$\vec{r}_{A}(t)$ designates the center-of-mass coordinate vector of Galaxy A and similarly, $\vec{r}_{B}(t)$ designates the center-of-mass coordinate vector of Galaxy B. Let us introduce now the center-of-mass vector $\vec{r}_{C M}(t)=\vec{r}_{A}(t)+\vec{r}_{B}(t)$ of the two galaxies, and their relative coordinate vector $\vec{r}(t)=\vec{r}_{A}(t)-\vec{r}_{B}(t)$ (Galaxy A and Galaxy B are assumed to have the same mass). We will work in the center-of mass coordinate system where $\vec{r}_{C M}(t)=0$. Initially, at large enough separation, the center-of masses of the two galaxies move as pointlike particles. We want to put them on parabolic orbits in the $\mathrm{x}-\mathrm{y}$ plane of the center-of-mass coordinate system. The following initial conditions are defined in dimensionless units:
(i) If the two galaxies were following the parabolic orbits throughout the collision, they would be found at $\mathrm{t}=0$ with separation $r(t=$ $0)=R_{0}$ at the closest approach (pericenter) of the motion. At $\mathrm{t}=0$, the point on the parabole representing the motion of the relative coordinate vector \vec{r} is found at distance $r(0)=p / 2=$ R_{0} from the origin. Part of the initial condition is the constraint that the on the parabolic orbit of Galaxy A in the CM system $x_{A}(0)=z_{A}(0)=0, y_{A}(0)=p / 4$.
(ii) At $t=t_{\text {init }}$ the separation between A and B is $R_{\text {init }}$.
(iii) The default values are $M_{A}=M_{B}=6.21200688$ for the equal masses of the two galaxies, if the Kuijken-Dubinski galaxy construction is used with default settings.

Introduce now the parameter η which is related to time by the nonlinear relation

$$
t=\frac{1}{2} \sqrt{\frac{p^{3}}{2 M}} \eta\left(1+\frac{1}{3} \eta^{2}\right) .
$$

Show that the following relations hold for the parametrization of the relative cooordinates of the parabole of the galaxy pair:
(a) $|\vec{r}(\eta)|=r=\frac{1}{2} p\left(1+\eta^{2}\right)$,
(b) $x(\eta)=p \eta$,
(c) $y(\eta)=\frac{1}{2} p\left(1-\eta^{2}\right)$.

Calculate the initial coordinates and velocities of Galaxy A and Galaxy B in the center-of-mass coordinate system. Provide the numerical values for $R_{0}=2.5, R_{\text {init }}=44$.

