Heating the air inside a “hot-air” balloon raises the air’s temperature, causing it to expand, and forces air out the opening at the bottom. The reduced amount of air inside means its density is lower than the outside air, so there is a net buoyant force upward on the balloon. In this Chapter we study temperature and its effects on matter: thermal expansion and the gas laws.

CHAPTER-OPENING QUESTION—Guess now!
A hot-air balloon, open at one end (see photos above), rises when the air inside is heated by a flame. For the following properties, is the air inside the balloon higher, lower, or the same as for the air outside the balloon?

(i) Temperature,
(ii) Pressure,
(iii) Density.

In the next four Chapters, Chapters 17 through 20, we study temperature, heat and thermodynamics, and the kinetic theory of gases.

We will often consider a particular system, by which we mean a particular object or set of objects; everything else in the universe is called the environment. We can describe the state (or condition) of a particular system—such as a gas in a container—from either a microscopic or macroscopic point of view. A microscopic description would involve details of the motion of all the atoms or molecules making up the system, which could be very complicated. A macroscopic description is given in terms of quantities that are detectable directly by our senses and instruments, such as volume, mass, pressure, and temperature.
The description of processes in terms of macroscopic quantities is the field of thermodynamics. Quantities that can be used to describe the state of a system are called state variables. To describe the state of a pure gas in a container, for example, requires only three state variables, which are typically the volume, the pressure, and the temperature. More complex systems require more than three state variables to describe them.

The emphasis in this Chapter is on the concept of temperature. We begin, however, with a brief discussion of the theory that matter is made up of atoms and that these atoms are in continual random motion. This theory is called kinetic theory ("kinetic," you may recall, is Greek for "moving"), and we discuss it in more detail in Chapter 18.

17–1 Atomic Theory of Matter

The idea that matter is made up of atoms dates back to the ancient Greeks. According to the Greek philosopher Democritus, if a pure substance—say, a piece of iron—were cut into smaller and smaller bits, eventually a smallest piece of that substance would be obtained which could not be divided further. This smallest piece was called an atom, which in Greek means "indivisible." Today the atomic theory is universally accepted. The experimental evidence in its favor, however, came mainly in the eighteenth, nineteenth, and twentieth centuries, and much of it was obtained from the analysis of chemical reactions.

We will often speak of the relative masses of individual atoms and molecules—what we call the atomic mass or molecular mass, respectively. These are based on arbitrarily assigning the abundant carbon atom, ^{12}C, the atomic mass of exactly 12.0000 unified atomic mass units (u). In terms of kilograms,

$$1\text{ u} = 1.6605 	imes 10^{-27}\text{ kg}.$$

The atomic mass of hydrogen is then 1.0078 u, and the values for other atoms are as listed in the Periodic Table inside the back cover of this book, and also in Appendix F. The molecular mass of a compound is the sum of atomic masses of the atoms making up the molecules of that compound.

An important piece of evidence for the atomic theory is called Brownian motion, named after the biologist Robert Brown, who is credited with its discovery in 1827. While he was observing tiny pollen grains suspended in water under his microscope, Brown noticed that the tiny grains moved about in tortuous paths (Fig. 17–1), even though the water appeared to be perfectly still. The atomic theory easily explains Brownian motion if the further reasonable assumption is made that the atoms of any substance are continually in motion. Then Brown's tiny pollen grains are jolted about by the vigorous barrage of rapidly moving molecules of water.

In 1905, Albert Einstein examined Brownian motion from a theoretical point of view and was able to calculate from the experimental data the approximate size and mass of atoms and molecules. His calculations showed that the diameter of a typical atom is about 10^{-10} m.

*Today we do not consider the atom as indivisible, but rather as consisting of a nucleus (containing protons and neutrons) and electrons.

*The terms atomic weight and molecular weight are sometimes used for these quantities, but properly speaking we are comparing masses.

*An element is a substance, such as gold, iron, or copper, that cannot be broken down into simpler substances by chemical means. Compounds are substances made up of elements, and can be broken down into their elements: for example, carbon dioxide and water. The smallest piece of an element is an atom, the smallest piece of a compound is a molecule. Molecules are made up of atoms; a molecule of water, for example, is made up of two atoms of hydrogen and one of oxygen; its chemical formula is H$_2$O.
At the start of Chapter 13, we distinguished the three common phases (or states) of matter—solid, liquid, gas—based on macroscopic, or “large-scale,” properties. Now let us see how these three phases of matter differ, from the atomic or microscopic point of view. Clearly, atoms and molecules must exert attractive forces on each other. For how else could a brick or a block of aluminum hold together in one piece? The attractive forces between molecules are of an electrical nature (more on this in later Chapters). When molecules come too close together, the force between them must become repulsive (electric repulsion between their outer electrons), for how else could matter take up space? Thus molecules maintain a minimum distance from each other. In a solid material, the attractive forces are strong enough that the atoms or molecules move only slightly (oscillate) about relatively fixed positions, often in an array known as a crystal lattice, as shown in Fig. 17–2a. In a liquid, the atoms or molecules are moving more rapidly, or the forces between them are weaker, so that they are sufficiently free to pass around one another, as in Fig. 17–2b. In a gas, the forces are so weak, or the speeds so high, that the molecules do not even stay close together. They move rapidly enough to pass through each other. On average, the speeds are sufficiently high in a gas that when two molecules collide, the force of attraction is not strong enough to keep them close together and they fly off in new directions.

EXAMPLE 17–1 Estimate Distance between atoms. The density of copper is 8.9 × 10^3 kg/m^3, and each copper atom has a mass of 63 u. Estimate the average distance between the centers of neighboring copper atoms.

APPROACH We consider a cube of copper 1 m on a side. From the given density \(\rho \), we can calculate the mass \(m \) of a cube of volume \(V = 1 \text{ m}^3 \) \(m = \rho V \). We divide this by the mass of one atom (63 u) to obtain the number of atoms in 1 m^3. We assume the atoms are in a uniform array, and we let \(N \) be the number of atoms in a 1-m length; then \(\langle N \rangle J \langle N \rangle J \rangle \rangle = N^3 \rangle equals the total number of atoms in 1 m^3.

SOLUTION The mass of 1 copper atom is 63 u = 63 × 1.66 × 10^{-27} kg = 1.05 × 10^{-27} kg. This means that in a cube of copper 1 m on a side (volume = 1 m^3), there are

\[
\frac{8.9 \times 10^3 \text{ kg/m}^3}{1.05 \times 10^{-27} \text{ kg/atom}} = 8.5 \times 10^{23} \text{ atoms/m}^3.
\]

The volume of a cube of side \(L \) is \(V = L^3 \), so on one edge of the 1-m-long cube there are \((8.5 \times 10^{23}) \) atoms = 4.4 × 10^19 atoms. Hence the distance between neighboring atoms is

\[
\frac{1 \text{ m}}{4.4 \times 10^9 \text{ atoms}} = 2.3 \times 10^{-9} \text{ m}.
\]

NOTE Watch out for units. Even though “atoms” is not a unit, it is helpful to include it to make sure you calculate correctly.

17–2 Temperature and Thermometers

In everyday life, **temperature** is a measure of how hot or cold something is. A hot oven is said to have a high temperature, whereas the ice of a frozen lake is said to have a low temperature.

Many properties of matter change with temperature. For example, most materials expand when their temperature is increased. An iron beam is longer when hot than when cold. Concrete roads and sidewalks expand and contract slightly according to temperature, which is why compressible spacers or expansion joints (Fig. 17–3) are placed at regular intervals. The electrical resistance of matter changes with temperature (Chapter 25). So too does the color radiated by objects; at least at high temperatures you may have noticed that the heating element of an electric stove glows with a red color when hot.

456 CHAPTER 17 Temperature, Thermal Expansion, and the Ideal Gas Law
At higher temperatures, solids such as iron glow orange or even white. The white light from an ordinary incandescent lightbulb comes from an extremely hot tungsten wire. The surface temperatures of the Sun and other stars can be measured by the predominant color (more precisely, wavelengths) of light they emit.

Instruments designed to measure temperature are called thermometers. There are many kinds of thermometers, but their operation always depends on some property of matter that changes with temperature. Many common thermometers rely on the expansion of a material with an increase in temperature. The first idea for a thermometer, by Galileo, made use of the expansion of a gas. Common thermometers today consist of a hollow glass tube filled with mercury or with alcohol colored with a red dye, as were the earliest usable thermometers (Fig. 17–4).

Inside a common liquid-in-glass thermometer, the liquid expands more than the glass when the temperature is increased, so the liquid level rises in the tube (Fig. 17–5a). Although metals also expand with temperature, the change in length of a metal rod, say, is generally too small to measure accurately for ordinary changes in temperature. However, a useful thermometer can be made by bonding together two dissimilar metals whose rates of expansion are different (Fig. 17–5b). When the temperature is increased, the different amounts of expansion cause the bimetallic strip to bend. Often the bimetallic strip is in the form of a coil, one end of which is fixed while the other is attached to a pointer, Fig. 17–6. This kind of thermometer is used as ordinary air thermometers, oven thermometers, automatic off switches in electric coffee pots, and in room thermostats for determining when the heater or air conditioner should go on or off. Very precise thermometers make use of electrical properties (Chapter 25), such as resistance thermometers, thermocouples, and thermistors, often with a digital readout.

Temperature Scales

In order to measure temperature quantitatively, some sort of numerical scale must be defined. The most common scale today is the Celsius scale, sometimes called the centigrade scale. In the United States, the Fahrenheit scale is also common. The most important scale in scientific work is the absolute, or Kelvin, scale, and it will be discussed later in this Chapter.

One way to define a temperature scale is to assign arbitrary values to two readily reproducible temperatures. For both the Celsius and Fahrenheit scales these two fixed points are chosen to be the freezing point and the boiling point of water, both taken at standard atmospheric pressure. On the Celsius scale, the freezing point of water is chosen to be 0°C ("zero degrees Celsius") and the boiling point 100°C. On the Fahrenheit scale, the freezing point is defined as 32°F and the boiling point 212°F. A practical thermometer is calibrated by placing it in carefully prepared environments at each of the two temperatures and marking the position of the liquid or pointer. For a Celsius scale, the distance between the two marks is divided into one hundred equal intervals representing each degree between 0°C and 100°C (hence the name "centigrade scale" meaning "hundred steps"). For a Fahrenheit scale, the two points are labeled 32°F and 212°F and the distance between them is divided into 180 equal intervals. For temperatures below the freezing point of water and above the boiling point of water, the scales may be extended using the same equally spaced intervals. However, thermometers can be used only over a limited temperature range because of their own limitations—for example, the liquid mercury in a mercury-in-glass thermometer solidifies at some point, below which the thermometer will be useless. It is also rendered useless above temperatures where the fluid, such as alcohol, vaporizes. For very low or very high temperatures, specialized thermometers are required, some of which we will mention later.

The freezing point of a substance is defined as that temperature at which the solid and liquid phases coexist in equilibrium—that is, without a net liquid changing into the solid or vice versa. Experimentally, this is found to occur at only one definite temperature, for a given pressure. Similarly, the boiling point is defined as that temperature at which the liquid and gas coexist in equilibrium. Since these points vary with pressure, the pressure must be specified (usually it is 1 atm).
Every temperature on the Celsius scale corresponds to a particular temperature on the Fahrenheit scale. Fig. 17–7. It is easy to convert from one to the other if you remember that 0°C corresponds to 32°F and that a range of 100° on the Celsius scale corresponds to a range of 180° on the Fahrenheit scale. Thus, one Fahrenheit degree (1°F) corresponds to 100/180 = 5/9 of a Celsius degree (1°C). That is, 1°F = 5/9°C. (Notice that when we refer to a specific temperature, we say “degrees Celsius,” as in 20°C; but when we refer to a change in temperature or a temperature interval, we say “Celsius degrees,” as in “–2°C.”) The conversion between the two temperature scales can be written

\[T(°C) = \frac{5}{9}[T(°F) - 32] \]

or

\[T(°F) = \frac{9}{5}[T(°C) + 32]. \]

Rather than memorizing these relations (it would be easy to confuse them), it is usually easier simply to remember that 0°C = 32°F and that a change of 5°C = a change of 9°F.

EXAMPLE 17–2 Taking your temperature. Normal body temperature is 98.6°F. What is this on the Celsius scale?

APPROACH We recall that 0°C = 32°F and 5°C = 9°F.

SOLUTION First we relate the given temperature to the freezing point of water (0°C). That is, 98.6°F is 98.6 – 32.0 = 66.6°F above the freezing point of water. Since each °F is equal to \(\frac{5}{9}°C \), this corresponds to 66.6 \(\times \) \(\frac{5}{9} \) = 37.0 Celsius degrees above the freezing point. The freezing point is 0°C, so the temperature is 37.0°C.

EXERCISE Determine the temperature at which both scales give the same numerical reading (\(T_C = T_F \)).

Different materials do not expand in quite the same way over a wide temperature range. Consequently, if we calibrate different kinds of thermometers exactly as described above, they will not usually agree precisely. Because of how we calibrate them, they will agree at 0°C and at 100°C. But because of different expansion properties, they may not agree precisely at intermediate temperatures (remember we arbitrarily divided the thermometer scale into 100 equal divisions between 0°C and 100°C). Thus a carefully calibrated mercury-in-glass thermometer might register 52.0°C, whereas a carefully calibrated thermometer of another type might read 52.6°C. Discrepancies below 0°C and above 100°C can also be significant.

Because of such discrepancies, some standard kind of thermometer must be chosen so that all temperatures can be precisely defined. The chosen standard for this purpose is the constant-volume gas thermometer. As shown in the simplified diagram of Fig. 17–8, this thermometer consists of a bulb filled with a dilute gas connected by a thin tube to a mercury manometer (Section 13–6). The volume of the gas is kept constant by raising or lowering the right-hand tube of the manometer so that the mercury in the left-hand tube coincides with the reference mark. An increase in temperature causes a proportional increase in pressure in the bulb. Thus the tube must be lifted higher to keep the gas volume constant. The height of the mercury in the right-hand column is then a measure of the temperature. This thermometer gives the same results for all gases in the limit of reducing the gas pressure in the bulb toward zero. The resulting scale serves as a basis for the standard temperature scale (Section 17–10).
17–3 Thermal Equilibrium and the Zeroth Law of Thermodynamics

We are all familiar with the fact that if two objects at different temperatures are placed in thermal contact (meaning thermal energy can transfer from one to the other), the two objects will eventually reach the same temperature. They are then said to be in thermal equilibrium. For example, you leave a fever thermometer in your mouth until it comes into thermal equilibrium with that environment, and then you read it. Two objects are defined to be in thermal equilibrium if, when placed in thermal contact, no net energy flows from one to the other, and their temperatures don’t change. Experiments indicate that

if two systems are in thermal equilibrium with a third system, then they are in thermal equilibrium with each other.

This postulate is called the zeroth law of thermodynamics. It has this unusual name because it was not until after the great first and second laws of thermodynamics (Chapters 19 and 20) were worked out that scientists realized that this apparently obvious postulate needed to be stated first.

Temperature is a property of a system that determines whether the system will be in thermal equilibrium with other systems. When two systems are in thermal equilibrium, their temperatures are, by definition, equal, and no net thermal energy will be exchanged between them. This is consistent with our everyday notion of temperature, since when a hot object and a cold one are put into contact, they eventually come to the same temperature. Thus the importance of the zeroth law is that it allows a useful definition of temperature.

17–4 Thermal Expansion

Most substances expand when heated and contract when cooled. However, the amount of expansion or contraction varies, depending on the material.

Linear Expansion

Experiments indicate that the change in length Δl of almost all solids is, to a good approximation, directly proportional to the change in temperature ΔT, as long as ΔT is not too large. The change in length is also proportional to the original length of the object, l_0. That is, for the same temperature increase, a 4-m-long iron rod will increase in length twice as much as a 2-m-long iron rod. We can write this proportionality as an equation:

$$\Delta l = \alpha l_0 \Delta T,$$ \hspace{1cm} (17–1a)

where α, the proportionality constant, is called the coefficient of linear expansion for the particular material and has units of $(C^\circ)^{-1}$. We write $\ell = l_0 + \Delta l$, Fig. 17–9, and rewrite this equation as $\ell = l_0 + \Delta l = l_0 + \alpha l_0 \Delta T$ or,

$$\ell = l_0 (1 + \alpha \Delta T),$$ \hspace{1cm} (17–1b)

where l_0 is the length initially, at temperature T_0, and ℓ is the length after heating or cooling to a temperature T. If the temperature change $\Delta T = T - T_0$ is negative, then $\Delta l = \ell - l_0$ is also negative; the length shortens as the temperature decreases.

![FIGURE 17–9](image-url) A thin rod of length l_0 at temperature T_0 is heated to a new uniform temperature T and acquires length ℓ, where $\ell = l_0 + \Delta l$.

SECTION 17–4 Thermal Expansion 459
TABLE 17-1 Coefficients of Expansion, near 20°C

<table>
<thead>
<tr>
<th>Material</th>
<th>Coefficient of Linear Expansion, (\alpha) (C(^{-1}))</th>
<th>Coefficient of Volume Expansion, (\beta) (C(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminum</td>
<td>25 \times 10^{-6}</td>
<td>35 \times 10^{-6}</td>
</tr>
<tr>
<td>Brass</td>
<td>19 \times 10^{-6}</td>
<td>56 \times 10^{-6}</td>
</tr>
<tr>
<td>Copper</td>
<td>17 \times 10^{-6}</td>
<td>50 \times 10^{-6}</td>
</tr>
<tr>
<td>Gold</td>
<td>14 \times 10^{-6}</td>
<td>42 \times 10^{-6}</td>
</tr>
<tr>
<td>Iron or steel</td>
<td>12 \times 10^{-6}</td>
<td>35 \times 10^{-6}</td>
</tr>
<tr>
<td>Lead</td>
<td>29 \times 10^{-6}</td>
<td>87 \times 10^{-6}</td>
</tr>
<tr>
<td>Glass (Pyrex(^\circ))</td>
<td>3 \times 10^{-6}</td>
<td>9 \times 10^{-6}</td>
</tr>
<tr>
<td>Glass (ordinary)</td>
<td>9 \times 10^{-6}</td>
<td>27 \times 10^{-6}</td>
</tr>
<tr>
<td>Quartz</td>
<td>0.4 \times 10^{-6}</td>
<td>1 \times 10^{-6}</td>
</tr>
<tr>
<td>Concrete and brick</td>
<td>\approx 12 \times 10^{-6}</td>
<td>\approx 36 \times 10^{-6}</td>
</tr>
<tr>
<td>Marble</td>
<td>1.4-3.5 \times 10^{-6}</td>
<td>4-10 \times 10^{-6}</td>
</tr>
<tr>
<td>Liquids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gasoline</td>
<td>950 \times 10^{-6}</td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td>180 \times 10^{-6}</td>
<td></td>
</tr>
<tr>
<td>Ethyl alcohol</td>
<td>1100 \times 10^{-6}</td>
<td></td>
</tr>
<tr>
<td>Glycerin</td>
<td>500 \times 10^{-6}</td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>210 \times 10^{-6}</td>
<td></td>
</tr>
<tr>
<td>Gases</td>
<td>Air (and most other gases)</td>
<td>3400 \times 10^{-6}</td>
</tr>
</tbody>
</table>

The values of \(\alpha \) for various materials at 20°C are listed in Table 17-1. Actually, \(\alpha \) does vary slightly with temperature (which is why thermometers made of different materials do not agree precisely). However, if the temperature range is not too great, the variation can usually be ignored.

EXAMPLE 17-3 Bridge expansion. The steel bed of a suspension bridge is 200 m long at 20°C. If the extremes of temperature to which it might be exposed are −30°C to +40°C, how much will it contract and expand?

APPROACH We assume the bridge bed will expand and contract linearly with temperature, as given by Eq. 17-1a.

SOLUTION From Table 17-1, we find that \(\alpha = 12 \times 10^{-6}\text{(C}^{-1}\text{)} \) for steel. The increase in length when it is at 40°C will be

\[
\Delta l = \alpha l_0 \Delta T = (12 \times 10^{-6}\text{C}^{-1})(200\;\text{m})(40°C - 20°C) = 4.8 \times 10^{-2}\;\text{m},
\]

or 4.8 cm. When the temperature decreases to −30°C, \(\Delta T = -50°C \). Then

\[
\Delta l = (12 \times 10^{-6}\text{C}^{-1})(200\;\text{m})(-50°C) = -12.0 \times 10^{-2}\;\text{m},
\]

or a decrease in length of 12 cm. The total range the expansion joints must accommodate is 12 cm + 4.8 cm = 16.8 cm (Fig. 17-3).

CONCEPTUAL EXAMPLE 17-4 Do holes expand or contract? If you heat a thin, circular ring (Fig. 17-10a) in the oven, does the ring's hole get larger or smaller?

RESPONSE You might guess that the metal expands into the hole, making the hole smaller. But it is not so. Imagine the ring is solid, like a coin (Fig. 17-10b). Draw a circle on it with a pen as shown. When the metal expands, the material inside the circle will expand along with the rest of the metal; so the circle expands. Cutting the metal where the circle is makes clear to us that the hole in Fig. 17-10a increases in diameter.
EXAMPLE 17-5 Ring on a rod. An iron ring is to fit snugly on a cylindrical iron rod. At 20°C, the diameter of the rod is 6.445 cm and the inside diameter of the ring is 6.420 cm. To slip over the rod, the ring must be slightly larger than the rod diameter by about 0.008 cm. To what temperature must the ring be brought if its hole is to be large enough so it will slip over the rod?

APPROACH The hole in the ring must be increased from a diameter of 6.420 cm to 6.445 cm + 0.008 cm = 6.453 cm. The ring must be heated since the hole diameter will increase linearly with temperature (Example 17-4).

SOLUTION We solve for \(\Delta T \) in Eq. 17-1a and find

\[
\Delta T = \frac{\Delta l}{a} \cdot \frac{12 \times 10^{-3} \text{C}^-}{(6.420 \text{ cm})} = 430 \text{ C}^-;
\]

So it must be raised at least to \(T = (20^\circ\text{C} + 430 \text{ C}^-) = 450^\circ\text{C}. \)

NOTE In doing Problems, do not forget the last step, adding in the initial temperature (20°C here).

CONCEPTUAL EXAMPLE 17-6 Opening a tight jar lid. When the lid of a glass jar is tight, holding the lid under hot water for a short time will often make it easier to open (Fig. 17-11). Why?

RESPONSE The lid may be struck by the hot water more directly than the glass and so expand sooner. But even if not, metals generally expand more than glass for the same temperature change (\(\alpha \) is greater—see Table 17-1).

NOTE If you put a hard-boiled egg in cold water immediately after cooking it, it is easier to peel: the different thermal expansions of the shell and egg cause the egg to separate from the shell.

Volume Expansion

The change in volume of a material which undergoes a temperature change is given by a relation similar to Eq. 17-1a, namely,

\[
\Delta V = \beta V_0 \Delta T; \quad (17-2)
\]

where \(\Delta T \) is the change in temperature, \(V_0 \) is the original volume, \(\Delta V \) is the change in volume, and \(\beta \) is the *coefficient of volume expansion*. The units of \(\beta \) are \((\text{C}^-)^{-1}\).

Values of \(\beta \) for various materials are given in Table 17-1. Notice that for solids, \(\beta \) is normally equal to approximately 3\(\alpha \). To see why, consider a rectangular solid of length \(\ell \), width \(w \), and height \(h \). When its temperature is changed by \(\Delta T \), its volume changes from

\[
V = \ell w h \to \quad V' = (1 + \alpha \Delta T) \ell w h (1 + \alpha \Delta T);
\]

using Eq. 17-1b and assuming \(\alpha \) is the same in all directions. Thus,

\[
\Delta V = V' - V = V_0 (1 + \alpha \Delta T)^2 - V_0 = V_0 [3\alpha \Delta T + 3(\alpha \Delta T)^2 + (\alpha \Delta T)^3].
\]

If the amount of expansion is much smaller than the original size of the object, then \(\alpha \Delta T \ll 1 \) and we can ignore all but the first term and obtain

\[
\Delta V \approx (3\alpha V_0) \Delta T.
\]

This is Eq. 17-2 with \(\beta = 3\alpha \). For solids that are not isotropic (having the same properties in all directions), however, the relation \(\beta = 3\alpha \) is not valid. Note also that linear expansion has no meaning for liquids and gases since they do not have fixed shapes.

EXERCISE B A long thin bar of aluminum at 0°C is 1.0 m long and has a volume of \(1.0000 \times 10^{-3} \text{ m}^3 \). When heated to 100°C, the length of the bar becomes 1.0025 m. What is the approximate volume of the bar at 100°C? (a) 1.0000 \times 10^{-3} \text{ m}^3; (b) 1.0025 \times 10^{-3} \text{ m}^3; (c) 1.0080 \times 10^{-3} \text{ m}^3; (d) 1.0075 \times 10^{-3} \text{ m}^3; (e) 2.5625 \times 10^{-3} \text{ m}^3.

Equations 17-1 and 17-2 are accurate only if \(\Delta T \) (or \(\Delta V \)) is small compared to \(\ell \) or \(V_0 \). This is of particular concern for liquids and even more so for gases because of the large values of \(\beta \). Furthermore, \(\beta \) itself varies substantially with temperature for gases. Therefore, a more convenient way of dealing with gases is needed, and will be discussed starting in Section 17-6.
EXAMPLE 17-7 Gas tank in the Sun. The 70-liter (L) steel gas tank of a car is filled to the top with gasoline at 20°C. The car sits in the Sun and the tank reaches a temperature of 40°C (104°F). How much gasoline do you expect to overflow from the tank?

APPROACH Both the gasoline and the tank expand as the temperature increases, and we assume they do so linearly as described by Eq. 17-2. The volume of overflowing gasoline equals the volume increase of the gasoline minus the increase in volume of the tank.

SOLUTION The gasoline expands by

$$\Delta V_g = \beta V_g \Delta T = (950 \times 10^{-5}/°C)(70 \text{ L})(40°C - 20°C) = 1.3 \text{ L}.$$

The tank also expands. We can think of it as a steel shell that undergoes volume expansion ($\beta = 3\alpha = 36 \times 10^{-5}/°C$). If the tank were solid, the surface layer (the shell) would expand just the same. Thus the tank increases in volume by

$$\Delta V_t = (36 \times 10^{-5}/°C)(70 \text{ L})(40°C - 20°C) = 0.050 \text{ L},$$

so the tank expansion has little effect. More than a liter of gas could spill out.

NOTE Want to save a few pennies? You pay for gas by volume, so fill your gas tank when it is cool and the gas is denser—more molecules for the same price. But don’t fill the tank quite all the way.

Anomalous Behavior of Water Below 4°C

Most substances expand more or less uniformly with an increase in temperature, as long as no phase change occurs. Water, however, does not follow the usual pattern. If water at 0°C is heated, it actually decreases in volume until it reaches 4°C. Above 4°C water behaves normally and expands in volume as the temperature is increased, Fig. 17-12. Water thus has its greatest density at 4°C. This anomalous behavior of water is of great importance for the survival of aquatic life during cold winters. When the water in a lake or river is above 4°C and begins to cool by contact with cold air, the water at the surface sinks because of its greater density. It is replaced by warmer water from below. This mixing continues until the temperature reaches 4°C. As the surface water cools further, it remains on the surface because it is less dense than the 4°C water below. Water then freezes first at the surface, and the ice remains on the surface since ice (specific gravity = 0.917) is less dense than water. The water at the bottom remains liquid unless it is so cold that the whole body of water freezes. If water were like most substances, becoming more dense as it cools, the water at the bottom of a lake would be frozen first. Lakes would freeze solid more easily since circulation would bring the warmer water to the surface to be efficiently cooled. The complete freezing of a lake would cause severe damage to its plant and animal life. Because of the unusual behavior of water below 4°C, it is rare for any large body of water to freeze completely, and this is helped by the layer of ice on the surface which acts as an insulator to reduce the flow of heat out of the water into the cold air above. Without this peculiar but wonderful property of water, life on this planet as we know it might not have been possible.

Not only does water expand as it cools from 4°C to 0°C, it expands even more as it freezes to ice. This is why ice cubes float in water and pipes break when water inside them freezes.
17–5 Thermal Stresses

In many situations, such as in buildings and roads, the ends of a beam or slab of material are rigidly fixed, which greatly limits expansion or contraction. If the temperature should change, large compressive or tensile stresses, called thermal stresses, will occur. The magnitude of such stresses can be calculated using the concept of elastic modulus developed in Chapter 12. To calculate the internal stress, we can think of this process as occurring in two steps: (1) the beam tries to expand (or contract) by an amount Δl given by Eq. 17–1; (2) the solid in contact with the beam exerts a force to compress (or expand) it, keeping it at its original length. The force F required is given by Eq. 12–4:

$$\Delta l = \frac{1}{E} \frac{F}{A} l_0,$$

where E is Young's modulus for the material. To calculate the internal stress, F/A, we then set Δl in Eq. 17–1a equal to Δl in the equation above and find

$$aE \Delta T = \frac{1}{E} \frac{F}{A} l_0.$$

Hence, the stress

$$\frac{F}{A} = aE \Delta T.$$

Example 17–6 Stress in concrete on a hot day. A highway is to be made of blocks of concrete 10 m long placed end to end with no space between them to allow for expansion. If the blocks were placed at a temperature of 10°C, what compressive stress would occur if the temperature reached 40°C? The contact area between each block is 0.20 m². Will fracture occur?

Approach We use the expression for the stress F/A we just derived, and find the value of E from Table 12–1. To see if fracture occurs, we compare this stress to the ultimate strength of concrete in Table 12–2.

Solution

$$\frac{F}{A} = aE \Delta T = \left(12 \times 10^{-4} \text{C}^{-1}\right) \left(20 \times 10^6 \text{N/m}^2\right) \left(30 \text{ C}°\right) = 7.2 \times 10^6 \text{N/m}^2.$$

This stress is not far from the ultimate strength of concrete under compression (Table 12–2) and exceeds it for tension and shear. If the concrete is not perfectly aligned, part of the force will act in shear, and fracture is likely. This is why soft spacers or expansion joints (Fig. 17–3) are used in concrete sidewalks, highways, and bridges.

Exercise C How much space would you allow between the 10-m-long concrete blocks if you expected a temperature range of 0°F to 110°F?

17–6 The Gas Laws and Absolute Temperature

Equation 17–2 is not very useful for describing the expansion of a gas partly because the expansion can be so great, and partly because gases generally expand to fill whatever container they are in. Indeed, Eq. 17–2 is meaningful only if the pressure is kept constant. The volume of a gas depends very much on the pressure as well as on the temperature. It is therefore valuable to determine a relation between the volume, the pressure, the temperature, and the mass of a gas. Such a relation is called an **equation of state**. (By the word *state*, we mean the physical condition of the system.)

If the state of a system is changed, we will always wait until the pressure and temperature have reached the same values throughout. We thus consider only **equilibrium states** of a system—when the variables that describe it (such as temperature and pressure) are the same throughout the system and are not changing in time. We also note that the results of this Section are accurate only for gases that are not too dense (the pressure is not too high, on the order of an atmosphere or less) and not close to the liquefaction (boiling) point.
For a given quantity of gas it is found experimentally that, to a good approximation, the volume of a gas is inversely proportional to the absolute pressure applied to it when the temperature is kept constant. That is,

\[V \propto \frac{1}{P} \]

[constant \(T \)]

where \(P \) is the absolute pressure (not "gauge pressure"—see Section 13–4). For example, if the pressure on a gas is doubled, the volume is reduced to half its original volume. This relation is known as Boyle's law, after Robert Boyle (1627–1691), who first stated it on the basis of his own experiments. A graph of \(P \) vs. \(V \) for a fixed temperature is shown in Fig. 17–13. Boyle's law can also be written

\[PV = \text{constant}. \]

[constant \(T \)]

That is, at constant temperature, if either the pressure or volume of a fixed amount of gas is allowed to vary, the other variable also changes so that the product \(PV \) remains constant.

Temperature also affects the volume of a gas, but a quantitative relationship between \(V \) and \(T \) was not found until more than a century after Boyle's work. The Frenchman Jacques Charles (1746–1823) found that when the pressure is not too high and is kept constant, the volume of a gas increases with temperature at a nearly linear rate, as shown in Fig. 17–14a. However, all gases liquefy at low temperatures (for example, oxygen liquefies at \(-183^\circ \text{C}\)), so the graph cannot be extended below the liquefaction point. Nonetheless, the graph is essentially a straight line and if projected to lower temperatures, as shown by the dashed line, it crosses the axis at about \(-273^\circ \text{C}\).

Such a graph can be drawn for any gas, and the straight line always projects back to \(-273^\circ \text{C}\) at zero volume. This seems to imply that if a gas could be cooled to \(-273^\circ \text{C}\), it would have zero volume, and at lower temperatures a negative volume, which makes no sense. It could be argued that \(-273^\circ \text{C}\) is the lowest temperature possible; indeed, many other more recent experiments indicate that this is so. This temperature is called the absolute zero of temperature. Its value has been determined to be \(-273.15^\circ \text{C}\).

Absolute zero forms the basis of a temperature scale known as the absolute scale or Kelvin scale, and it is used extensively in scientific work. On this scale the temperature is specified as degrees Kelvin or, preferably, simply as kelvins (K) without the degree sign. The intervals are the same as for the Celsius scale, but the zero on this scale (0 K) is chosen as absolute zero. Thus the freezing point of water (0 °C) is 273.15 K, and the boiling point of water is 373.15 K. Indeed, any temperature on the Celsius scale can be changed to kelvins by adding 273.15 to it:

\[T(\text{K}) = T(\circ \text{C}) + 273.15. \]

Now let us look at Fig. 17–14b, where the graph of the volume of a gas versus absolute temperature is a straight line that passes through the origin. Thus, to a good approximation, the volume of a given amount of gas is directly proportional to the absolute temperature when the pressure is kept constant. This is known as Charles's law, and is written

\[V \propto T. \]

[constant \(P \)]

A third gas law, known as Gay-Lussac's law, after Joseph Gay-Lussac (1778–1850), states that at constant volume, the absolute pressure of a gas is directly proportional to the absolute temperature:

\[P \propto T. \]

[constant \(V \)]

The laws of Boyle, Charles, and Gay-Lussac are not really laws in the sense that we use this term today (precise, deep, wide-ranging validity). They are really only approximations that are accurate for real gases only as long as the pressure...
and density of the gas are not too high, and the gas is not too close to liquefaction (condensation). The term law applied to these three relationships has become traditional, however, so we have stuck with that usage.

CONCEPTUAL EXAMPLE 17-9 Why should you not throw a closed glass jar into a campfire? What can happen if you did throw an empty glass jar, with the lid on tight, into a fire, and why?

RESPONSE The inside of the jar is not empty. It is filled with air. As the fire heats the air inside, its temperature rises. The volume of the glass jar changes only slightly due to the heating. According to Gay-Lussac’s law the pressure P of the air inside the jar can increase dramatically, enough to cause the jar to explode, throwing glass pieces outward.

17-7 The Ideal Gas Law

The gas laws of Boyle, Charles, and Gay-Lussac were obtained by means of a very useful scientific technique: namely, holding one or more variables constant to see clearly the effects on one variable due to changing one other variable. These laws can now be combined into a single more general relation between the absolute pressure, volume, and absolute temperature of a fixed quantity of gas:

$$PV \propto \frac{nT}{m}.$$

This relation indicates how any of the quantities P, V, or T will vary when the other two quantities change. This relation reduces to Boyle’s, Charles’, or Gay-Lussac’s law when either T, P, or V, respectively, is held constant.

Finally, we must incorporate the effect of the amount of gas present. Anyone who has blown up a balloon knows that the more air forced into the balloon, the bigger it gets (Fig. 17-15). Indeed, careful experiments show that at constant temperature and pressure, the volume V of an enclosed gas increases in direct proportion to the mass m of gas present. Hence we write

$$PV \propto \frac{nT}{m}.$$

This proportion can be made into an equation by inserting a constant of proportionality. Experiment shows that this constant has a different value for different gases. However, the constant of proportionality turns out to be the same for all gases if, instead of the mass m, we use the number of moles n. One mole (abbreviated mol) is defined as the amount of substance that contains as many atoms or molecules as there are in precisely 12 grams of carbon 12 (whose atomic mass is exactly 12 u). A simpler but equivalent definition is this: 1 mol is that quantity of substance whose mass in grams is numerically equal to the molecular mass (Section 17-1) of the substance. For example, the molecular mass of hydrogen gas (H_2) is 2.0 u (since each molecule contains two atoms of hydrogen and each atom has an atomic mass of 1.0 u). Thus 1 mol of H_2 has a mass of 2.0 g. Similarly, 1 mol of neon gas has a mass of 20 g, and 1 mol of CO_2 has a mass of \[12 + (2 \times 16) = 44\text{ g}\] since oxygen has atomic mass of 16 (see Periodic Table inside the rear cover). The mole is the official unit of amount of substance in the SI system. In general, the number of moles n, in a given sample of a pure substance is equal to the mass of the sample in grams divided by the molecular mass specified in grams per mole:

$$n = \frac{\text{mass (grams)}}{\text{molecular mass (g/mol)}}.$$

For example, the number of moles in 132 g of CO_2 (molecular mass 44 u) is

$$n = \frac{132\text{ g}}{44\text{ g/mol}} = 3.0\text{ mole.}$$

FIGURE 17-15 Blowing up a balloon means putting more air (more air molecules) into the balloon, which increases its volume. The pressure is nearly constant (atmospheric) except for the small effect of the balloon’s elasticity.
We can now write the proportion discussed above \((PV \propto nRT)\) as an equation:

\[
P V = n R T .
\]

(17-3)

where \(n\) represents the number of moles and \(R\) is the constant of proportionality. \(R\) is called the universal gas constant because its value is found experimentally to be the same for all gases. The value of \(R\), in several sets of units (only the first is the proper SI unit), is:

\[
R = 8.314 \text{J/(mol·K)} \\
= 0.0821 (\text{L·atm})/(\text{mol·K}) \\
= 1.99 \text{calories/(mol·K)}.^1
\]

Equation 17–3 is called the ideal gas law, or the equation of state for an ideal gas. We use the term “ideal” because real gases do not follow Eq. 17–3 precisely, particularly at high pressure (and density) or when the gas is near the liquefaction point (= boiling point). However, at pressures less than an atmosphere or so, and when \(T\) is not close to the liquefaction point of the gas, Eq. 17–3 is quite accurate and useful for real gases.

Always remember, when using the ideal gas law, that temperatures must be given in kelvins (K) and that the pressure \(P\) must always be absolute pressure, not gauge pressure (Section 13–4).

Exercise D Return to the Chapter-Opening Question, page 454, and answer it again now. Try to explain why you may have answered differently the first time.

Exercise E An ideal gas is contained in a steel sphere at 27.0°C and 1.00 atm absolute pressure. If no gas is allowed to escape and the temperature is raised to 127°C, what will be the new pressure? (a) 1.33 atm; (b) 0.75 atm; (c) 4.7 atm; (d) 0.21 atm; (e) 1.00 atm.

17–8 Problem Solving with the Ideal Gas Law

The ideal gas law is an extremely useful tool, and we now consider some Examples. We will often refer to “standard conditions” or standard temperature and pressure (STP), which means:

\[
\text{STP}: \quad T = 273 \text{ K} (0 ^\circ \text{C}) \quad \text{and} \quad P = 1.00 \text{ atm} = 1.013 \times 10^5 \text{ N/m}^2 = 101.3 \text{ kPa}.
\]

Example 17–10 Volume of one mole at STP

Determine the volume of 1.00 mol of any gas, assuming it behaves like an ideal gas, at STP.

Approach We use the ideal gas law, solving for \(V\).

Solution We solve for \(V\) in Eq. 17–3:

\[
V = \frac{nRT}{P} = \frac{(1.00 \text{ mol})(8.314 \text{ J/mol·K})(273 \text{ K})}{(1.013 \times 10^5 \text{ N/m}^2)} = 22.4 \times 10^{-3} \text{ m}^3.
\]

Since 1 liter (L) is 1000 cm³ = 1.00 × 10⁻³ m³, 1.00 mol of any (ideal) gas has volume \(V = 22.4 \text{ L}\) at STP.

The value of 22.4 L for the volume of 1 mol of an ideal gas at STP is worth remembering, for it sometimes makes calculation simpler.

Exercise F What is the volume of 1.00 mol of ideal gas at 546 K (= 2 × 273 K) and 2.0 atm absolute pressure? (a) 11.2 L; (b) 22.4 L; (c) 44.8 L; (d) 67.2 L; (e) 89.6 L.

^1 Calories will be defined in Section 19–1; sometimes it is useful to use \(R\) as given in terms of calories.
EXAMPLE 17-11 Helium balloon. A helium party balloon, assumed to be a perfect sphere, has a radius of 18.0 cm. At room temperature (20°C), its internal pressure is 1.05 atm. Find the number of moles of helium in the balloon and the mass of helium needed to inflate the balloon to these values.

APPROACH We can use the ideal gas law to find \(n \), since we are given \(P \) and \(T \), and can find \(V \) from the given radius.

SOLUTION We get the volume \(V \) from the formula for a sphere:

\[
V = \frac{4}{3} \pi r^3
\]

\[
= \frac{4}{3} \pi (0.180 \text{ m})^3 = 0.0244 \text{ m}^3.
\]

The pressure is given as 1.05 atm = 1.064 x 10^5 N/m^2. The temperature must be expressed in kelvins, so we change 20°C to \((20 + 273) \text{ K} = 293 \text{ K}\). Finally, we use the value \(R = 8.314 \text{ J/(mol·K)} \) because we are using SI units. Thus,

\[
n = \frac{PV}{RT} = \frac{(1.064 \times 10^5 \text{ N/m}^2)(0.0244 \text{ m}^3)}{(8.314 \text{ J/(mol·K)})(293 \text{ K})} = 1.066 \text{ mol}.
\]

The mass of helium (atomic mass = 4.00 g/mol as given in the Periodic Table or Appendix F) can be obtained from

\[
mass = n \times 	ext{molecular mass} = (1.066 \text{ mol})(4.00 \text{ g/mol}) = 4.26 \text{ g}
\]

or 4.26 x 10^-3 kg.

EXAMPLE 17-12 ESTIMATE Mass of air in a room. Estimate the mass of air in a room whose dimensions are 5 m x 3 m x 2.5 m high, at STP.

APPROACH First we determine the number of moles \(n \) using the given volume. Then we can multiply by the mass of one mole to get the total mass.

SOLUTION Example 17-10 told us that 1 mol of a gas at 0°C has a volume of 22.4 L. The room's volume is 5 m x 3 m x 2.5 m, so

\[
n = \frac{(5 \text{ m})(3 \text{ m})(2.5 \text{ m})}{22.4 \times 10^{-3} \text{ m}^3} = 1700 \text{ mol}.
\]

Air is a mixture of about 21% oxygen (O\(_2\)) and 79% nitrogen (N\(_2\)). The molecular masses are 2 x 16 u = 32 u and 2 x 14 u = 28 u, respectively, for an average of about 29 u. Thus, 1 mol of air has a mass of about 29 g = 0.029 kg, so our room has a mass of air

\[
m = (1700 \text{ mol})(0.029 \text{ kg/mol}) = 50 \text{ kg}.
\]

NOTE That is roughly 100 lb of air!

EXERCISE 17-8 At 20°C, would there be (a) more, (b) less, or (c) the same air mass in a room than at 0°C?

Frequently, volume is specified in liters and pressure in atmospheres. Rather than convert these to SI units, we can instead use the value of \(R \) given in Section 17-7 as 0.0821 L·atm/mol·K.

In many situations it is not necessary to use the value of \(R \) at all. For example, many problems involve a change in the pressure, temperature, and volume of a fixed amount of gas. In this case, \(PV/T = nR = \text{constant} \), since \(n \) and \(R \) remain constant. If we know one of the three variables, say \(P_1 \), \(V_1 \), or \(T_1 \), we can then solve for the others. For example, if we know \(P_1 \) and \(V_1 \), and we want to find the new pressure \(P_2 \) when the volume changes to \(V_2 \), we can rearrange the equation to

\[
P_1/\frac{V_1}{T_1} = P_2/\frac{V_2}{T_2}.
\]

If we know any five of the quantities in this equation, we can solve for the sixth. Or, if one of the three variables is constant (\(V_1 = V_2 \), or \(P_1 = P_2 \), or \(T_1 = T_2 \)), then we can use this equation to solve for one unknown when given the other three quantities.

SECTION 17-8 Problem Solving with the Ideal Gas Law
EXAMPLE 17–13 Check tires cold. An automobile tire is filled (Fig. 17–16) to a gauge pressure of 200 kPa at 10°C. After a drive of 100 km, the temperature within the tire rises to 40°C. What is the pressure within the tire now?

APPROACH We do not know the number of moles of gas, or the volume of the tire, but we assume they are constant. We use the ratio form of the ideal gas law.

SOLUTION Since \(V_1 = V_2 \), then

\[
\frac{P_1}{T_1} = \frac{P_2}{T_2}
\]

This is, incidentally, a statement of Gay-Lussac's law. Since the pressure given is the gauge pressure (Section 13–4), we must add atmospheric pressure (= 101 kPa) to get the absolute pressure \(P_1 = (200 \text{ kPa} + 101 \text{ kPa}) = 301 \text{ kPa} \).

We convert temperatures to kelvins by adding 273 and solve for \(P_2 \):

\[
P_2 = P_1 \left(\frac{T_2}{T_1} \right) = (3.01 \times 10^3 \text{ Pa}) \left(\frac{313 \text{ K}}{283 \text{ K}} \right) = 333 \text{ kPa}.
\]

Subtracting atmospheric pressure, we find the resulting gauge pressure to be 232 kPa, which is a 16% increase. This Example shows why car manuals suggest checking tire pressure when the tires are cold.

17–9 Ideal Gas Law in Terms of Molecules: Avogadro's Number

The fact that the gas constant, \(R \), has the same value for all gases is a remarkable reflection of simplicity in nature. It was first recognized, although in a slightly different form, by the Italian scientist Amadeo Avogadro (1776–1856). Avogadro stated that equal volumes of gas at the same pressure and temperature contain equal numbers of molecules. This is sometimes called Avogadro's hypothesis. That this is consistent with \(R \) being the same for all gases can be seen as follows. From Eq. 17–3, \(PV = nRT \), we see that for the same number of moles, \(n \), and the same pressure and temperature, the volume will be the same for all gases as long as \(R \) is the same. Second, the number of molecules in 1 mole is the same for all gases. Thus Avogadro's hypothesis is equivalent to \(R \) being the same for all gases.

The number of molecules in one mole of any pure substance is known as Avogadro's number, \(N_A \). Although Avogadro conceived the notion, he was not able to actually determine the value of \(N_A \). Indeed, precise measurements were not done until the twentieth century.

A number of methods have been devised to measure \(N_A \), and the accepted value today is

\[
N_A = 6.02 \times 10^{23}
\]

[molecules/mole]

Since the total number of molecules, \(N \), in a gas is equal to the number per mole times the number of moles \((N = nN_A) \), the ideal gas law, Eq. 17–3, can be written in terms of the number of molecules present:

\[
PV = nRT = \frac{N}{N_A} RT,
\]

or

\[
PV = NkT,
\]

where \(k = R/N_A \) is called the Boltzmann constant and has the value:

\[
k = \frac{R}{N_A} = \frac{8.314 \text{ J/mol-K}}{6.02 \times 10^{23} \text{ mol}} = 1.38 \times 10^{-23} \text{ J/K}.
\]

For example, the molecular mass of \(\text{H}_2 \) gas is 2.0 atomic mass units (u), whereas that of \(\text{O}_2 \) gas is 32 u. Thus 1 mol of \(\text{H}_2 \) has a mass of 0.020 kg and 1 mol of \(\text{O}_2 \) gas, 0.032 kg. The number of molecules in a mole is equal to the total mass \(M \) of a mole divided by the mass \(m \) of one molecule; since this ratio \((M/m) \) is the same for all gases by definition of the mole, a mole of any gas must contain the same number of molecules.
EXAMPLE 17-14 Hydrogen atom mass. Use Avogadro's number to determine the mass of a hydrogen atom.

APPROACH The mass of one atom equals the mass of 1 mol divided by the number of atoms in 1 mol, \(N_A\).

SOLUTION One mole of hydrogen atoms (atomic mass = 1.008 u, Section 17-1 or Appendix F) has a mass of \(1.008 \times 10^{-3}\) kg and contains \(6.02 \times 10^{23}\) atoms. Thus one atom has a mass

\[
m = \frac{1.008 \times 10^{-3} \text{kg}}{6.02 \times 10^{23}} = 1.67 \times 10^{-27}\text{kg}.
\]

EXAMPLE 17-15 Estimate How many molecules in one breath? Estimate how many molecules you breathe in with a 1.0-L breath of air.

APPROACH We determine what fraction of a mole 1.0 L is by using the result of Example 17-10 that 1 mol has a volume of 22.4 L at STP, and then multiply that by \(N_A\) to get the number of molecules in this number of moles.

SOLUTION One mole corresponds to 22.4 L at STP, so 1.0 L of air is \((1.0 \text{ L})/(22.4 \text{ L/mol}) = 0.0445\) mol. Then 1.0 L of air contains

\[
(0.0445 \text{ mol})(6.02 \times 10^{23} \text{ molecules/mol}) = 3 \times 10^{22}\text{ molecules}.
\]

17-10 Ideal Gas Temperature Scale—a Standard

It is important to have a very precisely defined temperature scale so that measurements of temperature made at different laboratories around the world can be accurately compared. We now discuss such a scale that has been accepted by the general scientific community.

The standard thermometer for this scale is the constant-volume gas thermometer discussed in Section 17-2. The scale itself is called the **ideal gas temperature scale**, since it is based on the property of an ideal gas that the pressure is directly proportional to the absolute temperature (Gay-Lussac's law). A real gas, which would need to be used in any real constant-volume gas thermometer, approaches this ideal at low density. In other words, the temperature at any point in space is defined as being proportional to the pressure in the (nearly) ideal gas used in the thermometer. To set up a scale we need two fixed points. One fixed point will be \(P = 0\) at \(T = 0\) K. The second fixed point is chosen to be the **triple point** of water, which is that point where water in the solid, liquid, and gas states can coexist in equilibrium. This occurs only at a unique temperature and pressure, and can be reproduced at different laboratories with great precision. The pressure at the triple point of water is 4.58 torr and the temperature is 0.01°C. This temperature corresponds to 273.16 K, since absolute zero is about \(-273.15°C\). In fact, the triple point is now defined to be exactly 273.16 K.

1 Liquid water and steam can coexist (the boiling point) at a range of temperatures depending on the pressure. Water boils at a lower temperature when the pressure is less, such as high in the mountains. The triple point represents a more precisely reproducible fixed point than does either the freezing point or boiling point of water at, say, 1 atm. See Section 18-3 for further discussion.
The absolute or Kelvin temperature T at any point is then defined, using a constant-volume gas thermometer for an ideal gas, as

$$T = \left(\frac{273.16}{P_0}\right) \left(\frac{P}{P_0}\right) \quad \text{[ideal gas, constant volume]} \quad (17-5a)$$

In this relation, P_0 is the pressure of the gas in the thermometer at the triple point temperature of water, and P is the pressure in the thermometer when it is at the point where T is being determined. Note that if we let $P = P_0$ in this relation, then $T = 273.16$ K, as it must.

The definition of temperature, Eq. 17-5a, with a constant-volume gas thermometer filled with a real gas is only approximate because we find that we get different results for the temperature depending on the type of gas that is used in the thermometer. Temperatures determined in this way also vary depending on the amount of gas in the bulb of the thermometer: for example, the boiling point of water at 1.00 atm is found from Eq. 17-5a to be 373.87 K when the gas is O_2 and $P_0 = 1000$ torr. If the amount of O_2 in the bulb is reduced so that at the triple point $P_0 = 500$ torr, the boiling point of water from Eq. 17-5a is then found to be 373.51 K. If H_2 gas is used instead, the corresponding values are 373.07 K and 373.11 K (see Fig. 17-17). But now suppose we use a particular real gas and make a series of measurements in which the amount of gas in the thermometer bulb is reduced to smaller and smaller amounts so that P_0 becomes smaller and smaller. It is found experimentally that an extrapolation of such data to $P_0 \to 0$ always gives the same value for the temperature of a given system (such as $T = 273.15$ K for the boiling point of water at 1.00 atm) as shown in Fig. 17-17. Thus, the temperature T at any point in space, determined using a constant-volume gas thermometer containing a real gas, is defined using this limiting process:

$$T = \left(\frac{273.16}{P_0}\right) \lim_{P_0 \to 0} \left(\frac{P}{P_0}\right) \quad \text{[constant volume]} \quad (17-5b)$$

This defines the ideal gas temperature scale. One of the great advantages of this scale is that the value for T does not depend on the kind of gas used. But the scale does depend on the properties of gases in general. Helium has the lowest condensation point of all gases at very low pressures it liquefies at about 1 K, so temperatures below this cannot be defined on this scale.

Summary

The atomic theory of matter postulates that all matter is made up of tiny entities called atoms, which are typically 10^{-10} m in diameter.

Atomic and molecular masses are specified on a scale where ordinary carbon (12 C) is arbitrarily given the value 12,000 kg (atomic mass units).

The distinction between solids, liquids, and gases can be attributed to the strength of the attractive forces between the atoms or molecules and to their average speed.

Temperature is a measure of how hot or cold something is. Thermometers are used to measure temperature on the Celsius (°C), Fahrenheit (°F), and Kelvin (K) scales. Two standard points on each scale are the freezing point of water (0°C, 32°F, 273.15 K) and the boiling point of water (100°C, 212°F, 373.15 K).

A one-kelvin change in temperature equals a change of one Celsius degree or one Fahrenheit degree. Kelvin temperatures are related to °C by $T(K) = T(°C) + 273.15$.

The change in length, ΔL, of a solid, when its temperature changes by an amount ΔT, is directly proportional to the temperature change and to its original length L_0. That is,

$$\Delta L = \alpha L_0 \Delta T \quad (17-1a)$$

where α is the coefficient of linear expansion.

The change in volume of most solids, liquids, and gases is proportional to the temperature change and to the original volume V_0: $\Delta V = \beta V_0 \Delta T \quad (17-2)$

The coefficient of volume expansion, β, is approximately equal to $3a$ for uniform solids.

Water is unusual because, unlike most materials whose volume increases with temperature, its volume actually decreases as the temperature increases in the range from 0°C to 4°C.

The ideal gas law, or equation of state for an ideal gas, relates the pressure P, volume V, and temperature T (in kelvins) of n moles of gas by the equation

$$PV = nRT \quad (17-3)$$

where $R = 8.314$ J/mol·K for all gases. Real gases obey the ideal gas law quite accurately if they are not at too high a pressure or near their liquefaction point.

One mole is that amount of a substance whose mass in grams is numerically equal to the atomic or molecular mass of that substance.

Avogadro's number, $N_A = 6.02 \times 10^{23}$, is the number of atoms or molecules in 1 mol of any pure substance.

The ideal gas law can be written in terms of the number of molecules N in the gas as

$$PV = NkT \quad (17-4)$$

where $k = R/N_A = 1.38 \times 10^{-23}$ J/K is Boltzmann's constant.

470 CHAPTER 17 Temperature, Thermal Expansion, and the Ideal Gas Law
1. Which has more atoms: 1 kg of iron or 1 kg of aluminum? See the Periodic Table or Appendix F.
2. Name several properties of materials that could be exploited to make a thermometer.
3. Which is larger, 1°C or 1°F?
4. If system A is in equilibrium with system B, but B is not in equilibrium with system C, what can you say about the temperatures of A, B, and C?
5. Suppose system C is not in equilibrium with system A nor in equilibrium with system B. Does this imply that A and B are not in equilibrium? What can you infer regarding the temperatures of A, B, and C?
6. In the relation \(\Delta t = a_0 \Delta T \), should \(a_0 \) be the initial length, the final length, or does it matter?
7. A flat bimetallic strip consists of a strip of aluminum riveted to a strip of iron. When heated, the strip will bend. Which metal will be on the outside of the curve? Why?
8. Long steam pipes that are fixed at the ends often have a section in the shape of a U. Why?
8. (1) A concrete highway is built of slabs 12 cm long (20°C). How wide should the expansion cracks between the slabs be (at 15°C) to prevent buckling if the range of temperature is -30°C to +45°C?

9. (1) Super Invar™, an alloy of iron and nickel, is a strong material with a very low coefficient of thermal expansion (0.20 × 10⁻⁶°C⁻¹). A 1.6-m-long tabletop made of this alloy is used for sensitive laser measurements where extremely high tolerances are required. How much will this alloy tabletop expand along its length if the temperature increases 50°C? Compare to tabletop made of steel.

10. (II) To what temperature would you have to heat a brass rod for it to be 1.0% longer than it is at 25°C?

11. (II) The density of water at 4°C is 1.00 × 10³ kg/m³. What is water's density at 94°C? Assume a constant coefficient of volumetric expansion.

12. (II) At a given latitude, ocean water in the so-called “mixed layer” (from the surface to a depth of about 50 m) is at approximately the same temperature due to the mixing action of waves. Assume that because of global warming, the temperature of the mixed layer is everywhere increased by 0.5°C, while the temperature of the deeper portions of the ocean remains unchanged. Estimate the resulting rise in sea level. The ocean covers about 70% of the Earth's surface.

13. (II) To make a secure fit, rivets that are larger than the rivet hole are often used and the rivet is cooled (usually in dry ice) before it is placed in the hole. A steel rivet 1.872 cm in diameter is to be placed in a hole 1.870 cm in diameter in a metal at 20°C. To what temperature must the rivet be cooled if it is to fit in the hole?

14. (II) A uniform rectangular plate of length \(\ell \) and width \(w \) has a coefficient of linear expansion \(\alpha \). Show that, if we neglect very small quantities, the change in area of the plate due to a temperature change \(\Delta T \) is \(\Delta A = \alpha \ell \ell \Delta T \). See Fig. 17-20.

FIGURE 17-20 Problem 14.

A rectangular plate is heated.

15. (II) An aluminum sphere is 8.75 cm in diameter. What will be its change in volume if it is heated from 30°C to 100°C?

16. (II) A typical car has 17.8 liters of liquid coolant circulating at a temperature of 93°C through the engine's cooling system. Assume that, in this normal condition, the coolant completely fills the 3.54-L, volume of the aluminum radiator and the 13.35-L internal cavities within the steel engine. When the car overheats, the radiator, engine, and coolant expand and a small reservoir connected to the radiator catches any residual coolant overflow. Estimate how much coolant overflows to the reservoir if the system is heated from 93°C to 105°C. Model the radiator and engine as hollow shells of aluminum and steel, respectively. The coefficient of volume expansion for coolant is \(\beta = 4.10 \times 10⁻⁴ \) °C⁻¹.

17. (II) It is observed that 55.50 mL of water at 20°C completely fills a container to the brim. When the container and the water are heated to 60°C, 0.35 g of water is lost.

(a) What is the coefficient of volume expansion of the container?

(b) What is the most likely material of the container? Density of water at 60°C is 0.98234 g/mL.

18. (III) A brass plug is to be placed in a ring made of iron. At 15°C, the diameter of the plug is 8.753 cm and that of the inside of the ring is 8.743 cm. They must both be brought to what common temperature in order to fit? (b) What if the plug were iron and the ring brass?

19. (III) If a fluid is contained in a long narrow vessel so it can expand in essentially one direction only, show that the effective coefficient of linear expansion \(\alpha \) is approximately equal to the coefficient of volume expansion \(B \).

20. (III) (a) Show that the change in the density \(\rho \) of a substance, when the temperature changes by \(\Delta T \), is given by \(\Delta \rho = -\beta \rho \Delta T \). (b) What is the fractional change in density of a lead sphere whose temperature decreases from 25°C to -53°C?

21. (III) Wine bottles are never completely filled: a small volume of air is left in the glass bottle's cylindrical shaped neck (inner diameter \(\ell = 18.5 \) mm) to allow for wine's fairly large coefficient of thermal expansion. The distance \(H \) between the surface of the liquid contents and the bottom of the cork is called the "headspace height" (Fig. 17-21), and it is typically \(H = 1.5 \) cm for a 750-ml bottle filled at 20°C. Due to its alcoholic content, wine's coefficient of volume expansion is about double that of water; in comparison, the thermal expansion of glass can be neglected. Estimate \(H \) if the bottle is kept

(a) at 10°C

(b) at 30°C

FIGURE 17-21 Problem 21.

22. (III) (a) Determine a formula for the change in surface area of a uniform solid sphere of radius \(r \) if its coefficient of linear expansion is \(\alpha \) (assumed constant) and its temperature is changed by \(\Delta T \). (b) What is the increase in area of a solid iron sphere of radius 60.0 cm if its temperature is raised from 15°C to 75°C?

23. (III) The pendulum in a grandfather clock is made of brass and keeps perfect time at 17°C. How much time is gained or lost in a year if the clock is kept at 25°C (Assume the frequency dependence on length for a simple pendulum applies.)

24. (III) A 28.4-kg solid aluminum cylindrical wheel of radius 0.41 m is rotating about its axle in frictionless bearings with angular velocity \(\omega = 32.8 \) rad/s. If its temperature is then raised from 200°C to 950°C, what is the fractional change in \(\omega \)?

17-5 Thermal Stresses

25. (I) An aluminum bar has the desired length when at 18°C. How much stress is required to keep it at this length if the temperature increases to 35°C?

26. (II) (a) A horizontal steel I-beam of cross-sectional area 0.041 m² is rigidly connected to two vertical steel girders. If the beam was installed when the temperature was 2°C, what stress is developed in the beam when the temperature drops to -25°C? (b) Is the ultimate strength of the steel exceeded?

(c) What stress is developed if the beam is concrete and has a cross-sectional area of 0.13 m²? Will it fracture?
27. (III) A barrel of diameter 134.12 cm at 20°C is to be enclosed by an iron band. The circular band has an inside diameter of 134.110 cm at 20°C. It is 0.4 cm wide and 0.65 cm thick. (a) To what temperature must the band be heated so that it will fit over the barrel? (b) What will be the tension in the band when it cools to 20°C?

17-6 Gas Laws; Absolute Temperature

28. (I) What are the following temperatures on the Kelvin scale: (a) 0°C, (b) 92°F, (c) -55°C, (d) 5500°C?

29. (I) Absolute zero is what temperature on the Fahrenheit scale?

30. (II) Typical temperatures in the interior of the Earth and Sun are about 4000°C and 15 x 10⁶°C, respectively. (a) What are these temperatures in Kelvin? (b) What percent error is made in each case if a person forgets to change °C to K?

17-7 and 17-8 Ideal Gas Law

31. (I) If 3.80 m³ of a gas initially at STP is placed under a pressure of 320 atm, the temperature of the gas rises to 580°C. What is the volume?

32. (I) In an internal combustion engine, air at atmospheric pressure and a temperature of about 20°C is compressed in the cylinder by a piston to one fourth of its original volume (compression ratio = 4:1). Estimate the temperature of the compressed air, assuming the pressure reaches 40 atm.

33. (II) Calculate the density of nitrogen at STP using the Ideal Gas Law.

34. (II) If 14.00 mol of helium gas is at 10.0°C and a gauge pressure of 0.350 atm, calculate (a) the volume of the helium gas under these conditions and (b) the temperature if the gas is compressed to precisely half the volume at a gauge pressure of 10.0 atm.

35. (II) A stopped test tube traps 25.0 cm³ of air at a pressure of 1.00 atm and temperature of 18°C. The cylindrically shaped stopper at the test tube’s mouth has a diameter of 1.50 cm and will "pop off" the test tube if a net upward force of 10.0 N is applied to it. To what temperature would one have to heat the trapped air in order to "pop off" the stopper? Assume the air surrounding the test tube is always at a pressure of 1.00 atm.

36. (II) A storage tank contains 21.6 kg of nitrogen (N₂) at an absolute pressure of 3.85 atm. What will the pressure be if the nitrogen is replaced by an equal mass of CO₂ at the same temperature?

37. (II) A storage tank at STP contains 28.5 kg of nitrogen (N₂). (a) What is the volume of the tank? (b) What is the pressure if an additional 25.0 kg of nitrogen is added without changing the temperature?

38. (II) A scuba tank is filled with air to a pressure of 204 atm when the air temperature is 20°C. A diver then jumps into the ocean and, after a short time, treading water on the ocean surface, checks the tank’s pressure and finds that it is only 194 atm. Assuming the diver has inhaled a negligible amount of air from the tank, what is the temperature of the ocean water?

39. (II) What is the pressure inside a 38.0-L container holding 1050 kg of argon gas at 200°C?

40. (II) A tank contains 30.0 kg of O₂ gas at a gauge pressure of 8.20 atm. If the oxygen is replaced by helium at the same temperature, how many kilograms of the latter will be needed to produce a gauge pressure of 7.00 atm?

41. (II) A sealed metal container contains a gas at 20.0°C and 1.00 atm. To what temperature must the gas be heated to double the pressure to 2.00 atm? (Ignore expansion of the container.)

42. (II) A tire is filled with air at 15°C to a gauge pressure of 250 kPa. If the tire reaches a temperature of 38°C, what fraction of the original air must be removed if the original pressure of 250 kPa is to be maintained?

43. (II) If 1.5 L of oxygen at 20°C and an absolute pressure of 2.45 atm are compressed to 0.8 L, and at the same time the temperature is raised to 86.0°C, what will be the new pressure be?

44. (II) A helium-filled balloon escapes a child’s hand at sea level and 20.0°C. When it reaches an altitude of 1500 m, where the temperature is 15.0°C and the pressure only 0.62 atm, how will its volume compare to that at sea level?

45. (II) A sealed metal container can withstand a pressure difference of 0.50 atm. The container initially is filled with an ideal gas at 18°C and 1.0 atm. To what temperature can you cool the container before it collapses? (Ignore any changes in the container’s volume due to thermal expansion.)

46. (II) You buy an "airtight" bag of potato chips packaged at sea level, and take the chips on an airplane flight. When you take the potato chips out of your luggage, you notice it has noticeably "puffed up." Airplane cabins are typically pressurized at 0.75 atm, and assuming the temperature inside the airplane is about the same as inside a potato chip processing plant, by what percentage has the bag "puffed up" in comparison to when it was packaged?

47. (II) A typical scuba tank, when fully charged, contains 12 L of air at 204 atm. Assume an "empty" tank contains air at 34 atm and is connected to an air compressor at sea level. The air compressor injects air from the atmosphere, compresses it to high pressure, and then inputs this high-pressure air into the scuba tank. If the (average) flow rate of air from the atmosphere into the intake port of the air compressor is 290 L/min, how long will it take to fully charge the scuba tank? Assume the tank remains at the same temperature as the surrounding air during the filling process.

48. (III) A sealed container containing 4.0 mol of gas is squeezed, changing its volume from 0.320 m³ to 0.018 m³. During this process, the temperature decreases by 9.0 K while the pressure increases by 450 Pa. What was the original pressure and temperature of the gas in the container?

49. (III) Compare the volume for the density of water vapor as exactly 100°C and 1 atm (Table 13-1) with the value predicted from the Ideal Gas Law. Why would you expect a difference?

50. (III) An air bubble at the bottom of a lake 37.0 m deep has a volume of 1.00 cm³. If the temperature at the bottom is 5.5°C and at the top 18.5°C, what is the volume of the bubble just before it reaches the surface?

17-9 Ideal Gas Law in Terms of Molecules; Avogadro’s Number

51. (I) Calculate the number of molecules/m³ in an ideal gas at STP.

52. (I) How many moles of water are there in 1.000 L at STP? How many molecules?

53. (I) What is the pressure in a region of outer space where there is 1 molecule/cm³ and the temperature is 3 K?

54. (II) Estimate the number of (a) moles and (b) molecules of water in all the Earth’s oceans. Assume water covers 75% of the Earth to an average depth of 3 km.
55. (II) The lowest pressure attainable using the best available vacuum techniques is about 10^{-12} N/m². At such a pressure, how many molecules are there per cm² at 0°C?

56. (II) Is air mostly empty space? Check by assuming that the spatial extent of common gas molecules is about 6.3 mm so one gas molecule occupies an approximate volume equal to 6. Assume STP.

57. (III) Estimate how many molecules of air are in each 2.0-L breath you inhale that were also in the last breath Galileo took. [Hint: Assume the atmosphere is about 10 km high and of constant density.]

17-10 Ideal Gas Temperature Scale

58. (I) In an ideal-gas thermometer, what is the limiting ratio of the pressure at the boiling point of water at 1 atm to that at the triple point? (Keep five significant figures.)

59. (I) At the boiling point of water (100°C) the pressure in a constant-volume gas thermometer is 187 torr. Estimate (a) the pressure at the triple point of water, (b) the temperature when the pressure in the thermometer is 115 torr.

60. (II) Use Fig. 17-17 to determine the accuracy of a constant-volume gas thermometer. Determine or given if it for the pressure $P = 268$ torr at the boiling point of water at 1 atm. Express answer (a) in kelvins and (b) as a percentage.

61. (III) A constant-volume gas thermometer is being used to determine the temperature of the melting point of a substance. The pressure in the thermometer at the temperature is 218 torr; at the triple point of water, the pressure is 286 torr. Some gas is now released from the thermometer bulb so that the pressure at the triple point of water becomes 163 torr. At the temperature of the melting substance, the pressure is 128 torr. Estimate, as accurately as possible, the melting-point temperature of the substance.

General Problems

62. A Pyrex measuring cup was calibrated at normal room temperature. How much error will be made in a recipe calling for 350 mL of cool water, if the water and the cup are hot, at 95°C, instead of at room temperature? Neglect the glass expansion.

63. A precise steel tape measure has been calibrated at 15°C. At 30°C, (a) will it read high or low, and (b) what will be the percentage error?

64. A cylinder 6.15 x 10^{-2} m^3 is filled with air at atmospheric pressure at 15°C. The box is closed and heated to 185°C. What is the net force on each side of the box?

65. The gauge pressure in a helium gas cylinder is initially 32 atm. After many balloons have been blown up, the gauge-pressure has decreased to 3 atm. What fraction of the original gas remains in the cylinder?

66. If a rod of original length L_1 has its temperature changed from T_1 to T_2, determine a formula for its new length L_2 in terms of T_1, T_2, and a. Assume (a) $a = constant$, (b) $a = f(T)$ is some function of temperature, and (c) $a = A + BT$ where A and B are constants.

67. If a scuba diver fills his lungs to full capacity of 5.5 L, when 8.0 m below the surface, to what volume would his lungs expand if he quickly rose to the surface? Is this advisable?

68. (a) Use the ideal gas law to show that, for an ideal gas at constant pressure, the coefficient of volume expansion is equal to $\beta = 1/T$, where T is the kelvin temperature. Compare to Table 17-1 for gases at $T = 293$ K. (b) Show that the bulk modulus (Section 12-4) for an ideal gas held at constant temperature is $B = P$, where P is the pressure.

69. A house has a volume of 870 m³. (a) What is the total mass of air inside the house at 15°C? (b) If the temperature drops to -15°C, what mass of air enters or leaves the house?

70. Assume that in an alternate universe, the laws of physics are very different from ours and that "ideal" gases behave as follows: (i) At constant temperature, pressure is inversely proportional to the square of the volume. (ii) At constant pressure, the volume varies directly with the $\frac{3}{2}$ power of the temperature. (iii) At 273.15 K and 1.00 atm pressure, 1.00 mole of an ideal gas is found to occupy 22.4 L. Obtain the form of the ideal gas law in this alternate universe, including the value of the gas constant R.

71. An iron cube floats in a bowl of liquid mercury at 0°C. (a) If the temperature is raised to 23°C, will the cube float higher or lower in the mercury? (b) By what percent will the fraction of volume submerged change?

72. (a) The tube of a mercury thermometer has an inside diameter of 0.140 mm. The bulb has a volume of 0.275 cm³. How far will the thread of mercury move when the temperature changes from 10.5°C to 33.0°C? Take into account expansion of the Pyrex glass. (b) Determine a formula for the change in length of the mercury column in terms of relevant variables. Ignore tube volume compared to bulb volume.

73. From the known value of atmospheric pressure at the surface of the Earth, estimate the total number of air molecules in the Earth's atmosphere.

74. Estimate the percent difference in the density of iron at STP, and when it is a solid deep in the Earth where the temperature is 2000°C and under 5000 atm of pressure. Assume the bulk modulus $(90 \times 10^9$ N/m²) and the coefficient of volume expansion do not vary with temperature and are the same as at STP.

75. What is the average distance between nitrogen molecules at STP?

76. A helium balloon, assumed to be a perfect sphere, has a radius of 22.0 cm. At room temperature (20°C), its internal pressure is 1.06 atm. Determine the number of moles of helium in the balloon, and the mass of helium needed to inflate the balloon to those values.

77. A standard cylinder of oxygen used in a hospital has gauge pressure $= 2000$ psi (13,800 kPa) and volume $= 14$ L (0.014 m³) at $T = 253$ K. How long will the cylinder last if the flow rate, measured at atmospheric pressure, is constant at 2.4 L/min?

78. A brass lid screwed tightly onto a glass jar at 15°C. To help open the jar, it can be placed into a bath of hot water. After this treatment, the temperatures of the lid and the jar are both 75°C. The inside diameter of the lid is 8.7 cm. Find the size of the gap (difference in radius) that develops by this procedure.

79. The density of gasoline at 0°C is 0.68×10^3 kg/m³. (a) What is the density on a hot day, when the temperature is 35°C? (b) What is the percent change in density?
80. A helium balloon has volume \(V_0 \) and temperature \(T_0 \) at sea level where the pressure is \(P_0 \) and the air density is \(\rho_0 \). The balloon is allowed to float up in the air to altitude \(y \), where the temperature is \(T_y \). (a) Show that the volume occupied by the balloon is then \(V = V_0 e^{y/y_0} \), where \(y_0 = \frac{R_0 P_0}{\rho_0} = 1.25 \times 10^{-4} \text{ m}^3 \). (b) Show that the buoyant force does not depend on altitude \(y \). Assume that the skin of the balloon maintains the helium pressure at a constant factor of 1.05 times greater than the outside pressure. [Hint: Assume that the pressure change with altitude is \(P = P_0 e^{y/y_0} \), as in Example 13–5, Chapter 13.]

81. The first length standard, adopted in the eighteenth century, was a platinum bar with two very fine marks separated by what was defined to be exactly one meter. If this standard bar was to be accurate to within \(\pm 1.0 \mu \text{m} \), how carefully would the trustees have needed to control the temperature? The coefficient of linear expansion is \(9 \times 10^{-6} /{\degree}\text{C} \).

82. A scuba tank when fully charged has a pressure of 180 atm at 20°C. The volume of the tank is 11.3 L. (a) What would the volume of the air be at 1.00 atm and at the same temperature? (b) Before entering the water, a person consumes 2.0 L of air in each breath, and breathes 12 times a minute. At this rate, how long would the tank last? (c) At a depth of 20.0 m in seawater at a temperature of 10°C, how long would the same tank last assuming the breathing rate does not change?

83. A temperature controller, designed to work in a steam environment, involves a bimetallic strip constructed of brass and steel, connected at their ends by rivets. Each of the metals is 2.0 mm thick. At 200°C, the strip is 10.0 cm long and straight.

Find the radius of curvature \(r \) of the assembly at 100°C. See Fig. 17–22.

FIGURE 17–22 Problem 83.

84. A copper wire is 50.0 cm between two utility poles 30.0 m apart when the temperature is \(-15^\circ \text{C}\). Estimate the amount of sag when the temperature is \(+35^\circ \text{C}\). [Hint: An estimate can be made by assuming the shape of the wire is approximately an arc of a circle; hard equations can sometimes be solved by guessing values.]

85. Snorkelers breathe through short tubular “snorkels” while swimming under water very near the surface. One end of the snorkel attaches to the snorkeler’s mouth while the other end protrudes above the water’s surface. Unfortunately, snorkels cannot support breathing to any great depth. It is said that a typical snorkeler below a water depth of only about 30 cm cannot draw a breath through a snorkel. Based on this claim, what is the approximate fractional change in a typical person’s lung volume when drawing a breath? Assume, in equilibrium, the air pressure in a snorkeler’s lungs matches that of the surrounding water pressure.

Numerical/Computer

86. (II) A thermocouple consists of a junction of two different types of materials that produces a voltage depending on its temperature. A thermocouple’s voltages were recorded when at different temperatures as follows:

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>50</th>
<th>100</th>
<th>200</th>
<th>300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage (mV)</td>
<td>1.41</td>
<td>2.96</td>
<td>5.90</td>
<td>8.92</td>
</tr>
</tbody>
</table>

Use a spreadsheet to fit these data to a cubic equation and determine the temperature when the thermocouple produces 3.21 mV. Get a second value of the temperature by fitting the data to a quadratic equation.

87. (III) You have a vial of an unknown liquid which might be octane (gasoline), water, glycerin, or ethyl alcohol. You are trying to determine its identity by studying how its volume changes with temperature changes. You fill a Pyrex graduated cylinder to 100.00 mL with the liquid when the liquid and the cylinder are at 0.00°C. You raise the temperature in five-degree increments, allowing the graduated cylinder and liquid to come to equilibrium at each temperature. You read the volumes listed below off the graduated cylinder at each temperature. Take into account the expansion of the Pyrex glass cylinder. Graph the data, possibly using a spreadsheet program, and determine the slope of the line to find the effective (combined) coefficient of volume expansion \(\beta \). Then determine \(\beta \) for the liquid and which liquid is in the vial.

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Volume Reading (apparent mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>100.00</td>
</tr>
<tr>
<td>5.000</td>
<td>100.24</td>
</tr>
<tr>
<td>10.000</td>
<td>100.50</td>
</tr>
<tr>
<td>15.000</td>
<td>100.72</td>
</tr>
<tr>
<td>20.000</td>
<td>100.96</td>
</tr>
<tr>
<td>25.000</td>
<td>101.26</td>
</tr>
<tr>
<td>30.000</td>
<td>101.48</td>
</tr>
<tr>
<td>35.000</td>
<td>101.71</td>
</tr>
<tr>
<td>40.000</td>
<td>101.97</td>
</tr>
<tr>
<td>45.000</td>
<td>102.20</td>
</tr>
<tr>
<td>50.000</td>
<td>102.46</td>
</tr>
</tbody>
</table>

Answers to Exercises

A: \(-90^\circ\).
B: (a).
C: 8 mm.
D: (i) Higher, (ii) same, (iii) lower.