Contents

1 One Particle Central Force 1
1.1 Acceleration Vector . 1
1.2 Numerics . 2

1 One Particle Central Force

1.1 Acceleration Vector

Suppose a single particle of mass m is at position \vec{x}, and is attracted gravitationally to a single fixed particle of mass M at position \vec{x}_{0}. There is a force vector on \vec{x}, denoted \vec{a}.

The magnitude of acceleration is $\|\vec{a}\|=\frac{G M}{\left\|\vec{x}_{0}-\vec{x}\right\|^{2}}$ The direction of acceleration is from \vec{x}, to \vec{x}_{0}, so it points in the direction of $\vec{x}_{0}-\vec{x}$. One way to remember the sign is to think of putting \vec{x} at the origin. We have the magnitude and direction of the acceleration, so we can find the vector itself:

$$
\vec{a}=G M \frac{\vec{x}_{0}-\vec{x}}{\left\|\vec{x}_{0}-\vec{x}\right\|^{3}}
$$

The quantity $G M$ has units of length cubed per time squared, and it's the quantity that is easily experimentally measurable. G is known to four or five digits, but $G M_{\odot}(G$ times the mass of the sun $)$ is known to ten or eleven digits! $G M$ is called the standard gravitational parameter for a given body.

As an aside, how do you do the same process if instead of one free body you have N free bodies interacting with each other? Sum the forces!

$$
\overrightarrow{a_{i}}=\sum_{j=1, j \neq i}^{N} G M_{j} \frac{\vec{x}_{j}-\vec{x}_{i}}{\left\|\vec{x}_{j}-\vec{x}_{i}\right\|^{3}}
$$

The distance from particle i to particle j is the same as the distance from j to i, and we ignore the $j=i$ case, so there are actually only (N choose $2)=N(N-1) / 2$ calculations. Try plugging in $N=10^{10}$, the particle number in some modern simulations. Not even modern supercomputers can run the brute force method ${ }^{1}$!

[^0]

1.2 Numerics

Let's run a simulation of our one body orbiting around a sun using Euler's method. I'm going to omit vector arrows, but keep in mind that x, v, and $a(x)$ are all vectors here. We want to solve the second order ODE $\ddot{x}=a(x)$. This is equivalent to solving the two first order ODEs $\dot{x}=v, \dot{v}=a(x)$. We have initial conditions v_{0} and x_{0} at $t=0$. Let's use a fixed timestep δt, and let x_{n} denote the position of the particle at time $n \delta t$.

One way to approximate the solution is using the Euler scheme:

$$
\dot{x} \approx \frac{x_{n+1}-x_{n}}{\delta t}=v_{n} \quad \dot{v} \approx \frac{v_{n+1}-v_{n}}{\delta t}=a\left(x_{n}\right)
$$

Then. . .

$$
x_{n+1}=x_{n}+\delta t \cdot v_{n} \quad v_{n+1}=v_{n}+\delta t \cdot a\left(x_{n}\right)
$$

As we saw in the javascript applet in class, this is a pretty bad method. We should get an elliptical orbit, but the result isn't elliptical at all!!

For a function $f(t)$, the quantity $\frac{1}{\delta t}(f(t+\delta t)-f(t))$ is a pretty bad approximation to the derivative at t, and the error is proportional to δt. You can prove this by using Taylor expansions:

$$
\frac{1}{\delta t}(f(t+\delta t)-f(t))=f^{\prime}(t)+O(\delta t)
$$

There has to be a better way, and the better way is the leapfrog method. We can get something accurate to second order in δt if we use a bit of intuition: when we find the slope of a line segment, we're really finding a good approximation to the slope at the midpoint of the line segment.

You can prove the following formula if you Taylor expand both sides about t :

$$
\frac{f(t+\delta t)-f(t)}{\delta t}=f^{\prime}\left(t+\frac{\delta t}{2}\right)+O\left(\delta t^{2}\right)
$$

Then we have the following approximations:

$$
\dot{x} \approx \frac{x_{n+1}-x_{n}}{\delta t}=v_{n+1 / 2} \quad \dot{v} \approx \frac{v_{n+1 / 2}-v_{n-1 / 2}}{\delta t}=a\left(x_{n}\right)
$$

which we turn into the Leapfrog numerical scheme:

$$
v_{n+1 / 2}=v_{n-1 / 2}+\delta t \cdot a\left(x_{n}\right) \quad x_{n+1}=x_{n}+\delta t \cdot v_{n+1 / 2}
$$

Leapfrog is a great algorithm for four reasons:

1. It's second-order (whereas Euler is only first-order),
2. It only uses one force evaluation per timestep (force evaluations are expensive!),
3. It is time-reversible (unlike Euler),
4. It's symplectic, meaning it conserves phase space volume.

The power of the method is demonstrated by the Javascript implementation we went over class.

[^0]: ${ }^{1}$ A back of the envelope estimate tells me, with a few tens of teraflops of computing power, it would take months to half a year to do finish all of these distance calculations $=$ one timestep. The thing is you need thousands of timesteps to get a useful result.

