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Abstract

We present a new very fast tree-code which runs on massively parallel Graphical Processing
Units (GPU) with NVIDIA CUDA architecture. The tree-construction and calculation of mul-
tipole moments is carried out on the host CPU, while the forcecalculation which consists of
tree walks and evaluation of interaction list is carried outon the GPU. In this way we achieve a
sustained performance of about 100GFLOP/s and data transfer rates of about 50GB/s. It takes
about a second to compute forces on a million particles with an opening angle ofθ ≈ 0.5. The
code has a convenient user interface and is freely availablefor use1.
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1. Introduction

Direct force evaluation methods have always been popular because of their simplicity and
unprecedented accuracy. Since the mid 1980’s, however, approximation methods like the hierar-
chical tree-code [1] have gained enormous popularity amongresearchers, in particular for study-
ing astronomical self-gravitatingN-body systems [2] and for studying soft-matter molecular-
dynamics problems [3]. For these applications, direct force evaluation algorithms strongly limit
the applicability, mainly due to theO(N2) time complexity of the problem.

Tree-codes, however, have always had a dramatic set back compared to direct methods, in the
sense that the latter benefits from the developments in special purpose hardware, like the GRAPE
and MD-GRAPE family of computers [4, 5], which increase workstation performance by two to
three orders of magnitude. On the other hand, tree-codes show a better scaling of the compute
time with the number of processors on large parallel supercomputers [6, 7] compared to direct
N-body methods [8, 9]. As a results, large scale tree-code simulations are generally performed

1http://castle.strw.leidenuniv.nl/software/octgrav.html
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on Beowulf-type clusters or supercomputers, whereas direct N-body simulations are performed
on workstations with attached GRAPE hardware.

Tree-codes, due to their hierarchical and recursive natureare hard to run efficiently on dedi-
cated Single Instruction Multiple Data (SIMD) hardware like GRAPE, though some benefit has
been demonstrated by using pseudo-particle methods to solve for the higher-order moments in
the calculation of multipole moments of the particle distributions in grid cells [10].

Recently, the popularity of computer games has led to the development of massively parallel
vector processors for rendering three-dimensional graphical images. Graphical Processing Units
(or GPUs) have evolved from fixed function hardware to general purpose parallel processors. The
theoretical peak speed of these processors increases at a rate faster than Moores’ law [11], and
at the moment top roughly 200 GFLOP for a single card. The costof these cards is dramatically
reduced by the enormous volumes in which they are produced, mainly for gamers, whereas
GRAPE hardware remains relatively expensive.

The gravitationalN-body problem proved to be rather ideal to port to modern GPUs, and the
first successes in porting theN-body problem to programmable GPUs were achieved by [12], but
it was only after the introduction of the NVIDIA G80 architecture that accurate force evaluation
algorithms could be implemented [13] and that the performance became comparable to special
purpose computers [14, 15].

Even in these implementations, the tree-code, though pioneered in [14], still hardly resulted
in a speed-up compared to general purpose processors. In this paper we present a novel imple-
mentation of a tree-code on the NVIDIA GPU hardware using theCUDA programming environ-
ment.

2. Implementation
In the classical implementation of the tree-code algorithmall the work is done on the CPU,

since special purpose hardware was not available at that time [1]. With the introduction of
GRAPE special purpose hardware [16, 17], it became computationally favourable to let the spe-
cial purpose hardware, instead of the CPU, calculate accelerations. Construction of the inter-
action list in these implementations takes nearly as much time as calculating the accelerations.
Since the latest generation of GPUs allows more complex operations, it becomes possible to
build the interaction list directly on the GPU. In this case,it is only necessary to transport the
tree-structure to the GPU. Since the bandwidth on the host computer is about an order of mag-
nitude lower than on the GPU, it is also desirable to offload bandwidth intensive operations to
the GPU. The construction of the interaction list is such an operation. The novel element in our
tree-code is construction of the interaction list on the GPU. The remaining parts of the tree-code
algorithm (tree-construction, calculation of node properties and time integration) are executed on
the host. The host is also responsible for the allocation of memory and the data transfer to and
from the GPU. In the next sections we will cover the details ofthe host and device steps.

2.1. Building the octree

We construct the octree in the same way as done in the originalBH tree-code. We define the
computational domain as a cube containing all particles in the system. This cube is recursively
divided into eight equal-size cubes called cells. The length of the resulting cells is half the length
of the parent cell. Each of these cells is further subdivided, until less thanNleaf particles are left.
We call these cells leaves, whereas cells containing more than Nleaf particles are referred to as
nodes. The cell containing all particles is the root node.
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Figure 1:Illustration of our tree-structure, shown in
2D for clarity. Initially, the space is recursively subdi-
vided into cubic cells until all cells contain less than
Nleaf particles (blue squares). All cells (including par-
ent cells) are stored in a tree-structure. Afterwards,
we compute a tight bounding box for the particles in
each cell (dotted rectangles) and cell’s boundary. The
latter is a cube with a side length equal to the largest
side length of the bounding box and the same centre
(green squares).

The resulting tree-structure is schemati-
cally shown in Fig. 1. From this tree-structure
we construct groups for the tree walk (c.f.
section 2.2), which are the cells with the num-
ber of particles less thanNgroups, and com-
pute properties for each cell, such as bound-
ary, mass, centre of mass, and quadrupole mo-
ments, which are required to calculate accel-
erations [18].

In order to efficiently walk the octree on
the device, its structure requires some reor-
ganisation. In particular, we would like to
minimise the number of memory accesses
since they are relative expensive (up to 600
clock cycles). In Fig. 2, we show the tree-
structure as stored on the GPU. The upper ar-
ray in the figure is the link-list of the tree,
which we call the main tree-array. Each el-
ement in this array (separated by blue vertical
lines) stores four integers in a single 128-bit
words (dashed vertical lines). This structure
is particularly favourable because the device
is able to read a 128-bit word into four 32-
bit registers using one memory access instruc-
tion. Two array-elements represent one cell in
the tree (green line) with indices to each of the

eight children in the main tree-array (indicated by the arrows). A grey filled element in this list
means that a child is a leaf (it has no children of its own), andhence it needs not to be refer-
enced. We also use auxiliary tree-arrays in the device memory which store properties of each
cell, such as its boundary, mass, centre of mass and multiplemoments. The index of each cell
in the main tree-array is directly related to its index in theauxiliary tree-arrays by bitshift and
addition operations.

Figure 2: Illustration of the tree structure as stored
in device memory.

The device execution model is designed
in such a way that threads which execute the
same operation are grouped in warps, where
each warp consists of 32 threads. Therefore,
all threads in a warp follow the same code
path. If this condition is not fulfilled, the di-
vergent code path is serialised, therefore neg-
atively impacting the performance [19]. To
minimise this, we rearrange groups in memory to make sure that neighbouring groups in space
are also neighbouring in memory. Combined with similar treepaths that neighbouring groups
have, this will minimise data and code path divergence for neighbouring threads, and therefore
further improves the performance.
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2.2. Construction of an interaction list

In the standard BH-tree algorithm, the interaction lists are constructed for each particle, but
particles in the same groups have similar interaction lists. We make use of this fact by building
the lists for groups instead of particles [20]. The particles in each group, therefore, share the
same interaction list, which is typically longer than it would have been by determining it on a
particle basis. The advantage here is the reduction of the number of tree walks byNgroup. The tree
walk is performed on the GPU in such a way that a single GPU thread is used per group. To take
advantage of the cached texture memory, we make sure that neighbouring threads correspond to
neighbouring groups.

Owing to the massively parallel architecture of the GPU, twotree walks are required to
construct interaction lists. In the first walk, each thread computes the size of the interaction list
for a group. This data is copied to the host, where we compute the total size of the interaction
list, and memory addresses to which threads should write lists without intruding on other threads’
data. In the second tree walk, the threads write the interaction lists to the device memory.

List 1: A pseudo code for our non-recursive stack-based tree walk.

1 while (stack.non_empty) {

2 node = stack.pop ;; get next node from the stack

3 one = fetch(children , node + 0) ;; cached fetch 1st four children

4 two = fetch(children , node + 1) ;; cached fetch 2nd four children

5 test_cell<0...4 >(node , one, stack) ;; test sub-cell in octant one to four

6 test_cell<5...8 >(node , two, stack) ;; test sub-cell in octant four to eight

7 }

List 2: Pseudo code fortest cell subroutine.

1 template <oct>test_cell(node , child , stack) {

2 child = fetch(cell_pos , 8*node +oct) ;; fetch data of the child

3 if (open_node(leaf_data, child)) { ;; if the child has to be opened ,

4 if (child != leaf) stack.push(child) ;; store it in stack if it is a node

5 else leaf += 1 ;; otherwise increment the leaf counter

6 } else cell += 1 ;; else, increment the cell counter

7 }

We implemented the tree walk via a non-recursive stack-based algorithm (the pseudo code
is shown in List 1), because the current GPU architecture does not support recursive function
calls. In short, every node of the tree, starting with the root node, reads indices of its children
by fetching two consecutive 128-bit words (eight 32 bit integers) from texture memory. Each of
these eight children is tested against the node-opening criteriaθ (the pseudo code for this step is
shown in List 2), and in the case of a positive result a child isstored in the stack (line 4 in the
listing), otherwise it is considered to be a part of the interaction list. In the latter case, we check
whether the child is a leaf, and if so, we increment a counter for the leaf-interaction list (line 5),
otherwise a counter for the node-interaction list (line 6).This division of the interaction lists is
motivated by the different methods used to compute the accelerations from nodes and leaves (c.f.
section 2.3). In the second tree walk, we store the index of the cell in the appropriate interaction
list instead of counting the nodes and leafs.

2.3. Calculating accelerations from the interaction list

In the previous step, we have obtained two interaction lists: one for nodes and one for leaves.
The former is used to compute accelerations due to nodes, andthe latter due to leaves. The
pseudo-code for a particle-node interaction is shown in List 3 and the memory access pattern is
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Node interaction list

Shared nodes 

Figure 3:Memory access pattern in a body-node (left) and body-leaf (right) interaction.

demonstrated in the left panel of Fig. 3. This algorithm is similar to the one used in thekirin
andsapporo libraries for directN-body simulations [14, 15]. In short, we use a block of threads
per group, such that a thread in a block is assigned to a particle in a group; these particles share
the same interaction list. Each thread loads a fraction of the nodes from the node-interaction list
into shared memory (blue threads in the figure, lines 2 and 3 inthe listing). To ensure that all
the data is loaded into shared memory, we put a barrier for allthreads (line 4), and afterwards
each thread computes gravitational acceleration from the nodes in shared memory (line 5). Prior
loading a new set of nodes into the shared memory (green threads in the figure), we ensure that all
the threads have completed their calculations (line 6). We repeat this cycle until the interaction
list is exhausted.

List 3: Body-node interaction

1 for (i = 0; i < list_len; i += block_size) {

2 cellIdx = cell_interact_lst[i + thread_id]

3 shared_cells[threadIdx] = cells_lst[cellIdx] ;; read nodes to the shared memory

4 __syncthreads() ;; thread barrier

5 interact(body_in_a_thread, shared_cell) ;; evaluate accelerations

6 __syncthreads() ;; thread barrier

7 }

List 4: Body-leaf interaction

1 for (i = 0; i < list_len; i += block_size) {

2 leaf = leaf_interaction_list[i + threads_id]

3 shared_leaves[threadIdx] = cells_list[leaf] ;; read leaves to the shared memory

4 __syncthreads()

5 for (j = 0; j < block_size; j++) { ;; process each leaf

6 shared_bodies[thread_id] = bodies[shared_leaves[j].first + thread_id]

7 __syncthreads();

8 interact(body_in_a_thread, shared_bodies, shared_leaves[j].len);

9 __syncthreads();

10 }

11 }

Calculations of gravitational acceleration due to the leaves differs in several ways. The
pseudo-code of this algorithm is presented in List 4, and thememory access pattern is displayed
in the right panel of Fig. 3. First, each thread fetches leaf properties, such as index of the first
body and the number of bodies in the leaf, from texture memoryinto shared memory (red lines
in the figure, lines 2 and 3 in the listing). This data is used toidentify bodies from which the
accelerations have to be computed (black lines). Finally, threads read these bodies into shared
memory (blue and green lines, line 6) in order to calculate accelerations (line 8). This process is
repeated until the leaf-interaction list is exhausted.
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Figure 4:Each panel displays a fraction of particles having relativeacceleration error (vertical axis) greater
than a given value (horizontal axis). In each panel, we show errors for various opening angles fromθ = 0.2
(the leftmost curve in each panel), 0.3, 0.4, 0.5, 0.6 and 0.7 (the rightmost curve). The number of particles
are 3· 104, 105, 106 for panels from left to right respectively. The dotted horizontal lines show 50%, 10%
and 1% of the error distribution.

3. Results
In this section we study the accuracy and performance of the tree code. First we quantify the

errors in acceleration produced by the code and then we test its performance. For this purpose
we use a model of the Milky Way galaxy [21]. We model the galaxywith N = 104, 3·104, 105, 3·
105, 106, 3 · 106 and 107 particles, such that the mass ratio of bulge, disk and halo particles is
1:1:4. We then proceed with the measurements of the code performance. In all test we use
Nleaf = 64 andNgroup = 64 which we find produce the best performance on both G80/G92 and
GT200 architecture. The GPU used in all the tests is a GeForce8800Ultra.

3.1. Accuracy of approximation

We quantify the error in acceleration in the following way:∆a/a = |atree− adirect|/|adirect|,
whereatree andadirect are accelerations calculated by the tree and direct summation respectively.
The latter was carried out on the same GPU as the tree-code. This allowed us to asses errors
on systems as large as 10 million particles2. In Fig. 4 we show error distributions for different
numbers of particles and for different opening angles. In each panel, we show which fraction of
particles (vertical-axis) has a relative error in acceleration larger than a given value (horizontal
axis). The horizontal lines show 50th, 10th and 1st percentile of cumulative distribution. This
data shows that acceleration errors in this tree-code are consistent with the errors produced by
existing tree-codes with quadrupole corrections [22, 23, 24].

We show dependence of errors on both opening angle and numberof particles in Fig. 5. In
the leftmost panel of the figure, we plot the median and the first percentile of the relative force
error distribution as a function of the opening angleθ for various number of particlesN = 3 · 104

(the lowest blue dotted and red dashed lines), 3· 105 and 3· 106 (the upper blue dotted and red
dashed lines). As expected, the error increases as a function of θ with the following scaling
from the least-squared fit,∆a/a ∝ θ4. However, the errors increase with the number of particles:
the error doubles when the number of particles is increased by two orders of magnitude. This
increase of the error is caused by the large number of particles in a leaf, which in our case is

2We used the NVIDIA 8800Ultra GPU for this paper, and it takes∼10 GPU hours to compute the exact force on a
system with 10 million particles with double precision emulation [15]
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Figure 5:The median and the first percentile of the relative acceleration error distribution as a function of
the opening angle and the number of particles. In the leftmost panel we show lines for 3· 104 (the bottom
dotted and dashed lines) and 3· 106 (the top dotted and dashed lines) particles. The middle and the right
panels display the error forθ = 0.2 (the bottom lines), 0.3,0.4, 0.5,0.6 and 0.7 (the upper lines).

Figure 6: Wall-clock timing results as function of the opening angle and number of particles. In each
panel, the solid line shows the time spent on the GPU. The dotted line on the top panel shows the time spent
on the host, and the total wall-clock time is shown with the dashed line.

64, to obtain the best performance. We conducted a test withNleaf = 8, and indeed observed
the expected decrease of the error when the number of particles increases; this error, however, is
twice as large compared toNleaf = 64 for N ∼ 106.

3.2. Timing

In Fig. 6 we present the timing data as a function ofθ and for variousN. TheTHost (dotted
line in the figure) is independent ofθ, which demonstrates that construction of the octree only
depends on the number of particles in the system, withTHost ∝ N logN. This time becomes
comparable to the time spend on the GPU calculating accelerations for N & 106 andθ & 0.5.
This is caused by the empirically measured near-linear scaling of time spend on GPU withN.
As the number of particles increases, the GPU part of the codeperforms more efficiently, and
therefore the scaling drops fromN logN to near-linear (Fig. 7). We therefore conclude, that the
optimal opening angle for our code isθ ≈ 0.5.

In the leftmost panel of Fig. 7 we showN dependence of the time spent on the host and the
device for various opening angles. In particular,TGPU scaling falls betweenN log(N) and N,
which we explained by the increased efficiency of the GPU part of our code with larger number
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Figure 7:Timing results as a function of particle number. The leftmost panel displays time spent on the
GPU (black dash-dotted lines) and host CPU (blue dotted line) parts as a function of the number of particles.
The expected scalingN log(N) is shown in the red solid line. The ration of the time spent onGPU to the
total wall-clock time is given in the middle panel. The speed-up compared to direct summation is shown in
the rightmost panel. The expected scalingN/ log(N) is shown with a red line.

of particles. This plot also shows that the host calculationtime is a small fraction of the GPU
calculation time, except forN & 106 andθ & 0.5. The middle panel of the figure shows the
ratio of the time spent on the device to the total time. Finally, the rightmost panel shows the ratio
between the time required to compute forces by direct summation and the time required by the
tree-code. As we expected, the scaling is consistent withN2/(N log(N)) = N/log(N).

3.3. Device utilisation

We quantify the efficiency of our code to utilise the GPU resources by measuring both instruc-
tion and data throughput, and then compare the results to thetheoretical peak values provided by
the device manufacturer. In Fig. 8 we show both bandwidth andcomputational performance as
function ofθ for three differentN. We see that the calculation of accelerations operates at about
100GFLOPs3. This is comparable to the peak performance of the GRAPE-6a special-purpose
hardware, but this utilises only∼ 30% of the computational power of the GPU4. This occurs
because the average number of bodies in a group is a factor of 3or 4 smaller than theNgroup,
which we set to 64 in our tests. On average, therefore, only about 30% of the threads in a block
are active.

The novelty of this code is the GPU-based tree walk. Since there is little arithmetic intensity
in these operations, the code is, therefore, limited by the bandwidth of the device. We show
in Fig. 8 that our code achieves respectable bandwidth: in excess of 50GB/s during the first
tree walk, in which only (cached) scatter memory reads are executed. The second tree walk,
which constructs the interaction list, is notably slower because there data is written to memory–
an operation which is significantly slower compared to readsfrom texture memory. We observe
that the bandwidth decreases withθ in both tree walks, which is due to increasingly divergent
tree-paths between neighbouring groups, and an increase ofthe write to read ratio in memory
operations.

3We count 38 and 70 FLOPs for each body-leaf and body-node interaction respectively.
4Our tests were carried out on a NVIDIA 8800Ultra GPU, which has 128 streaming processors each operating at

clock speed of 1.5Ghz. Given that the GPU is able to perform upto two floating point operation per clock cycle, the
theoretical peak performance is 2× 128= 384GFLOP/s.
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,

Figure 8:Device utilisation as a function of the opening angle and number of particles. Each bottom panel
shows the bandwidth for the first tree walk (solid line) and the second tree walk (dotted line). The top halves
show the performance of the calculation of the accelerations for the node interaction list (solid line) and the
leaf interaction list (dotted line) in GFLOP/s.

4. Discussion and Conclusions

We present a fast gravitational tree-code which is executedon Graphics Processing Units
(GPU) supporting the NVIDIA CUDA architecture. The noveltyof this code is the GPU-based
tree-walk which, combined with the GPU-based calculation of accelerations, shows good scaling
for various particle numbers and different opening anglesθ. The hereby produced energy error
is comparable to existing CPU based tree-codes with quadrupole corrections. The code makes
optimal use of the available device resources and shows excellent scaling to new architectures.
Tests indicate that the NVIDIA GT200 architecture, which has roughly twice the resources as
the used G80 architecture, performs the integration twice as fast.

As it generally occurs with other algorithms, the introduction of a massively parallel acceler-
ator usually makes the host calculations and non-parallelisable parts of the code, as small as they
may be, the bottleneck. In our case, we used optimised devicecode and for the host code we
used general tree-construction and tree-walk recursive algorithms. It is possible to improve these
algorithms to increase the performance of the host part, butit is likely to remain a bottleneck.
Even with the use of modern quad-core processors this part ishard to optimize since its largely
a sequential operation.
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