
User Guide for falcON
version of November 7, 2008

Walter Dehnen

Summary. falcON is the “Force Algorithm with Complexity O(N)” which is
described by Dehnen (2000, 2002). With this package, you can use falcON in sub-
routine form as Poisson solver for particle based simulations. The package also has
a full N -body code, based on falcON, called gyrfalcON (“GalaxY simulatoR
using falcON”), which employs the N -body tool box NEMO. This code features
individual adaptive time steps employing a block-step scheme, but can also be used
in single-time-step mode (in which case momentum is exactly conserved). Addi-
tionally, there are several other programs and facilities that may prove useful for
setting-up, running, and analyzing N -body simulations.

1 Guarantee
This package comes with absolutely no guarantee whatsoever! The unpacking, installation, and usage of the
code is entirely at the risk of the user alone.

2 Credit
Any scientific publication or presentation which has benefited from using falcON in subroutine form or from
using any of the programs gyrfalcON, getgravity, or addgravity should quote the papers

Dehnen, W., 2000, ApJ, 536, L39
Dehnen, W., 2002, JCP, 179, 27.

(please find the .pdf file of the latter paper in the subdirectory falcON/doc.) Papers that did not use these
but other parts of this packages should acknowledge that whereby explicitly mentioning me (Walter Dehnen)
as author of the code.

3 Recent changes
This section list some changes made in the last two years or so.

September 2007 The code, described in McMillan & Dehnen (2007) for creating initial conditions for a disc
galaxy consisting of spheroid (halo & bulge) and disc components has been included. It comes with its own
detailed user guide and example script (doc/mkGalaxy).

May 2007 Codes for generating spherical initial conditions allow for anisotropic velocities according to Os-
sipkov (1979) and Merritt (1985).

February 2007 Three new NEMO executables have been added to the package: g2s, s2g, and s2s. The
first two provide quite nifty conversion between gadget data files and NEMO snapshots, see man pages for
more details, while s2s is very similar to NEMO’s snapcopy, except that it can copy all data supported by
falcON I/O.

August 2006 The public version of falcON has been put under CVS control under the NEMO package. This
should significantly simplify installation, updating and downloading.

Some changes in the directory structure and filenames (FAlCON→forces).
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July 2006 In order to allow their usage at the GH2006 summer school, several parts of the code have been
migrated from the proprietary section into the public part. Of particular interest are extensions to the ma-
nipulators and support for communication between manipulators, as well as bodyfunc.h, which supports
simple functions of a body (and time + parameters) to be generated on the fly given a user-provided string
in some simple syntax (see man pages (1bodyfunc) and (5bodyfunc); this is very similar to, but
more powerful than, NEMO’s bodytrans). Parts of the code have been documented using doxygen, see
falcON/dox/htlm/index.htlm for details (partly due to my inexperience with doxygen this documen-
tation is very preliminary and incomplete, but should still be useful for anybody using the falcON library or
using manipulators).

April 2006 Some pieces of code which are not falcON specific have been taken out and put into a utils
package, which resides in directory utils parallel to directory falcON, but there are some dynamic links.
The utils package uses namespace WDutils and provides some generally useful code. It must be compiled
before falcON.

4 Installation
Since August 2006, (the public version of) falcON is under CVS control within the NEMO package and you
are strongly advised to install and initialize falcON using NEMO.

If you are interested in using falcON standalone, i.e. only use it as a library for your force computation or
SPH neighbour search, then you may still obtain falcON from NEMO, but must compile it without the NEMO
enviroment variable set. In this case, only two executables will be made: TestGrav and TestPair, the first
allows testing of the gravity approximation, the second the search for SPH interaction partners.

Compiler Issues
You need to make the library libfalcON.so and, possibly, the executables you want to use. The code is
written entirely in C++ and it is strongly recommended to use a compiler that understands standard C++1, I
recommend GNU’s gcc versions 3.4 or Intel’s icc version 8.0 or higher. By default, we use gcc, if you want
to use another compiler, edit the file makedefs and change the entry for COMPILER.

You may also edit the optimization flags in file makedefs. This applies particularly to Intel’s icc com-
piler, which allows processor specific switches.

5 Individual Softening Lengths
Individual softening lengths are enabled, but not obligatory (in fact default is always to have a globally constant
ε).

The softening length εij used in the interaction of nodes with individual softening lengths εi and εj is simply
the arithmetic mean of the two. The softening length εi of a cell is the arithmetic mean of the softening lengths
of all its bodies.

6 Testing falcON
Please run TestGrav in order to get some rough check on the validity of your library. Issuing the command

TestGrav 2 1 1000000 901 0.01 1

shall generate a Hernquist sphere with N = 106 particles, build the tree (twice: once from scratch and once
again) and compute the forces using a softening length of ε = 0.01 scale radii with the P1 kernel (see §7). The
output of this command may look like2

1If you use a compiler version different (usually newer) than those against which this package was tested, you may get warnings
or even error messages. These do not point to genuine errors in the code but rather reflect the fact that C++ compilers do not fully
implement the standard but converge there with every new version. I would appreciate if you, in such a case, could email me the error
messages together with details of the compiler and system used.

2 Code compiled with gcc version 3.3.4, run on an AMD Opteron (tm) with 2190Mhz and 1024Kb cache size.
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time needed for set up of X_i: 0.64
time needed for FAlCON::grow(): 1.21
time needed for FAlCON::grow(): 0.59
time needed for FAlCON::approximate_gravity(): 4.77

state: tree re-grown
root center: 0 0 0
root radius: 1024
bodies loaded: 1000000
total mass: 1
N_crit: 6
cells used: 353665
of which were active 353665
maximum depth: 21
current theta: 0.6
current MAC: theta(M)
softening length: 0.01
softening kernel: P1
Taylor coeffs used: 83880 in 4 chunks of 22108
interaction statitics:

type approx direct total
# body-body : - 0 0 = 0%
# cell-body : 2138354 484564 2622918 = 18.427%
# cell-cell : 11302423 254979 11557402 = 81.194%
# cell-self : - 53928 53928 = 0.379%
# total : 13440777 793471 14234248 = 100.000%

ASE(F)/<Fˆ2> = 0.001392818172
max (dF)ˆ2 = 0.8913656473
Sum m_i acc_i = 3.240235305e-10 1.787507139e-09 2.572656954e-09

Note that the second tree-build is much faster then the initial one. Note also the the total-momentum change
(last line) vanishes within floating point accuracy – that’s a generic feature of falcON.

7 Choice of the Softening Kernel and Length
The code allows for various forms of the softening kernel, i.e. the function by which Newton’s 1/r is replaced
in order to avoid diverging near-neighbour forces. The following kernel functions are available (x := r/ε)

name density (is proportional to) a0 a2 f

P0 (1 + x2)−5/2 ∞ ∞ 1

P1 (1 + x2)−7/2 π ∞ 1.43892

P2 7(1 + x2)−9/2 − 2(1 + x2)−7/2 0 ∞ 2.07244

P3 9(1 + x2)−11/2 − 4(1 + x2)−9/2 0 −π/40 2.56197

Note, that P0 is the standard Plummer softening, however, recommended is the use of P1 or P2. There are
several important issues one needs to know about these various kernels.

First, the softening length ε is just a parameter and using the same numerical value for it but different kernels
corresponds in effect to different amounts of softening. Actually, this softening is strongest for the Plummer
sphere: at fixed ε, the maximal force is smallest. In order to obtain comparable amounts of softening, larger ε
are needed with all the other kernels. An idea of the factor by which ε has to be enlarged can be obtained by
setting ε such that the maximum possible force between any two bodies are equal for various kernels. The last
column in the previous table gives these factors. Note, that using a larger ε with other than the P0 kernel does
not mean that your resolution goes down, it in fact increases, see Dehnen (2001), but the Poisson noise is more
suppressed with larger ε. It is recommended not to use Plummer softening, unless (i) you want ε ≡ 0, (ii) in 2D
simulations, as here ε is the average scale-height of the disk, and, perhaps, (iii) in simulations made to compare
with others that use Plummer softening (for historical reasons).

Second, as shown in Dehnen (2001), Plummer softening results in a strong force bias, due to its slow
convergence to the Newtonian force at r À ε. This is quantified by the measure a0, which for P0 is infinite.
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Figure 1: Potential, force, and density for the softening kernels of the table, including the standard Plummer softening (P0). The
softening lengths ε are scaled such that the maximum force equals unity. The kernels P>0 approach Newtonian forces more quickly at
larger r than does P0. The kernels P2 and P3 have slightly super-Newtonian forces (and negative densities) in their outer parts, which
compensate for the sub-Newtonian forces at small r.

In Dehnen (2001), I considered therefore other kernels (not mentioned above), which have finite support, ie.
the density is exactly zero for r ≥ ε. This discontinuity makes them less useful for the tree code (which is
based on a Taylor expansion of the kernel). In order to overcome this difficulty, the kernels P1 to P3, which
are continuous in all derivatives, have been designed as extensions to the Plummer softening, but with finite a0

(P1), zero a0 but infinite a2 (P2), or even zero a0 and finite a2 (P3).

8 Choice of the Tolerance Parameter
The code falcON approximates an interaction between two nodes, if their critical spheres don’t overlap. The
critical spheres are centered on the nodes’ centers of mass and have radii

rcrit = rmax/θ (1)

where rmax is the radius of a sphere that is guaranteed to contain all bodies of the node (bodies have rmax = 0),
while θ is the tolerance parameter. The default is to use a mass-dependent θ = θ(M) with θ0 ≡ θ(Mtot)
being the parameter, see Dehnen (2002). For near-spherical systems or groups of such systems, θ0 of 0.6 gives
relative force errors of the order of 0.001, which is generally believed to be acceptable. However, the force error
might often be dominated by discreteness noise, in which case a larger value does no harm. For disk systems,
however, a smaller tolerance parameter, e.g. θ0 = 0.5, might be a better choice.

The recommendation is to either stick to θ0 no larger than about 0.6, or perform some experiments with
varying θ0 (values larger than 0.8, however, make no sense, as there is hardly any speed-up).
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9 Use of falcON as Poisson Solver in Your Code
You may use falcON like a subroutine to serve as a Poisson solver in your existing code.

9.1 With C++
In order to make use of the code, you need to insert the C macro

#include <forces.h>

somewhere at the beginning of your C++ source code. Make sure that the compiler finds the file forces.h by
including -I $FALCON/inc among your compiler options. The usage of the code in your application is ex-
plained in gory detail in the file forces.h (don’t forget that class forces lives in namespace falcON).
In order to make an executable, add the linker options -L $FALCONLIB /lib -lfalcON -lm so that
the library will be loaded at runtime.

For examples of code using forces.h, see the file TestGrav.cc in subdirectory src/public/exe,
which may be compiled by typing make TestGrav and produce a short summary of their usage when run
without arguments.

9.2 With C
In order to make use of the code, you need to insert the C macro

#include <forces C.h>

somewhere at the beginning of your C source code. Make sure that the compiler finds the file forces C.h
by including -I $FALCON/inc among your compiler options. The usage of the code in your application is
explained in gory detail in the file forces C.h. In order to make an executable, add the linker options -L
$FALCONLIB /lib -lfalcON -lstdc++ -lm so that the library will be loaded at runtime.

For examples of code using forces C.h, see the file TestGravC.cc in subdirectory src/public/exe,
which may be compiled by typing make TestGravC and produce a short summary of their usage when run
without arguments.

9.3 With FORTRAN
In order to make use of the code, you need to insert

INCLUDE ’forces.f’

somewhere at the beginning of your FORTRAN program. Make sure that the compiler finds the file forces.f
by including -I $FALCON/inc among your compiler options. The usage of the code in your application is
explained in gory detail in the file forces.f. In order to make an executable, add the linker options -L
$FALCONLIB /lib -lfalcON -lstdc++ -lm so that the library will be loaded at runtime.

For examples of code using falcON.f, see the files TestGravF.F and TestPairF.F in subdirectory
src/public/exe, which may be compiled by typing make TestGravF and make TestPairF. Just
run these programs, they are self-explanatory and provide some statistics output. You may also use the input
files given and run them as TestGravF < treeF.in and TestPairF < pairF.in.

10 The N-Body Code gyrfalcON
The package also contains a full N -body code, called gyrfalcON (GalaxY simulatoR using falcON)3. If
you want to use this code, you need first to install and invoke the N -body tool box NEMO, version 3.0.13
or higher4, see http://www.astro.umd.edu/nemo. It is recommended to configure NEMO with configure
--enable-single --enable-lfs. gyrfalcON comes with the usual NEMO help utility: calling
gyrfalcON without arguments or with the argument help=h produces the following overview over the
options.

gyrfalcON -- a superb N-body code

3Called “YancNemo” in former versions of this package (before December 2002).
4Older versions of this package contained a non-NEMO code, called “YANC”. This code was never properly tested and has hence

been deprecated.

5

http://www.astro.umd.edu/nemo
http://www.astro.umd.edu/nemo
http://www.astro.umd.edu/nemo
http://www.astro.umd.edu/nemo
http://www.astro.umd.edu/nemo


option summary:
in : input file [???]
out : file for primary output; required, unless resume=t []
tstop : final integration time [default: never] []
step : time between primary outputs; 0 -> every step [1]
logfile : file for log output [-]
stopfile : stop simulation as soon as file exists []
logstep : # blocksteps between log outputs [1]
out2 : file for secondary output stream []
step2 : time between secondary outputs; 0 -> every step [0]
theta : tolerance parameter at M=M_tot [0.60]
hgrow : grow fresh tree every 2ˆhgrow smallest steps [0]
Ncrit : max # bodies in un-split cells [6]
eps : >=0: softening length

< 0: use individual fixed softening lengths [0.05]
kernel : softening kernel of family P_n (P_0=Plummer) [1]
kmax : tau_max = (1/2)ˆkmax MUST be given [???]
Nlev : # time-step levels [1]
fac : tau = fac / acc \ If more than one of []
fph : tau = fph / pot | these is non-zero, []
fpa : tau = fpa * sqrt(pot)/acc | we use the minimum []
fea : tau = fea * sqrt(eps/acc) / tau. []
time : time of input snapshot (default: first) []
resume : resume old simulation? that implies:

- read last snapshot from input file
- append primary output to input (unless out given) [f]

give : list of output specifications. [mxv]
give2 : list of specifications for secondary output [mxv]
Grav : Newton’s constant of gravity (0-> no self-gravity) [1]
root_center : if given (3 numbers), forces tree-root centering []
accname : name of external acceleration field []
accpars : parameters of external acceleration field []
accfile : file required by external acceleration field []
manipname : name of run-time manipulator []
manippars : parameters for manipulator []
manipfile : data file required by manipulator []
manippath : path to search for manipulator []
manipinit : manipulate initial snapshot? [f]
startout : primary output for t=tstart? [t]
lastout : primary output for t=tstop? [t]
VERSION : 28-feb-2007 Walter Dehnen [3.0.9I]
COMPILED : Feb 28 2007, 09:11:29, with gcc-3.3.5 []
STATUS : public version []

The last column indicates the default value, with ‘[???]’ indicating that the value for the keyword must
be given, while ‘[]’ means that the corresponding feature is not used by default. In order to get a detailled
explanation of the various options, see the manpage of gyrfalcON.

Traditionally on linux systems, there is a limit of 2Gb on the size of files. This will cause trouble with
NEMO snapshot files, since the snapshots of all output times are written to one file. To overcome this, you
must (i) configure NEMO appropriately (use configure --enable-lfs when installing) and (ii) ensure
that your file systems supports large files – consult your system administrator.
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11 Additional NEMO-type Programs in falcON
Note that all NEMO-type programs have a help utility: when calling them without argument or with the option
help=h, a listing of their options is printed. If a name for an I/O file is given as ‘-’, the program will instead
read from stdin or write to stdout, which allows piping into another program. When an output file name
reads ‘.’, it is interpreted as sink, i.e. no output is ever made. If an output file name is appended with a ‘!’ or
‘?’ any existing file of the same name (without this appendix) is overwritten or appended to, respectively.

Below, we give a short summary of the programs. For more details, see the relevant man page(s).

11.1 Computing Gravity
The program addgravity adds gravitational potential and acceleration to existing snapshot(s). getgravity
computes the gravity generated by one set of particles (source) at the positions of another (usually smaller) set
(sinks). This is useful, for instance, for computing the rotation curves of N -body galaxies.

11.2 Creating Initial Conditions
Since May 2007, the programs mkdehnen, mkplum and mkhalo create radially anisotropic models of Os-
sipkov (1979) -Merritt (1985) type. To this end, the parameter r a= is taken as the anisotropy radius. For these
models, the Binney anisotropy parameter has radial run

β ≡ 1−
σ2

θ

σ2
r

=
r2

r2
a + r2

. (2)

11.2.1 mkdehnen
This program creates initial conditions from spherical Dehnen (1993) model, which has density

ρ(r) =
3− γ

4π

M rs

rγ(r + rs)4−γ
. (3)

11.2.2 mkhalo
This program creates initial conditions with density

ρ(r) =
C sech(r/rt)

xγ0(xη + 1)(γ∞−γ0)/η
with x =

√
r2 + r2

c

rs
, (4)

where the constant C is determined such that the total mass equals M . The velocities are drawn from a
Cuddeford (1991) distribution function

f(E,L) = L−2b g

(
−E − L2

r2
a

)
, (5)

which is a generalisation of the Ossipkov (1979) - Merritt (1985) models and gives rise to a Binney anisotropy
parameter

β ≡ 1−
σ2

θ

σ2
r

=
r2 + b r2

a

r2 + r2
a

. (6)

mkhalo also allows for a spherical external potential, which is added to the gravity generated by the density
(4) when computing the equilibrium model. For more details and how to use mkhalo in generating McMillan
& Dehnen (2007) galaxy models, see the separate documentation.

11.2.3 mkking
This program creates initial conditions from a spherical King model of single-mass stars.

11.2.4 mkplum
This program creates initial conditions from a spherical Plummer model with isotropic velocities.
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11.3 Manipulating and Analysing Snapshots
These programs read a stream of NEMO snapshots, manipulate each of them, and write out another stream of
NEMO snapshots. Both in and output may be either file or pipe. All of these programs have the following
keywords in common. in and out specify the in and output streams, times (defaulting to times=all)
specifies the times of the snapshots to be read, manipulated, and written out.

It is recommended to manipulate snapshots on- and off-line using manipulators (see section 12).

11.3.1 manipulate
This program (public since May 2005) initiates an off-line analysis via manipulators (see section 12).

11.3.2 symmetrize
(public since May 2004) This simple program may be used to symmetrize a snapshot with respect to the origin
(x = v = 0, and, possibly, the equator (z = 0 plane).

Note that this program is useful for isolated galaxies only.

11.4 Data format conversion
11.4.1 s2a and a2s
These two little programs allow simple conversion from and to ASCII tables.

11.4.2 g2s and s2g
These two programs convert NEMO snapshots to and from gadget data files. Different endianess is discovered
and corrected for on the fly.

11.4.3 s2s
This simple program converts snapshots to snapshots. The user can specify which times and which data are
copied. The current version does not support the possibility to only copy a sub-set of all the bodies.

12 Run-Time Manipulators
Run-time manipulators have been added in September 2004. They are functions (in fact C++ classes) that
operate on the snapshot data and are called in gyrfalcON (for on-line analysis or manipulation) after every
complete blockstep or in manipulate (for off-line analysis or manipulation) for every snapshot stored in
file. Run-time manipulators are loaded at run-time, according to the keywords manipname, manippars,
manipfile, and manippath, and hence no recompilation of the code is required. Up to 100 Manipulators
can be concatinated, i.e. one called after the other, by using manipname=name1+name2 etc., manippars="pars1;pars2"
etc., and manipfile="file1;file2"6. Alternatively, if only a manipfile (but no manipname) is given,
that file is interpreted to contain the name, parameters and filenames of manipulators. Such a file may look like
this:

#
# manipulators for simulation
#

name1 file1 # manipulator name1 takes no parameter, but needs file

name2 0,1,5 # manipulator name2 requires 3 parameters.
#

Lines whose first non-space character is ‘#’ are ignored and anything following a free (i.e. preceeded by
space) ‘#’ is also ignored (can be used to put comments into the file).

The potential use of run-time manipulators is almost unlimited (one may use them for on-line analysis as
well), and the number of manipulators coming with the package is growing

Manipulators can communicate data via a pointer bank supported by class snapshot. Supopse you want to
compute the lagrange radii of all bound (E < 0) stars (particles with i < N?) w.r.t. the position of the most
bound star particle. While it is possible to write a single manipulator for this job, it is much more convenient to
use three existing manipulators which communicate their data; the input file may look like this:

6In previous (pre July 2006) versions, the characeter ‘#’ was allowed as a separator of file names or parameters. This is no longer
supported, but instead of the semicolon, you can also use a space. In either case, the whole list of parameters or file names must be
given in quotes.
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#
# 1 pick subset: all bound with i<10000
set_subset 10000 (i<#0)&&(E<0)

# 2 set centre to position of most bound particle in subset
bound_centre

# 3 compute lagrange radii of subset w.r.t.\ centre
lagrange 0.01,0.03,0.05,0.1,0.3,0.5,0.7,0.9,0.95 simul.rad

#

A detailled doxygen documentation for each of the manipulators listed below can be found at
falcON/dox/html/namespacefalcON 1 1Manipulate.html

12.1 set subset
This manipulator creates a filter from a boolean bodyfunc expression, see man pages (5bodyfunc), given
in manipfile, with parameters from manippars (an empty expression makes the open filter: all bodies are
accepted). At each manipulation, bodies not passing the filter are flagged to be ignored, while those passing the
filter will be flagged not to be ignored. This is equivalent to the sequence of manipulators set filter and
use filter.

A simple usage is to restrict the range of bodies. For instance the bodyfunc expression ”#0<=i&&i<#1”
filters bodies with index between parameters #0 and #1 (note that the the indices of bodies may not be pre-
served; in this case use the key instead, that is ’k’ instead of ’i’ in the expression).

12.2 set filter
This manipulator creates a filter from a boolean bodyfunc expression, see man pages (5bodyfunc), given
in manipfile, with parameters from manippars (an empty expression makes the open filter: all bodies are
accepted). The (pointer to the) filter is then registered under the key ‘filter’ with the pointer bank.

12.3 use filter
This manipulator uses a filter, registered under the key ‘filter’ to flag bodies not passing the filter to be
ignored.

12.4 dens centre
This manipulator iteratively finds the position of the (global) density maximum of the defined subset (only
bodies not flagged to be ignored, default: all). More specifically, it finds the position xc where

ρh(xc) ≡ h−3
∑

i

mi W

[
|xc − xi|

h

]
(7)

has a global maximum. Here, the smoothing kernel is a Ferrers n = 3 sphere: W (r) ∝ (1 − r2)3 for r < 1
and W = 0 otherwise. The position xc and the corresponding velocity vc are then registered under the keys
‘xcen’ and ‘vcen’, respectively.

12.5 set centre
This manipulator sets ‘xcen’ to the position (p0, p1, p2) and ‘vcen’ to (p3, p4, p5). If no parameters are given,
‘xcen’ and ‘vcen’ are deleted, implying using the origin instead for most other manipulators.

12.6 bound centre
This manipulator sets ‘xcen’ and ‘vcen’. The algorithm is as follows. First, the most bound body in the
subset (default :all) is found. Next, its K (default: 256) nearest neighbours (including itself) from the subset
are sought. Finally, the centre is evaluated as weighted average of the positions and velocities of the K/8 (at
least 4) most bound of these K bodies with weight

(Emax − Ei)α (8)

where α is a second parameter (default: 3) and Emax is the energy of the least bound of the K bodies.
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12.7 lagrange
This manipulator computes the Lagrange radii at masses given by total mass times the parameters and writes
them to the file. Only bodies in the defined subset (those not flagged to be ignored, default: all) are used. The
centre is taken to be that found under the key ‘xcen’ (default: origin).

12.8 density
This manipulator estimates for each body in the defined subset (default: all) the mass density via a kernel
estimator from its K nearest neighbours:

ρi = h−3
∑

j

mj W

[
|xi − xj |

h

]
(9)

with h the distance to the Kth neighbour and W (r) ∝ (1 − r2)n for r < 1 and W = 0 otherwise. K
and n are parameters and default to 32 and 1, respectively. The computation of the density is computationally
expensive (more so than a time step of gyrfalcONwithout individual time steps). Therefore, the time between
manipulations can be given as third parameter (the simulation time of the actual density estimation is registered
under the key ‘trho’)

12.9 sphereprof
This manipulator estimates the radial profiles of density, velocity, velocity dispersion, axis ratios, and orienta-
tions from spherical binning of all bodies in the defined subset (those not flagged to be ignored, default: all)
w.r.t. position and velocity ‘xcen’ and ‘vcen’ (defaults: origin). This is similar to, but more powerful than,
the NEMO program radprof. Note that axis ratios obtained for non-spherical distributions are bound to be
incorrect.

12.10 densprof
This manipulator estimated the centre as well as mean and dispersion velocity, axis rations, and orientations
of density shells, by binning all bodies in the defined subset into density bins. This requires a preceding
manipulator density, but gives reliable axis ratios (as opposed to sphereprof). The only parameter is the
number of bodies per density bin. If a time is registered under the key ‘dens time’ and does not match the
actual simulation time, nothing is done.

12.11 projprof
This manipulator estimates the projected radial profiles of surface density; mean, rotational, and dispersion of
the line-of-sight velocity; the axis ratio; position and rotation angle for all bodies in the defined subset (those
not flagged to be ignored, default: all) w.r.t. position and velocity ‘xcen’ and ‘vcen’ (defaults: origin).

12.12 symmetrize pairs
Assuming the initial conditions were forced to be reflection symmetric w.r.t. the origin (using symmetrize),
there is no guarantee that this symmetry will be preserved during a simulation, since truncation errors eventually
break the symmetry. To avoid this, you may want to enforce symmetry by keeping pairs of particles symmetric
w.r.t. the origin. Exactly this is done by symmetrize pairs for body pairs with the first body being in the
subset (those not flagged to be ignored, default: all).

12.13 randomize azimuth
Suppose you want to suppress any non-axisymmetric perturbations, such as a bar mode or spiral waves.
One way to do this is to randomize the disk bodies’ azimuths every blockstep. Exactly this is done by
randomize azimuth for bodies in the subset (those not flagged to be ignored, default: all) using a ran-
dom seed given by p0 (if p0 = 0, a random seed is generated from the current time).

12.14 add plummer
You may add new bodies to the simulation. add plummer is a very simple manipulator that at each time
step adds one new body, drawn from a Plummer sphere, to the simulation. If you fancy to design similar
manipulators, you are recommended to model them on add plummer.
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13 Bugs and Features
13.1 Test-Particles
falcON does not support the notion of a test particle, i.e. a body with zero mass. Such bodies will never get any
acceleration (that is because the code first computes the force, which is symmetric and hence better suited for
mutual computations, and then divides by the mass to obtain the acceleration). To overcome this, you may use
tiny masses, but note that the forces created by such light bodies will be computed, even if they are tiny, and
contribute to the computational load. Actually, this is exactly what we do in getgravity.

13.2 Bodies at Identical Positions
The code cannot cope with more than Ncrit bodies at an identical position (within floating point accuracy).
Such a situation would result in an infinitely deep tree; the code aborts with an error message. When this has
occured in the past, it was often because the body positions were faulty, either all zero, nan, or inf.

13.3 Unknown Bugs
A bug that lead falcON or gyrfalcON to occasionally crash with ‘Segmentation fault’ I have tracked down
and debugged (as of 3rd April 2003). However, there may perhaps still to be similar bugs around, which are not
reproducible and hence hard to track down and weed out. Measures have been taken to solve such problems
eventually. If you ever encounter a problem that you think might be a bug and which is not mentioned in this
documentation, please report it to me (walter.dehnen@astro.le.ac.uk). Thanks.
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