- → Potential Enstrophy Transport impact flow structure

In More Depth: What Really Determines Zonal Flow?

• driving flux:  $\langle \tilde{V}_r \tilde{n} \rangle = \Gamma_0 - \Gamma_{col} = \int dr' S_n(r') - \Gamma_{col}$ 

- Total flux  $\Gamma_0$  fixed by sources,  $S_n \rightarrow \text{flux driven system}$
- $\succ$   $\Gamma_{o} \Gamma_{col} \rightarrow$  available flux
- ▶ P.E. decrement:  $\delta_t \langle \tilde{q}^2 \rangle = \partial_r \langle \tilde{V}_r \tilde{q}^2 \rangle + D_0 \langle (\nabla \tilde{q})^2 \rangle$ 
  - $\rightarrow$  change in roton intensity (PE) changes flow profile
    - roton dissipation
    - P.E. flux, direction increment, according to convergence (> 0) or divergence (< 0) of pseudomomentum, locally</li>

So: P.E. transport and "spreading" intrinsically linked to flow structure, dynamics

Net  $\delta(P.E.)$  can generate net spin-up

 $\therefore$  Zonal flow dynamics intrinsically "non-local"  $\leftrightarrow$  couple to turbulence spreading (fast, meso-scale process)

Clarifying the Enigma of Collisionless Zonal Flow Saturation

▶ Flow evolution with:  $\nu \rightarrow 0$ ,  $S_n \neq 0$  and nearly stationary turbulence

$$\partial_t \langle V_{\theta} \rangle = -\left(\int dr' S_n(r') - \Gamma_{\rm col}\right) - \left(\partial_r \langle \tilde{V}_r \tilde{q}^2 \rangle + D_0 \langle (\nabla \tilde{q})^2 \rangle\right) / \langle q \rangle'$$

Possible Outcomes:

- ⟨q⟩' → 0, locally → shear flow instability (the usual)
   ↔ limit cycle of burst and recovery, effective viscosity?
   →problematic with magnetic shear
- $\langle \tilde{V}_r \tilde{n} \rangle$  v.s.  $\partial_r \langle \tilde{V}_r \tilde{q}^2 \rangle \rightarrow$  potential enstrophy transport and inhomogeneous turbulence, with  $\tilde{n}/n \sim M.L.T$ 
  - $\rightarrow$  flux drive vs. roton population flux

 $\rightarrow$  novel saturation mechanism

▶  $\langle q \rangle' \rightarrow 0$ , globally  $\rightarrow$  homogenized PV state (Rhines, Young, Prandtl, Batchelor)

 $\rightarrow$  decouples mean PV, PE evolution

homogeneous marginality, i.e. ∫ dr'S<sub>n</sub>(r') = Γ<sub>col</sub> ↔ ala' stiff core

N.B.: 
$$\langle q \rangle' = 0 \Rightarrow \partial_r \langle n \rangle = \partial_r^2 \langle V_E \rangle = \partial_r \langle \omega_E \rangle \rightarrow \text{particular profile relation }!$$

#### Summary of Flow Organization

concept: symmetry

process: PV mixing, transport

constraint released: Enstrophy conservation

players: drift waves

Mean Field:  $\Gamma_{PV} = \langle \tilde{v}_r \tilde{q} \rangle$ 

Global Constraint: Bounding circulation

NL: Pseudomomentum Flux

Outcome: Zonal Flow Formation

Shortcoming: ZF pattern structure and collisionless saturation

#### Summary of comparison

- Many commonalities between magnetic and flow relaxation apparent.
- Common weak point is limitation of mean field theory
  - → difficult to grapple with strong NL, non-Gaussian fluctuations.

|            | Magnetic (JB)                                        | Flow (GI)                                         |
|------------|------------------------------------------------------|---------------------------------------------------|
| concept    | topology                                             | symmetry                                          |
| process    | turbulent reconnection                               | PV mixing                                         |
| players    | tearing modes, Alfven waves                          | drift wave turbulence                             |
| mean field | $EMF = \langle \tilde{v} \times \tilde{B} \rangle$   | PV Flux = $\langle \tilde{v}_r \tilde{q} \rangle$ |
| constraint | $\int d^3x \mathbf{A} \cdot \mathbf{B}$ conservation | Potential Enstrophy balance                       |
| NL         | Helicity Density Flux                                | Pseudomomentum Flux                               |
| outcome    | B-profiles                                           | zonal flow                                        |

# Heuristics of Zonal Flows c.)

- One More Way:
- Consider:
  - Radially propagating wave packet
    Adiabatic shearing field

$$\frac{d}{dt}k_{r} = -\frac{\partial}{\partial r}\left(\omega + k_{\theta}\left\langle V_{E,ZF}\right\rangle\right) \implies \left\langle k_{r}^{2}\right\rangle \uparrow$$

•  $\omega_{\vec{k}} = \frac{\omega_*}{1 + k_\perp^2 \rho_s^2} \quad \downarrow$ 



ational Fusion

- Wave action density  $N_k = E(k)/\omega_k$  adiabatic invariant
- $\therefore$  E(k)  $\downarrow \Rightarrow$  flow energy decreases, due Reynolds work  $\Rightarrow$  flows amplified (cf. energy conservation)
- $\Rightarrow$  Further evidence for universality of zonal flow formation

# Heuristics of Zonal Flows d.) cont'd

#### Implications:

 –ZF's generic to drift wave turbulence in any configuration: electrons tied to flux surfaces, ions not

- g.c. flux  $\rightarrow$  polarization flux
- zonal flow
- -Critical parameters
  - ZF screening (Rosenbluth, Hinton '98)
  - polarization length
  - cross phase  $\rightarrow$  PV mixing

#### • Observe:

-can enhance  $e\varphi_{ZF}/T$  at fixed Reynolds drive by reducing shielding,  $\rho^2$ 

-typically: 
$$\epsilon / \epsilon_{01} \sim 1 + \rho_i^2 / \lambda_D^2 + f_t \rho_{b1}^2 / \lambda_D^2 + f_d \delta_d^2 / \lambda_D^2$$
  
total screening banana tip  
response width excursion  
-Leverage (Watanabe, Sugama)  $\rightarrow$  flexibility of stellerator configuration

- Multiple populations of trapped particles
- $\langle E_r \rangle$  dependence (FEC 2010)



# Heuristics of Zonal Flows d.) cont'd

- Yet more:  $\frac{\partial}{\partial t} \langle v_{\perp} \rangle = -\partial_r \langle \widetilde{v}_{rE} \widetilde{v}_{\perp E} \rangle [\gamma_d \langle v_{\perp} \rangle] + \mu \nabla_r^2 \langle v_{\perp} \rangle$   $\downarrow damping$
- Reynolds force opposed by flow damping
- Damping:
  - Tokamak  $\gamma_d \sim \gamma_{ii}$

- trapped, untrapped friction
- no Landau damping of (0, 0)
- -Stellerator/3D  $\longrightarrow \gamma_d \leftrightarrow NTV$ 
  - damping tied to non-ambipolarity, also
  - largely unexplored

## -RMP

- zonal density, potential coupled by **RMP** field
- novel damping and structure of feedback loop
- Weak collisionality → nonlinear damping problematic
  - $\rightarrow$  tertiary  $\rightarrow$  'KH' of zonal flow  $\rightarrow$ magnetic shear!?
    - $\rightarrow$  other mechanisms?

# Heuristics of Zonal Flows c.) cont'd

- 4) GAMs Happen
- Zonal flows come in 2 flavors/frequencies:
  - $-\omega = 0 \implies$  flow shear layer

 $-GAM \quad \omega^2 \cong 2c_s^2 / R^2 (1 + k_r^2 \rho_{\theta}^2) \Rightarrow \text{ frequency drops toward edge} \Rightarrow \text{ stronger shear}$ 

- radial acoustic oscillation
- couples flow shear layer (0,0) to (1,0) pressure perturbation
- R = geodesic curvature (configuration)
- Propagates radially
- GAMs damped by Landau resonance and collisions  $\gamma_{\it d} \sim exp[-\omega_{\it GAM}^2 \, / (v_{\it thi} \, / \, Rq)^2]$

-q dependence!

-edge

Caveat Emptor: GAMs easier to detect ⇒ looking under lamp post ?!

## **Progress I: ZF's with RMP (with M. Leconte)**

- ITER 'crisis du jour': ELM Mitigation and Control
- Popular approach: RMP
- ? Impact on Confinement?



- $\Rightarrow$  RMP causes drop in fluctuation LRC, suggesting reduced Z.F. shearing
- $\Rightarrow$  What is "cost-benefit ratio" of RMP?

- Physics:
  - in simple H-W model, polarization charge in zonal annulus evolves according:

$$\frac{dQ}{dt} = -\int dA \left[ \left\langle \widetilde{v}_x \widetilde{\rho}_{pol} \right\rangle + \left( \frac{\delta B_r}{B_0} \right)^2 D_{\parallel} \frac{\partial}{\partial x} \left( \left\langle \phi \right\rangle - \left\langle n \right\rangle \right) \right]_{r_1}^{r_2}$$

- Key point:  $\delta B_r$  of RMP induces radial electron current  $\rightarrow$  enters charge balance

## Progress I, cont'd

- Implications
  - $\delta B_r$  linearly couples zonal  $\hat{\phi}$  and zonal  $\hat{n}$
  - Weak RMP  $\rightarrow$  correction, strong RMP  $\rightarrow \langle E_r \rangle_{ZF} \cong -T_e \partial_r \langle n \rangle / |e|$
- Equations:  $\frac{d}{dt}\delta n_q + D_T q^2 \delta n_q + ib_q (\delta \phi_q (1-c)\delta n_q) D_{RMP} q^2 (\delta \phi_q \delta n_q) = 0$  $\frac{d}{dt}\delta \phi_q + \mu \delta \phi_q a_q (\delta \phi_q (1-c)\delta n_q) + \frac{D_{RMP}}{\rho_s^2} (\delta \phi_q \delta n_q) = 0$



 $E_{ZF}/\mathcal{E}_L$  vs  $\mathcal{E}/\mathcal{E}_L$  for various RMP coupling strengths





#### **Progress II :** β-plane MHD (with S.M. Tobias, D.W. Hughes)

#### Model

- Thin layer of shallow magneto fluid, i.e. solar tachocline
- $\beta$ -plane MHD ~ 2D MHD +  $\beta$ -offset i.e. solar tachocline

 $\partial_t \nabla^2 \phi + \nabla \phi \times \hat{z} \cdot \nabla \nabla^2 \phi - \nu \nabla^2 \nabla^2 \phi = \beta \partial_x \phi + B_0 \partial_x \nabla^2 A + \nabla A \times \hat{z} \cdot \nabla \nabla^2 A + \tilde{f}$ 

 $\partial_t A + \nabla \phi \times \hat{z} \cdot \nabla A = B_0 \partial_x \phi + \eta \nabla^2 A \qquad \vec{B}_0 = B_0 \hat{x}$ 

- Linear waves: Rossby Alfven  $\omega^2 + \omega \beta \frac{k_x}{k^2} k_x^2 V_A^2 = 0$  (R. Hide)
- cf P.D., et al; Tachocline volume, CUP (2007)
  S. Tobias, et al: ApJ (2007)



## Progress II, cont'd

#### **Observation re: What happens?**

- Turbulence  $\rightarrow$  stretch field  $\rightarrow \langle \widetilde{B}^2 \rangle >> B_0^2$  i.e.  $\langle \widetilde{B}^2 \rangle / B_0^2 \sim R_m$ (ala Zeldovich)
- Cascades : forward or inverse?
  - MHD or Rossby dynamics dominant !?
- PV transport:  $\frac{dQ}{dt} = -\int dA \langle \widetilde{v} \widetilde{q} \rangle \longrightarrow$  net change in charge content due PV/polarization charge flux

Taylor:  $\langle B_x J_{\parallel} \rangle = -\partial_x \langle B_x B_y \rangle$ 

Now 
$$\frac{dQ}{dt} = -\int dA \left[ \langle \widetilde{v} \widetilde{q} \rangle - \langle \widetilde{B}_r \widetilde{J}_{\parallel} \rangle \right] = -\int dA \partial_x \left\{ \langle \widetilde{v}_x \widetilde{v}_y \rangle - \langle \widetilde{B}_x \widetilde{B}_y \rangle \right\} \longrightarrow$$
 Reynolds  
mis-match  
PV flux current along tilted lines  $\longrightarrow$  vanishes for  
Alfvenized state



## Progress II, cont'd




## Progress II, cont'd

- Control Parameters for  $\vec{B}$  enter Z.F. dynamics Like RMP, Ohm's law regulates Z.F.
- Recall

$$- \langle \widetilde{v}^2 \rangle \text{ vs } \langle \widetilde{B}^2 \rangle$$
$$- \langle \widetilde{B}^2 \rangle \sim B_0^2 R_m \longrightarrow \text{ origin of } B_0^2 / \eta \text{ scaling}$$

- Further study  $\rightarrow$  differentiate between :
  - cross phase in  $\langle \widetilde{v}_r \widetilde{q} \rangle$  and O.R. vs J.C.M
  - orientation :  $\vec{B} \parallel \vec{V}$  vs  $\vec{B} \perp \vec{V}$
  - spectral evolution



+ = zonal flow state

No ZF observed