The Monte Carlo Method in Quantum Field Theory

Colin Morningstar

Carnegie Mellon University
HUGS June 2006

Outline

- Path integrals in quantum mechanics
- Monte Carlo integration and Markov chains
- Monte Carlo evaluation of path integral in quantum mechanics
- Free Klein-Gordon scalar field theory in $2+1$ dimensions
- Interacting ϕ^{4} scalar field theory in $2+1$ dimensions
- Applications in quantum chromodynamics
- Topics for future study

Part I

Path integrals in quantum mechanics

Transition amplitudes in quantum mechanics

- key quantity in quantum mechanics: transition amplitude

$$
Z(b, a) \equiv\left\langle x_{b}\left(t_{b}\right) \mid x_{a}\left(t_{a}\right)\right\rangle
$$

- $Z(b, a)$ is probability amplitude for particle to go from point x_{a} at time t_{a} to point x_{b} at time t_{b}
- in this talk, will work in Heisenberg picture
- state vectors $|\Psi\rangle$ are stationary
- operators and their eigenvectors evolve with time

$$
\begin{aligned}
x(t) & =e^{i H t / \hbar} x(0) e^{-i H t / \hbar} \\
|x(t)\rangle & =e^{i H t / \hbar}|x(0)\rangle
\end{aligned}
$$

- often will shift Hamiltonian so ground state energy is zero

$$
\begin{array}{rlr}
H\left|\phi_{n}(t)\right\rangle & =E_{n}\left|\phi_{n}(t)\right\rangle, \quad E_{0}=0 \\
\left|\phi_{0}(t)\right\rangle & =\left|\phi_{0}(0)\right\rangle \equiv|0\rangle
\end{array}
$$

Spectral representation of transition amplitude

- insert complete (discrete) set of Heisenberg-picture eigenstates $\left|\phi_{n}(t)\right\rangle$ of Hamiltonian H into transition amplitude

$$
Z(b, a) \equiv\left\langle x_{b}\left(t_{b}\right) \mid x_{a}\left(t_{a}\right)\right\rangle=\sum\left\langle x_{b}\left(t_{b}\right) \mid \phi_{n}\left(t_{b}\right)\right\rangle\left\langle\phi_{n}\left(t_{b}\right) \mid x_{a}\left(t_{a}\right)\right\rangle
$$

- now use $\left|\phi_{n}(t)\right\rangle=e^{i H t / \hbar}\left|\phi_{n}(0)\right\rangle \stackrel{n}{=} e^{i E_{n} t / \hbar}\left|\phi_{n}(0)\right\rangle$ to obtain

$$
Z(b, a)=\sum e^{-i E_{n}\left(t_{b}-t_{a}\right) / \hbar}\left\langle x_{b}\left(t_{b}\right) \mid \phi_{n}\left(t_{b}\right)\right\rangle\left\langle\phi_{n}\left(t_{a}\right) \mid x_{a}\left(t_{a}\right)\right\rangle
$$

- finally, $\left\langle x(t) \mid \phi_{n}(t)\right\rangle^{n} \equiv \varphi_{n}(x)$ is the wavefunction in coordinate space, so

$$
Z(b, a)=\sum_{n} \varphi_{n}\left(x_{b}\right) \varphi_{n}^{*}\left(x_{a}\right) e^{-i E_{n}\left(t_{b}-t_{a}\right) / \hbar}
$$

- transition amplitude contains information about all energy levels and all wavefunctions \rightarrow spectral representation

Vacuum saturation

- take $t_{a}=-T$ and $t_{b}=T$ in the limit $T \rightarrow(1-i \epsilon) \infty$

$$
\begin{aligned}
\left\langle x_{b}(T) \mid x_{a}(-T)\right\rangle & =\left\langle x_{b}(0)\right| e^{-i H T / \hbar} e^{i H(-T) / \hbar}\left|x_{a}(0)\right\rangle \\
& =\sum_{n=0}^{\infty}\left\langle x_{b}(0) \mid \phi_{n}(0)\right\rangle\left\langle\phi_{n}(0) \mid x_{a}(0)\right\rangle e^{-2 i E_{n} T / \hbar} \\
& \rightarrow\left\langle x_{b}(0) \mid 0\right\rangle\left\langle 0 \mid x_{a}(0)\right\rangle
\end{aligned}
$$

- insert complete set of energy eigenstates, use $E_{n+1} \geq E_{n}, \quad E_{0}=0$, assume nondegenerate vacuum
- possibility of probing ground state (vacuum) properties

Vacuum expectation values

- now apply limit $T \rightarrow(1-i \epsilon) \infty$ to more complicated amplitude

$$
\begin{aligned}
& \left\langle x_{b}(T)\right| x\left(t_{2}\right) x\left(t_{1}\right)\left|x_{a}(-T)\right\rangle \\
= & \left\langle x_{b}(0)\right| e^{-i H T / \hbar} x\left(t_{2}\right) x\left(t_{1}\right) e^{-i H T / \hbar}\left|x_{a}(0)\right\rangle \\
= & \sum_{n, m}\left\langle x_{b}(0) \mid \phi_{n}(0)\right\rangle\left\langle\phi_{n}(0)\right| x\left(t_{2}\right) x\left(t_{1}\right)\left|\phi_{m}(0)\right\rangle\left\langle\phi_{m}(0) \mid x_{a}(0)\right\rangle \\
\times & \times e^{-i\left(E_{n}+E_{m}\right) T / \hbar} \\
\rightarrow & \left\langle x_{b}(0) \mid 0\right\rangle\langle 0| x\left(t_{2}\right) x\left(t_{1}\right)|0\rangle\left\langle 0 \mid x_{a}(0)\right\rangle
\end{aligned}
$$

- hence, vacuum expectation values from

$$
\langle 0| x\left(t_{2}\right) x\left(t_{1}\right)|0\rangle=\lim _{T \rightarrow(1-i \epsilon) \infty} \frac{\left\langle x_{b}(T)\right| x\left(t_{2}\right) x\left(t_{1}\right)\left|x_{a}(-T)\right\rangle}{\left\langle x_{b}(T) \mid x_{a}(-T)\right\rangle}
$$

- result generalizes to higher products of position operator

Observables from correlation functions

- all observables can be extracted from the correlation functions (vacuum expectation values)
- example: energies of the stationary states

$$
\begin{aligned}
\langle 0| x(t) x(0)|0\rangle & =\langle 0| e^{i H t / \hbar} x(0) e^{-i H t / \hbar} x(0)|0\rangle \\
& =\sum_{n}\langle 0| x(0) e^{-i H t / \hbar}\left|\phi_{n}(0)\right\rangle\left\langle\phi_{n}(0)\right| x(0)|0\rangle \\
& \left.=\sum_{n}|\langle 0| x(0)| \phi_{n}(0)\right\rangle\left.\right|^{2} e^{-i E_{n} t / \hbar}
\end{aligned}
$$

- similarly for more complicated correlation functions

$$
\begin{aligned}
\langle 0| x^{2}(t) x^{2}(0)|0\rangle & =\langle 0| e^{i H t / \hbar} x^{2}(0) e^{-i H t / \hbar} x^{2}(0)|0\rangle \\
& \left.=\sum_{n}\left|\langle 0| x^{2}(0)\right| \phi_{n}(0)\right\rangle\left.\right|^{2} e^{-i E_{n} t / \hbar}
\end{aligned}
$$

- but difficult to extract energies E_{n} from above oscillatory functions
\rightarrow much easier if we had decaying exponentials

The imaginary time formalism

- can get decaying exponentials if we rotate from the real to the imaginary axis in time (Wick rotation) $t \rightarrow-i \tau$

$$
\begin{aligned}
\langle 0| x(t) x(0)|0\rangle & \left.=\sum_{n}|\langle 0| x(0)| \phi_{n}(0)\right\rangle\left.\right|^{2} e^{-E_{n} \tau / \hbar} \\
& \left.\xrightarrow{\tau \rightarrow \infty}|\langle 0| x(0)| 0\rangle\left.\right|^{2}+|\langle 0| x(0)| \phi_{1}(0)\right\rangle\left.\right|^{2} e^{-E_{1} \tau / \hbar}
\end{aligned}
$$

- later, will see this imaginary time formalism provides another important advantage for Monte Carlo applications

Quantum mechanics and path integrals

- in the 1940s, Feynman developed an alternative formulation of quantum mechanics (his Ph.D. thesis)
- Richard Feynman, Rev Mod Phys 20, 367 (1948)
- quantum mechanical law of motion:
- probability amplitude from sum over histories

$$
Z(b, a) \sim \sum_{\substack{\text { all paths } x(t) \\ \text { from } a \text { to } b}} \exp (i S[x(t)] / \hbar)
$$

- all paths contribute to probability amplitude, but with different phases determined by the action $S[x(t)]$
- classical limit: when small changes in path yield changes in action large compared to \hbar, phases cancel out and path of least action $\delta S=0$ dominates sum over histories

Defining the path integral

- action $=$ time integral of Lagrangian (kinetic minus potential energy)

$$
S=\int d t L(x, \dot{x})=\int d t(K-U)
$$

- divide time into steps of width ε where $N \varepsilon=t_{b}-t_{a}$
- path integral is defined as
$Z(b, a)=\lim _{\varepsilon \rightarrow 0} \frac{1}{A} \int_{-\infty}^{\infty} \frac{d x_{1}}{A} \frac{d x_{2}}{A} \cdots \frac{d x_{N-1}}{A} e^{i S[x(t)] / \hbar}$
where A is a normalization factor depending on ε chosen so path integral well-defined
- in nonrelativistic theory, paths cannot double-back in time

Schrödinger equation

- probability amplitude $\psi\left(x_{b}, t_{b}\right)$ at time t_{b} given amplitude $\psi\left(x_{a}, t_{a}\right)$ at earlier time t_{a} given by

$$
\psi\left(x_{b}, t_{b}\right)=\int Z(b, a) \psi\left(x_{a}, t_{a}\right) d x_{a}
$$

- take $t_{a}=t$ and $t_{b}=t+\varepsilon$ one time slice away

$$
\psi\left(x_{b}, t+\varepsilon\right)=\frac{1}{A} \int_{-\infty}^{\infty} \exp \left[\frac{i \varepsilon}{\hbar} L\left(\frac{x_{b}+x_{a}}{2}, \frac{x_{b}-x_{a}}{\varepsilon}\right)\right] \psi\left(x_{a}, t\right) d x_{a}
$$

- in L, take $\dot{x}=\left(x_{b}-x_{a}\right) / \varepsilon$ and mid-point prescription $x \rightarrow\left(x_{b}+x_{a}\right) / 2$
- particle in potential: $L=\frac{1}{2} m \dot{x}^{2}-V(x, t)$, write $x_{b}=x, x_{a}=x+\eta$

$$
\psi(x, t+\varepsilon)=\frac{1}{A} \int_{-\infty}^{\infty} e^{i m \eta^{2} /(2 \hbar \varepsilon)} e^{-i \varepsilon V(x+\eta / 2, t) / \hbar} \psi(x+\eta, t) d \eta
$$

Schrödinger equation (continued)

$$
\psi(x, t+\varepsilon)=\frac{1}{A} \int_{-\infty}^{\infty} e^{i m \eta^{2} /(2 \hbar \varepsilon)} e^{-i \varepsilon V(x+\eta / 2, t) / \hbar} \psi(x+\eta, t) d \eta
$$

- rapid oscillation of $e^{i m \eta^{2} /(2 \hbar \varepsilon)}$ except when $\eta \sim O(\sqrt{\varepsilon}) \rightarrow$ integral dominated by contributions from η having values of this order
- expand to $O(\varepsilon)$ and $O\left(\eta^{2}\right)$, except $e^{i m \eta^{2} /(2 \hbar \varepsilon)}(\psi$ refers to $\psi(x, t))$

$$
\begin{aligned}
\psi+\varepsilon \frac{\partial \psi}{\partial t} & =\frac{1}{A} \int_{-\infty}^{\infty} e^{i m \eta^{2} /(2 \hbar \varepsilon)}\left[1-\frac{i \varepsilon}{\hbar} V(x, t)\right]\left[\psi+\eta \frac{\partial \psi}{\partial x}+\frac{\eta^{2}}{2} \frac{\partial^{2} \psi}{\partial x^{2}}\right] d \eta \\
& =\frac{1}{A} \int_{-\infty}^{\infty} e^{i m \eta^{2} /(2 \hbar \varepsilon)}\left[\psi-\frac{i \varepsilon}{\hbar} V(x, t) \psi+\eta \frac{\partial \psi}{\partial x}+\frac{\eta^{2}}{2} \frac{\partial^{2} \psi}{\partial x^{2}}\right] d \eta
\end{aligned}
$$

Schrödinger equation (continued)

$$
\psi+\varepsilon \frac{\partial \psi}{\partial t}=\frac{1}{A} \int_{-\infty}^{\infty} e^{i m \eta^{2} /(2 \hbar \varepsilon)}\left[\psi-\frac{i \varepsilon}{\hbar} V(x, t) \psi+\eta \frac{\partial \psi}{\partial x}+\frac{\eta^{2}}{2} \frac{\partial^{2} \psi}{\partial x^{2}}\right] d \eta
$$

- matching leading terms on both sides determines A (analytic continuation to evaluate integral)

$$
1=\frac{1}{A} \int_{-\infty}^{\infty} e^{i m \eta^{2} /(2 \hbar \varepsilon)} d \eta=\frac{1}{A}\left(\frac{2 \pi i \hbar \varepsilon}{m}\right)^{1 / 2} \Rightarrow A=\left(\frac{2 \pi i \hbar \varepsilon}{m}\right)^{1 / 2}
$$

- two more integrals:

$$
\frac{1}{A} \int_{-\infty}^{\infty} e^{i m \eta^{2} /(2 \hbar \varepsilon)} \eta d \eta=0, \quad \frac{1}{A} \int_{-\infty}^{\infty} e^{i m \eta^{2} /(2 \hbar \varepsilon)} \eta^{2} d \eta=\frac{i \hbar \varepsilon}{m}
$$

- $O(\varepsilon)$ part of equation at top yields

$$
-\frac{\hbar}{i} \frac{\partial \psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}}+V(x, t) \psi
$$

- the Schrödinger equation!

Free particle in one dimension

- Lagrangian of free particle in one dimension $L=\frac{1}{2} m \dot{x}^{2}$
- amplitude for particle to travel from x_{a} at time t_{a} to location x_{b} at later time t_{b} is

$$
\left\langle x_{b}\left(t_{b}\right) \mid x_{a}\left(t_{a}\right)\right\rangle=\int_{a}^{b} \mathcal{D} x(t) \exp (i S[b, a] / \hbar)
$$

summing over all allowed paths with $x\left(t_{a}\right)=x_{a}$ and $x\left(t_{b}\right)=x_{b}$.

- classical path $x_{\mathrm{cl}}(t)$ from $\delta S=0$ and boundary conditions:

$$
\ddot{x}_{\mathrm{cl}}(t)=0, \quad x_{\mathrm{cl}}(t)=x_{a}+\left(x_{b}-x_{a}\right) \frac{\left(t-t_{a}\right)}{\left(t_{b}-t_{a}\right)}
$$

- classical action is

$$
\left.\mathrm{n} \text { is } \underset{S_{\mathrm{cl}}}{ } b, a\right]=\int_{t_{a}}^{t_{b}} d t \frac{1}{2} m \dot{x}_{\mathrm{cl}}^{2}=\frac{m\left(x_{b}-x_{a}\right)^{2}}{2\left(t_{b}-t_{a}\right)}
$$

- write $x(t)=x_{\mathrm{cl}}(t)+\chi(t)$ where $\chi\left(t_{a}\right)=\chi\left(t_{b}\right)=0$ then

$$
S[b, a]=S_{\mathrm{cl}}[b, a]+\int_{t_{a}}^{t_{b}} d t \frac{1}{2} m \dot{\chi}^{2}
$$

where $S_{\mathrm{cl}}[b, a]$ is classical action; no terms linear in $\chi(t)$ since S_{cl} is extremum

Path integral for free particle

- amplitude becomes $\left(T=t_{b}-t_{a}\right)$

$$
\begin{aligned}
Z(b, a) & =F(T) \exp \left(i S_{\mathrm{cl}} / \hbar\right) \\
F(T) & =\int_{0}^{0} \mathcal{D} \chi \exp \left\{\frac{i m}{2 \hbar} \int_{0}^{T} d t \dot{\chi}^{2}\right\}
\end{aligned}
$$

- partition time into discrete steps of length ε, use midpoint prescription, and note that $\chi_{0}=\chi_{N}=0$

$$
\begin{aligned}
\int_{0}^{0} \mathcal{D} \chi & =\frac{1}{A} \int_{-\infty}^{\infty}\left(\prod_{l=1}^{N-1} \frac{d \chi_{l}}{A}\right) \quad A=\left(\frac{2 \pi i \hbar \varepsilon}{m}\right)^{1 / 2} \\
\int_{0}^{T} d t \dot{\chi}^{2} & =\frac{1}{\varepsilon} \sum_{j=0}^{N-1}\left(\chi_{j+1}-\chi_{j}\right)^{2} \\
F(T) & =\left(\frac{m}{2 \pi i \hbar \varepsilon}\right)^{N / 2} \int_{-\infty}^{\infty}\left(\prod_{l=1}^{N-1} d \chi_{l}\right) \exp \left\{\frac{i m}{2 \hbar \varepsilon} \chi_{j} M_{j k} \chi_{k}\right\}
\end{aligned}
$$

Gaussian integration

- a multivariate Gaussian integral remains

$$
F(T)=\left(\frac{m}{2 \pi i \hbar \varepsilon}\right)^{N / 2} \int_{-\infty}^{\infty}\left(\prod_{l=1}^{N-1} d \chi_{l}\right) \exp \left\{\frac{i m}{2 \hbar \varepsilon} \chi_{j} M_{j k} \chi_{k}\right\}
$$

where M is a symmetric $(N-1) \times(N-1)$ matrix

$$
M=\left[\begin{array}{rrrrr}
2 & -1 & 0 & 0 & \cdots \\
-1 & 2 & -1 & 0 & \cdots \\
0 & -1 & 2 & -1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

- Gaussian integrals of symmetric matrix A easily evaluated
- result:

$$
\int_{-\infty}^{\infty}\left(\prod_{i=1}^{n} d \chi_{i}\right) \exp \left(-\chi_{j} A_{j k} \chi_{k}\right)=\left(\frac{\pi^{n}}{\operatorname{det} A}\right)^{1 / 2}
$$

$$
F(T)=\left(\frac{m}{2 \pi i \hbar \varepsilon \operatorname{det} M}\right)^{1 / 2}
$$

Determinant evaluation

- now need to compute $\operatorname{det}(M)$
- consider $n \times n$ matrix B_{n} of form

$$
B_{n}=\left(\begin{array}{rrrrr}
2 b & -b & 0 & 0 & \cdots \\
-b & 2 b & -b & 0 & \cdots \\
0 & -b & 2 b & -b & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)_{n, n}
$$

- notice that

$$
\begin{aligned}
\operatorname{det} B_{n} & =2 b \operatorname{det} B_{n-1}+b \operatorname{det}\left(\begin{array}{c|ccc}
-b & -b & 0 & \cdots \\
\hline 0 & & & \\
\vdots & B_{n-2} &
\end{array}\right) \\
& =2 b \operatorname{det} B_{n-1}-b^{2} \operatorname{det} B_{n-2}
\end{aligned}
$$

- define $I_{n}=\operatorname{det} B_{n}$ then have recursion relation

$$
I_{n+1}=2 b I_{n}-b^{2} I_{n-1}, \quad I_{-1}=0, \quad I_{0}=1, \quad n=0,1,2, \ldots
$$

Transition amplitude for free particle

- rewrite $I_{n+1}=2 b I_{n}-b^{2} I_{n-1}, \quad I_{-1}=0, \quad I_{0}=1$ as

$$
\binom{I_{n+1}}{I_{n}}=\left(\begin{array}{cc}
2 b & -b^{2} \\
1 & 0
\end{array}\right)\binom{I_{n}}{I_{n-1}}=\left(\begin{array}{cc}
2 b & -b^{2} \\
1 & 0
\end{array}\right)^{n}\binom{I_{1}}{I_{0}}
$$

- straightforward to show that

$$
\left(\begin{array}{cc}
2 b & -b^{2} \\
1 & 0
\end{array}\right)^{n}=\left(\begin{array}{cc}
(n+1) b^{n} & -n b^{n+1} \\
n b^{n-1} & -(n-1) b^{n}
\end{array}\right)
$$

- so that

$$
\binom{I_{n+1}}{I_{n}}=\left(\begin{array}{cc}
(n+1) b^{n} & -n b^{n+1} \\
n b^{n-1} & -(n-1) b^{n}
\end{array}\right)\binom{2 b}{1}
$$

- and thus, $I_{n}=\operatorname{det} B_{n}=(n+1) b^{n}$
- here, $b=1$ and $n=N-1$ so $\operatorname{det} M=N$ and using $N \varepsilon=t_{b}-t_{a}$ obtain

Final result:

$$
F\left(t_{b}, t_{a}\right)=\left(\frac{m}{2 \pi i \hbar\left(t_{b}-t_{a}\right)}\right)^{1 / 2}
$$

$$
\left\langle x_{b}\left(t_{b}\right) \mid x_{a}\left(t_{a}\right)\right\rangle=\left(\frac{m}{2 \pi i \hbar\left(t_{b}-t_{a}\right)}\right)^{1 / 2} \exp \left\{\frac{i m\left(x_{b}-x_{a}\right)^{2}}{2 \hbar\left(t_{b}-t_{a}\right)}\right\}
$$

Infinite square well

- one of the first systems usually studied when learning quantum mechanics is the infinite square well
- particle moving in one dimension under influence of potential

$$
V(x)= \begin{cases}0 & \text { for } 0<x<L \\ \infty & \text { for } x \leq 0 \text { and } x \geq L\end{cases}
$$

- path integral for transition amplitude given by

$$
Z(b, a)=\lim _{\varepsilon \rightarrow 0} \frac{1}{A} \int_{0}^{L} \frac{d x_{1}}{A} \cdots \int_{0}^{L} \frac{d x_{N-1}}{A} \exp \left\{\frac{i m}{2 \varepsilon \hbar} \sum_{j=0}^{N-1}\left(x_{j+1}-x_{j}\right)^{2}\right\}
$$

- paths limited to $0<x<L$
- gaussian integrals over bounded domains produce error functions \rightarrow direct evaluation difficult in closed form
- extend regions of integration to $-\infty<x<\infty$, but subtract off forbidden paths
- M. Goodman, Am. Jour. Phys. 49, 9 (1981)

Path cancellations

- black lines: all unbounded paths between end points
- blue lines: paths between end points that do not cross an $n L$ boundary
- no doubling back in time
- magenta circle indicates action preserving reflection

end point
$-x_{b}$
end point $2 L-x_{b}$

Path cancellations (continued)

- continuing

- and so on forever \rightarrow final result is

$$
\begin{aligned}
& \left\langle x_{b}, t_{b} \mid x_{a}, t_{a}\right\rangle_{\text {well }}=\left\langle x_{b}, t_{b} \mid x_{a}, t_{a}\right\rangle_{\text {free }} \\
& \quad-\left\langle-x_{b}, t_{b} \mid x_{a}, t_{a}\right\rangle_{\text {free }}-\left\langle 2 L-x_{b}, t_{b} \mid x_{a}, t_{a}\right\rangle_{\text {free }} \\
& +\left\langle-2 L+x_{b}, t_{b} \mid x_{a}, t_{a}\right\rangle_{\text {free }}+\left\langle 2 L+x_{b}, t_{b} \mid x_{a}, t_{a}\right\rangle_{\text {free }}+\cdots \\
& =\sum_{n=-\infty}^{\infty}\left\{\left\langle 2 n L+x_{b}, t_{b} \mid x_{a}, t_{a}\right\rangle_{\text {free }}-\left\langle 2 n L-x_{b}, t_{b} \mid x_{a}, t_{a}\right\rangle_{\text {free }}\right\}
\end{aligned}
$$

Transition amplitude for infinite square well

- substitute amplitude for free particle

$$
\begin{aligned}
& \left\langle x_{b}\left(t_{b}\right) \mid x_{a}\left(t_{a}\right)\right\rangle=\left(\frac{m}{2 \pi i \hbar\left(t_{b}-t_{a}\right)}\right)^{1 / 2} \\
& \times \sum_{n=-\infty}^{\infty}\left(\exp \left\{\frac{i m\left(2 n L+x_{b}-x_{a}\right)^{2}}{2 \hbar\left(t_{b}-t_{a}\right)}\right\}-\exp \left\{\frac{i m\left(2 n L-x_{b}-x_{a}\right)^{2}}{2 \hbar\left(t_{b}-t_{a}\right)}\right\}\right)
\end{aligned}
$$

- apply Poisson summation and integrate the gaussian

$$
\begin{aligned}
& \sum_{n=-\infty}^{\infty} f(n)=\sum_{j=-\infty}^{\infty} \int_{-\infty}^{\infty} d s f(s) e^{2 \pi i j s} \\
& \int_{-\infty}^{\infty} d s \exp \left(-i \alpha s^{2} \pm i \beta s\right)=\sqrt{\frac{\pi}{i \alpha}} \exp \left(\frac{i \beta^{2}}{4 \alpha}\right)
\end{aligned}
$$

- spectral representation of transition amplitude

$$
\begin{aligned}
& \left\langle x_{b}\left(t_{b}\right) \mid x_{a}\left(t_{a}\right)\right\rangle=\sum_{n=1}^{\infty} \varphi_{n}\left(x_{b}\right) \varphi_{n}^{*}\left(x_{a}\right) e^{-i E_{n}\left(t_{b}-t_{a}\right) / \hbar} \\
& E_{n}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m L^{2}} \quad \varphi_{n}(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi x}{L}\right)
\end{aligned}
$$

Free particle in 1D periodic box

- consider particle moving in one-dimension with periodic boundary conditions at $x=0$ and $x=L$
- enforcing boundary conditions on paths difficult
- use trick similar to that used in infinite square well
- express set of allowed paths in terms of equivalent set of unrestricted paths

end point $x_{b}+L$

end point $x_{b}+2 L$
- result:

$$
\left\langle x_{b}, t_{b} \mid x_{a}, t_{a}\right\rangle_{\text {periodic }}=\sum_{n=-\infty}^{\infty}\left\langle x_{b}+n L, t_{b} \mid x_{a}, t_{a}\right\rangle_{\text {free }}
$$

Transition amplitude for periodic boundary

- substitute amplitude for free particle

$$
\left\langle x_{b}\left(t_{b}\right) \mid x_{a}\left(t_{a}\right)\right\rangle=\left(\frac{m}{2 \pi i \hbar\left(t_{b}-t_{a}\right)}\right)^{1 / 2} \sum_{n=-\infty}^{\infty} \exp \left\{\frac{i m\left(n L+x_{b}-x_{a}\right)^{2}}{2 \hbar\left(t_{b}-t_{a}\right)}\right\}
$$

- apply Poisson summation and integrate the gaussian

$$
\begin{aligned}
& \sum_{n=-\infty}^{\infty} f(n)=\sum_{j=-\infty}^{\infty} \int_{-\infty}^{\infty} d s f(s) e^{2 \pi i j s} \\
& \int_{-\infty}^{\infty} d s \exp \left(-i \alpha s^{2} \pm i \beta s\right)=\sqrt{\frac{\pi}{i \alpha}} \exp \left(\frac{i \beta^{2}}{4 \alpha}\right)
\end{aligned}
$$

- spectral representation of transition amplitude

$$
\begin{aligned}
& \left\langle x_{b}\left(t_{b}\right) \mid x_{a}\left(t_{a}\right)\right\rangle=\sum_{n=-\infty}^{\infty} \varphi_{n}\left(x_{b}\right) \varphi_{n}^{*}\left(x_{a}\right) e^{-i E_{n}\left(t_{b}-t_{a}\right) / \hbar} \\
& E_{n}=\frac{p_{n}^{2}}{2 m} \quad p_{n}=\frac{2 \pi n \hbar}{L} \quad \varphi_{n}(x)=\frac{1}{\sqrt{L}} e^{i p_{n} x / \hbar}
\end{aligned}
$$

- quantization of momenta

The simple harmonic oscillator

- kinetic and potential energy of a simple harmonic oscillator of mass m and frequency ω

$$
K=\frac{1}{2} m \dot{x}^{2} \quad U=\frac{1}{2} m \omega^{2} x^{2}
$$

- action is given by

$$
S[x(t)]=\int_{t_{a}}^{t_{b}} d t\left(\frac{1}{2} m \dot{x}^{2}-\frac{1}{2} m \omega^{2} x^{2}\right)
$$

- classical equations of motion

$$
\delta S=0 \quad \Rightarrow \quad \ddot{x}_{\mathrm{cl}}+\omega^{2} x_{\mathrm{cl}}=0
$$

- value of action for the classical path $\left(T=t_{b}-t_{a}\right)$

$$
S_{\mathrm{cl}}=\frac{m \omega}{2 \sin (\omega T)}\left[\left(x_{a}^{2}+x_{b}^{2}\right) \cos (\omega T)-2 x_{a} x_{b}\right]
$$

- to calculate, write path as deviation from classical path

$$
x(t)=x_{\mathrm{cl}}(t)+\chi(t) \quad \chi\left(t_{a}\right)=\chi\left(t_{b}\right)=0
$$

Path integral of simple harmonic oscillator

- amplitude can then be written as

$$
\begin{aligned}
Z(b, a) & =F(T) \exp \left(i S_{\mathrm{cl}} / \hbar\right) \\
F(T) & =\int_{0}^{0} \mathcal{D} \chi \exp \left\{\frac{i m}{2 \hbar} \int_{0}^{T} d t\left(\dot{\chi}^{2}-\omega^{2} \chi^{2}\right)\right\}
\end{aligned}
$$

- partition time into discrete steps of length ε and use midpoint prescription

$$
\begin{aligned}
\int_{0}^{0} \mathcal{D} \chi & =\frac{1}{A} \int_{-\infty}^{\infty}\left(\prod_{l=1}^{N-1} \frac{d \chi_{l}}{A}\right) \quad A=\left(\frac{2 \pi i \hbar \varepsilon}{m}\right)^{1 / 2} \\
\int_{0}^{T} d t\left(\dot{\chi}^{2}-\omega^{2} \chi^{2}\right) & =\frac{1}{\varepsilon} \sum_{j=0}^{N-1}\left[\left(\chi_{j+1}-\chi_{j}\right)^{2}-\frac{\varepsilon^{2} \omega^{2}}{4}\left(\chi_{j+1}+\chi_{j}\right)^{2}\right] \\
F(T) & =\left(\frac{m}{2 \pi i \hbar \varepsilon}\right)^{N / 2} \int_{-\infty}^{\infty}\left(\prod_{l=1}^{N-1} d \chi_{l}\right) \exp \left\{\frac{i m}{2 \hbar \varepsilon} \chi_{j} M_{j k} \chi_{k}\right\}
\end{aligned}
$$

Gaussian integration

- a multivariate Gaussian integral remains

$$
F(T)=\left(\frac{m}{2 \pi i \hbar \varepsilon}\right)^{N / 2} \int_{-\infty}^{\infty}\left(\prod_{l=1}^{N-1} d \chi_{l}\right) \exp \left\{\frac{i m}{2 \hbar \varepsilon} \chi_{j} M_{j k} \chi_{k}\right\}
$$

where M is a symmetric $(N-1) \times(N-1)$ matrix

$$
M=\left[\begin{array}{rrrrl}
2 & -1 & 0 & 0 & \cdots \\
-1 & 2 & -1 & 0 & \cdots \\
0 & -1 & 2 & -1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]-\frac{\varepsilon^{2} \omega^{2}}{4}\left[\begin{array}{ccccc}
2 & 1 & 0 & 0 & \cdots \\
1 & 2 & 1 & 0 & \cdots \\
0 & 1 & 2 & 1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

- Gaussian integrals are easily evaluated

$$
F(T)=\left(\frac{m}{2 \pi i \hbar \varepsilon \operatorname{det} M}\right)^{1 / 2}
$$

Evaluating the determinant

- now must compute $\operatorname{det} M$
- consider $\operatorname{det}\left(B_{n}\right)$ where $n \times n$ matrix B_{n} has form

$$
B_{n}=\left(\begin{array}{ccccc}
a & b & 0 & 0 & \cdots \\
b & a & b & 0 & \cdots \\
0 & b & a & b & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)_{n, n}
$$

- matches M for $n=N-1, a=2\left(1-\epsilon^{2} \omega^{2} / 4\right), b=-\left(1+\epsilon^{2} \omega^{2} / 4\right)$
- notice that

$$
\begin{aligned}
& \operatorname{det} B_{n}=a \operatorname{det} B_{n-1}-b \operatorname{det}\left(\begin{array}{c|ccc}
b & b & 0 & \cdots \\
\hline 0 & & B_{n-2} \\
\vdots & & \\
& =a \operatorname{det} B_{n-1}-b^{2} \operatorname{det} B_{n-2}
\end{array}\right) \\
& \hline
\end{aligned}
$$

- define $I_{n}=\operatorname{det} B_{n}$ to obtain recursion relation

$$
I_{n+1}=a I_{n}-b^{2} I_{n-1}, \quad I_{-1}=0, \quad I_{0}=1, \quad n=0,1,2, \ldots
$$

Evaluating the determinant (continued)

- rewrite recursion relation as

$$
\binom{I_{n+1}}{I_{n}}=\left(\begin{array}{cc}
a & -b^{2} \\
1 & 0
\end{array}\right)\binom{I_{n}}{I_{n-1}}=\left(\begin{array}{cc}
a & -b^{2} \\
1 & 0
\end{array}\right)^{n}\binom{I_{1}}{I_{0}}
$$

- diagonalize

$$
\begin{aligned}
& \left(\begin{array}{cc}
a & -b^{2} \\
1 & 0
\end{array}\right)=\mathcal{S}\left(\begin{array}{cc}
\lambda_{+} & 0 \\
0 & \lambda_{-}
\end{array}\right) \mathcal{S}^{-1} \\
& \lambda_{ \pm}=\frac{1}{2}\left(a \pm \sqrt{a^{2}-4 b^{2}}\right), \\
& \mathcal{S}=\left(\begin{array}{cc}
\lambda_{+} & \lambda_{-} \\
1 & 1
\end{array}\right) \quad \mathcal{S}^{-1}=\frac{1}{\lambda_{+}-\lambda_{-}}\left(\begin{array}{cc}
1 & -\lambda_{-} \\
-1 & \lambda_{+}
\end{array}\right)
\end{aligned}
$$

- then we have
- thus

$$
\binom{I_{n+1}}{I_{n}}=\mathcal{S}\left(\begin{array}{cc}
\lambda_{+}^{n} & 0 \\
0 & \lambda_{-}^{n}
\end{array}\right) \mathcal{S}^{-1}\binom{a}{1}
$$

$$
I_{n}=\operatorname{det} B_{n}=\frac{\lambda_{+}^{n+1}-\lambda_{-}^{n+1}}{\lambda_{+}-\lambda_{-}} \quad\left(\lambda_{+} \neq \lambda_{-}\right)
$$

Amplitude for simple harmonic oscillator

- using $\lambda_{ \pm}=1 \pm i \omega \epsilon+O\left(\epsilon^{2}\right)$ yields

$$
\begin{aligned}
\lim _{\substack{\varepsilon \rightarrow 0 \\
N \rightarrow \infty}} \varepsilon \operatorname{det} M & =\lim _{\substack{\varepsilon \rightarrow 0 \\
N \rightarrow \infty}} \varepsilon \frac{1}{2 i \omega \varepsilon}\left((1+i \omega \varepsilon)^{N}-(1-i \omega \varepsilon)^{N}\right) \\
& =\lim _{\substack{\varepsilon \rightarrow 0 \\
N \rightarrow \infty}} \frac{1}{2 i \omega}\left(\left(1+\frac{i \omega T}{N}\right)^{N}-\left(1-\frac{i \omega T}{N}\right)^{N}\right) \\
& =\frac{1}{2 i \omega}\left(e^{i \omega T}-e^{-i \omega T}\right)=\frac{\sin \omega T}{\omega} .
\end{aligned}
$$

- final result for the path integral

$$
\left\langle x_{b}\left(t_{b}\right) \mid x_{a}\left(t_{a}\right)\right\rangle_{\text {sho }}=\left(\frac{m \omega}{2 \pi i \hbar \sin \left(\omega\left(t_{b}-t_{a}\right)\right)}\right)^{1 / 2} \exp \left\{i S_{\mathrm{cl}} / \hbar\right\}
$$

Evolution of gaussian wave packet

- for initial wave packet at time $t_{a}=0$ with probability dist.

$$
\left|\phi\left(x_{a}, t_{a}\right)\right|^{2}=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{\left(x_{a}-\bar{x}\right)^{2}}{2 \sigma^{2}}\right)
$$

- probability amplitude at later time

$$
\begin{aligned}
\phi\left(x_{b}, t_{b}\right) & =\int_{-\infty}^{\infty} d x_{a} Z(b, a) \phi\left(x_{a}, 0\right) \\
& =\left(\frac{-i m \omega(2 \pi)^{-3 / 2}}{\hbar \sigma \sin \left(\omega t_{b}\right)}\right)^{1 / 2} \int_{-\infty}^{\infty} d x_{a} e^{i S_{\mathrm{c}} / \hbar} e^{-\left(x_{a}-\bar{x}\right)^{2} /\left(4 \sigma^{2}\right)}
\end{aligned}
$$

- final result for probability distribution: Gaussian with width s

$$
\left|\phi\left(x_{b}, t_{b}\right)\right|^{2}=\frac{1}{s \sqrt{2 \pi}} \exp \left(-\frac{\left(x_{b}-\bar{x} \cos \left(\omega t_{b}\right)\right)^{2}}{2 s^{2}}\right)
$$

- new width given by

$$
s=\sigma\left\{\cos ^{2}\left(\omega t_{b}\right)+\frac{\hbar^{2}}{4 m^{2} \omega^{2} \sigma^{4}} \sin ^{2}\left(\omega t_{b}\right)\right\}^{1 / 2}
$$

Visualization

- time evolution of a Gaussian wave packet for a simple harmonic oscillator

$$
\begin{aligned}
& \text { mass } m=1 \mathrm{~g} / \mathrm{mol}=1.66 \times 10^{-27} \mathrm{~kg} \\
& \text { frequency } \omega=3 \times 10^{14} \text { radians } / \mathrm{sec} \\
& \text { initial wave packet: } \\
& \quad \text { center at } 0.5 \mathrm{au} \\
& \text { RMS spread } 0.14 \text { au } \\
& 1 \text { au (atomic unit) }=0.529 \text { angstrom } \\
& \text { probability distribution shown } \\
& \text { (in inverse a.u.) }
\end{aligned}
$$

- completely calculated using path integrals \rightarrow did not use Schrodinger equation

Other probability amplitudes

- so path integrals give us simple transition amplitudes

$$
\left\langle x_{b}\left(t_{b}\right) \mid x_{a}\left(t_{a}\right)\right\rangle=\int_{a}^{b} \mathcal{D} x \exp \left\{\frac{i}{\hbar} \int_{t_{a}}^{t_{b}} d t L(x, \dot{x})\right\}
$$

- but this important result generalizes to more complicated amplitudes

$$
\begin{aligned}
& \left\langle x_{b}\left(t_{b}\right)\right| x\left(t_{2}\right) x\left(t_{1}\right)\left|x_{a}\left(t_{a}\right)\right\rangle \\
= & \int_{a}^{b} \mathcal{D} x x\left(t_{2}\right) x\left(t_{1}\right) \exp \left\{\frac{i}{\hbar} \int_{t_{a}}^{t_{b}} d t L(x, \dot{x})\right\}
\end{aligned}
$$

$$
\text { for } t_{a}<t_{1}<t_{2}<t_{b}
$$

Path integrals in imaginary time

- in imaginary time formalism, paths contribute to sum over histories with real exponential weights (not phases)

$$
\begin{aligned}
& \left\langle x_{b}\left(\tau_{b}\right)\right| x\left(\tau_{2}\right) x\left(\tau_{1}\right)\left|x_{a}\left(\tau_{a}\right)\right\rangle \\
= & \int_{a}^{b} \mathcal{D} x x\left(\tau_{2}\right) x\left(\tau_{1}\right) \exp \left\{-\frac{1}{\hbar} \int_{\tau_{a}}^{\tau_{b}} d \tau L(x, \dot{x})\right\}
\end{aligned}
$$

- classical path gets highest weighting
- note that weights are all real and positive since action is real
- this fact will be crucial for the Monte Carlo method

Vacuum expectation values from path integrals

- obtain correlation functions (vacuum expectation values) from ratios of path integrals

$$
\begin{aligned}
& \langle 0| x\left(t_{2}\right) x\left(t_{1}\right)|0\rangle=\lim _{T \rightarrow \infty} \frac{\left\langle x_{b}(T)\right| x\left(t_{2}\right) x\left(t_{1}\right)\left|x_{a}(-T)\right\rangle}{\left\langle x_{b}(T) \mid x_{a}(-T)\right\rangle} \\
= & \frac{\int_{a}^{b} \mathcal{D} x x\left(t_{2}\right) x\left(t_{1}\right) \exp \left\{-\frac{1}{\hbar} \int_{-\infty}^{\infty} d \tau L(x, \dot{x})\right\}}{\int_{a}^{b} \mathcal{D} x \exp \left\{-\frac{1}{\hbar} \int_{-\infty}^{\infty} d \tau L(x, \dot{x})\right\}}
\end{aligned}
$$

- generalizes to more complicated correlation functions
- any correlation function can be computed using path integrals

Examples for the simple harmonic oscillator

- evaluating path integrals as before, the following correlation functions can be obtained ($\tau_{1} \leq \tau_{2} \leq \tau_{3} \leq \tau_{4}$)

$$
\begin{aligned}
\langle 0| x\left(\tau_{1}\right)|0\rangle= & 0 \\
\langle 0| x\left(\tau_{2}\right) x\left(\tau_{1}\right)|0\rangle= & \frac{\hbar}{2 m \omega} e^{-\omega\left(\tau_{2}-\tau_{1}\right)} \\
\langle 0| x\left(\tau_{4}\right) x\left(\tau_{3}\right) x\left(\tau_{2}\right) x\left(\tau_{1}\right)|0\rangle= & \left(\frac{\hbar}{2 m \omega}\right)^{2} e^{-\omega\left(\tau_{4}-\tau_{1}\right)} \\
& \times\left[e^{-\omega\left(\tau_{2}-\tau_{3}\right)}+2 e^{-\omega\left(\tau_{3}-\tau_{2}\right)}\right]
\end{aligned}
$$

- comparison with spectral representation tells us

$$
\begin{gathered}
\langle 0| x(\tau) x(0)|0\rangle=\frac{\hbar}{2 m \omega} e^{-\omega \tau} \\
\left.\Rightarrow E_{1}-E_{0}=\hbar \omega \quad|\langle 1| x(0)| 0\right\rangle\left.\right|^{2}=\frac{\hbar}{2 m \omega}
\end{gathered}
$$

Another example in SHO

- excite vacuum with $x(\tau)^{2}$ operator

$$
\langle 0| x^{2}(\tau) x^{2}(0)|0\rangle=\left(\frac{\hbar}{2 m \omega}\right)^{2}\left(1+2 e^{-2 \omega \tau}\right)
$$

- compare with spectral representation at large time separations

$$
\begin{aligned}
\lim _{\tau \rightarrow \infty}\langle 0| x^{2}(\tau) x^{2}(0)|0\rangle & \left.=\left|\langle 0| x^{2}(0)\right| 0\right\rangle\left.\right|^{2} \\
& \left.+\left|\langle 2| x^{2}(0)\right| 0\right\rangle\left.\right|^{2} e^{-\left(E_{2}-E_{0}\right) t / \hbar}+\ldots \\
& =\left(\frac{\hbar}{2 m \omega}\right)^{2}\left(1+2 e^{-2 \omega \tau}\right)
\end{aligned}
$$

- interpretation:

$$
E_{2}-E_{0}=2 \hbar \omega
$$

$$
\left.\left.\left|\langle 0| x^{2}(0)\right| 0\right\rangle\left.\right|^{2}=\left(\frac{\hbar}{2 m \omega}\right)^{2} \quad\left|\langle 2| x^{2}(0)\right| 0\right\rangle\left.\right|^{2}=2\left(\frac{\hbar}{2 m \omega}\right)^{2}
$$

One last example in SHO

- to determine expectation value of $x(0)^{2}$ in first-excited state

$$
\langle 0| x(\tau) x^{2}\left(\frac{1}{2} \tau\right) x(0)|0\rangle=3\left(\frac{\hbar}{2 m \omega}\right)^{2} e^{-\omega \tau}
$$

- compare with spectral interpretation at large times

$$
\begin{aligned}
& \lim _{\tau \rightarrow \infty}\langle 0| x(\tau) x^{2}\left(\frac{1}{2} \tau\right) x(0)|0\rangle \\
& \quad=|\langle 0| x(0)| 1\rangle\left.\right|^{2}\langle 1| x^{2}(0)|1\rangle e^{-\left(E_{1}-E_{0}\right) \tau / \hbar}+\cdots
\end{aligned}
$$

- since $\langle 0| x(0)|0\rangle=\langle 0| x(\tau)|0\rangle=0$
- by inspection and using previously derived results

$$
\langle 1| x^{2}(0)|1\rangle=\frac{3 \hbar}{2 m \omega}
$$

Pause for reflection

- observables in quantum mechanics can be extracted from the correlation functions (vacuum expectation values)
- imaginary time formalism is a great trick for assisting in such extractions
- correlation functions can be computed via path integrals

$$
=\frac{\int_{a}^{b} \mathcal{D} x x\left(t_{2}\right) x\left(t_{1}\right) \exp \left\{-\frac{1}{\hbar} \int_{-\infty}^{\infty} d \tau L(x, \dot{x})\right\}}{\int_{a}^{b} \mathcal{D} x \exp \left\{-\frac{1}{\hbar} \int_{-\infty}^{\infty} d \tau L(x, \dot{x})\right\}}
$$

Part II

Monte Carlo integration and Markov chains

The die is cast?

- in rare situations, the path integrals can be computed exactly
- simple harmonic oscillator, free particle
- sometimes the action can be written $S=S_{0}+g S_{I}$
- S_{0} describes the free motion of the particles
- path integrals using S_{0} are Gaussian and can be exactly computed
- S_{I} describes the interaction of the particles, but the coupling g is small
- compute in perturbation theory as expansion in g
- however, if interactions are not weak
- usually must resort to Monte Carlo methods - for example, quantum chromodynamics (QCD)

Simple Monte Carlo integration

- trapezoidal/Simpson's rule not feasible for integrals of very large dimension: too many function evaluations
- must start gambling!
- basic theorem of Monte Carlo integration

$$
\begin{aligned}
& \int_{V} f(\vec{x}) d^{D} x \approx V\langle f\rangle \pm V \sqrt{\frac{\left\langle f^{2}\right\rangle-\langle f\rangle^{2}}{N}} \\
& \langle f\rangle \equiv \frac{1}{N} \sum_{i=1}^{N} f\left(\vec{x}_{i}\right) \quad\left\langle f^{2}\right\rangle \equiv \frac{1}{N} \sum_{i=1}^{N} f\left(\vec{x}_{i}\right)^{2}
\end{aligned}
$$

- N points $\vec{x}_{1}, \ldots, \vec{x}_{N}$ chosen independently and randomly with uniform probability dist. throughout D-dimensional volume V
- justified by the law of large numbers/central limit theorem
- in the limit $N \rightarrow \infty$, MC estimate tends to normal distribution, uncertainty tends to standard deviation

Quick review of probabilities

- consider an experiment whose outcome depends on chance
- represent an outcome by X called a random variable
- sample space Ω of experiment is set of all possible outcomes
- X is discrete if Ω is finite or countably infinite, continuous otherwise
- probability distribution for discrete X is real-valued function p_{X} on domain Ω satisfying $p_{X}(x) \geq 0$ for all $x \in \Omega$ and $\sum_{x \in \Omega} p_{X}(x)=1$
- for any subset E of Ω, probability of E is $P(E)=\sum_{x \in E} p_{X}(x)$
- a sequence of random variables $X_{1}, X_{2}, \ldots, X_{N}$ that are mutually independent and have same distribution is called an independent trials process

Probability (continued)

- for continuous real-valued X, real-valued function p_{X} is a probability density and probability of outcome between real values a and b is $P(a \leq X \leq b)=\int_{a}^{b} p_{X}(s) d s$
- cumulative distribution is $F_{X}(x)=P(X \leq x)=\int_{-\infty}^{x} p_{X}(s) d s$
- common density: normal $p_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-\mu)^{2} /\left(2 \sigma^{2}\right)}$

Review: expected values

- expected value of X is

$$
E(X)=\sum_{x \in \Omega} x p_{X}(x) \quad\left(=\int_{-\infty}^{\infty} s p_{X}(s) d s\right)
$$

- properties: $E(X+Y)=E(X)+E(Y)$ and $E(c X)=c E(X)$
- for independent random variables X, Y have $E(X Y)=E(X) E(Y)$
- can show $E(X)$ is average of outcomes if repeated many times
- for continuous real-valued function f, can show that

$$
E(f(X))=\sum_{x \in \Omega} f(x) p_{X}(x) \quad\left(=\int_{-\infty}^{\infty} f(s) p_{X}(s) d s\right)
$$

- Proof: group together terms in $\sum_{x} f(x) p_{x}(x)$ having same $f(x)$ value - denote set of different $f(x)$ values by \mathcal{F}, and subset of Ω leading to same value of $f(x)$ by $\Omega_{f(x)}$, then

$$
\begin{aligned}
& \sum_{x \in \Omega} f(x) p_{X}(x)=\sum_{y \in \mathcal{F}} \sum_{x \in \Omega_{f(x)}} f(x) p_{X}(x)=\sum_{y \in \mathcal{F}} y\left(\sum_{x \in \Omega_{f(x)}} p_{X}(x)\right) \\
& =\sum_{y \in \mathcal{F}} y p(y)=E(f(x))
\end{aligned}
$$

Review: variances

- variance of X is $V(X)=E\left((X-E(X))^{2}\right)$
- standard deviation of X is $\sigma(X)=\sqrt{V(X)}$
- properties: $V(c X)=c^{2} V(X)$ and $V(X+c)=V(X)$
- for independent random variables X, Y have $V(X+Y)=V(X)+V(Y) \quad$ (exercise: prove this)
- let X_{1}, \ldots, X_{N} be an independent trials process with $E\left(X_{j}\right)=\mu$ and $V\left(X_{j}\right)=\sigma^{2}$, and define $A_{N}=\left(X_{1}+X_{2}+\cdots+X_{N}\right) / N$, then can show

$$
E\left(A_{N}\right)=\mu, \quad V\left(A_{N}\right)=\sigma^{2} / N
$$

Chebyshev inequality

- Chebyshev inequality: Let X be a discrete random variable with $E(X)=\mu$ and let $\epsilon>0$ be any positive real number, then

$$
P(|X-\mu| \geq \epsilon) \leq \frac{V(X)}{\epsilon^{2}}
$$

- Proof:
- Let $p_{X}(x)$ denote distribution of X, then probability that X differs from μ by at least ϵ is $P(|X-\mu| \geq \epsilon)=\sum_{|x-\mu| \geq \epsilon} p_{X}(x)$
- considering positive summands and the ranges of summation,

$$
V(X)=\sum_{x}(x-\mu)^{2} p_{X}(x) \geq \sum_{|x-\mu| \geq \epsilon}(x-\mu)^{2} p_{X}(x) \geq \sum_{|x-\mu| \geq \epsilon} \epsilon^{2} p_{X}(x)
$$

- but rightmost expression is

$$
\epsilon^{2} \sum_{|x-\mu| \geq \epsilon} p_{x}(x)=\epsilon^{2} P(|X-\mu| \geq \epsilon)
$$

- thus, have shown $V(x) \geq \epsilon^{2} P(|X-\mu| \geq \epsilon)$

Weak law of large numbers

- Weak law of large numbers: Let $X_{1}, X_{2}, \ldots, X_{N}$ be an independent trials process with $E\left(X_{j}\right)=\mu$ and $V\left(X_{j}\right)=\sigma^{2}$, where μ, σ are finite, and let $A_{N}=\left(X_{1}+X_{2}+\cdots+X_{N}\right) / N$. Then for any $\epsilon>0$,

$$
\lim _{N \rightarrow \infty} P\left(\left|A_{N}-\mu\right| \geq \epsilon\right)=0, \quad \lim _{N \rightarrow \infty} P\left(\left|A_{N}-\mu\right|<\epsilon\right)=1
$$

- Proof:
- stated two slides ago that $E\left(A_{N}\right)=\mu$ and $V\left(A_{N}\right)=\sigma^{2} / N$
- from Chebyshev inequality

$$
P\left(\left|A_{N}-\mu\right| \geq \epsilon\right) \leq \frac{V\left(A_{N}\right)}{\epsilon^{2}}=\frac{\sigma^{2}}{N \epsilon^{2}} \xrightarrow{N \rightarrow \infty} 0
$$

- also known as the law of averages
- also applies to continuous random variables

Strong law of large numbers

- Strong law of large numbers: Let $X_{1}, X_{2}, \ldots, X_{N}$ be an independent trials process with $E\left(X_{j}\right)=\mu$ and $E\left(X_{j}^{4}\right)=K$, where μ, K are finite, then $P\left(\lim _{N \rightarrow \infty}\left(X_{1}+X_{2}+\cdots+X_{N}\right) / N=\mu\right)=1$
- the finiteness of $E\left(X_{j}^{4}\right)$ is not needed, but simplifies proof
- Proof:
- define $Y_{j}=X_{j}-\mu$ so $E\left(Y_{j}\right)=0$ and set $E\left(Y_{j}^{4}\right)=C<\infty$
- define $A_{N}=\left(Y_{1}+Y_{2}+\cdots+Y_{N}\right) / N$
- given $E\left(Y_{j}\right)=0$ and all Y_{j} are independent,

$$
N^{4} E\left(A_{N}^{4}\right)=N E\left(Y_{j}^{4}\right)+6\binom{n}{2} E\left(Y_{i}^{2} Y_{j}^{2}\right)=N C+3 N(N-1) E\left(Y_{i}^{2}\right)^{2}
$$

- since $0 \leq V\left(Y_{j}^{2}\right)=E\left(Y_{j}^{4}\right)-E\left(Y_{j}^{2}\right)^{2}$ then $E\left(Y_{j}^{2}\right)^{2} \leq E\left(Y_{j}^{4}\right)=C$
- so $E\left(A_{N}^{4}\right) \leq C / N^{3}+3 C / N^{2}$ which means

$$
E\left(\sum_{N=1}^{\infty} A_{N}^{4}\right)=\sum_{N=1}^{\infty} E\left(A_{N}^{4}\right) \leq \sum_{N=1}^{\infty}\left(\frac{C}{N^{3}}+\frac{3 C}{N^{2}}\right)<\infty
$$

- this implies $\sum_{N=1}^{\infty} A_{N}^{4}<\infty$ with unit probability, and convergence of the series implies $\lim _{N \rightarrow \infty} A_{N}^{4}=0 \quad \Rightarrow \quad \lim _{N \rightarrow \infty} A_{N}=0$
- proves $E(X)$ is average of outcomes for many repetitions

Application to one-dimensional integral

- if X is a random variable with probability density $p_{X}(x)$ and f is a well-behaved real-valued function, then $Y=f(X)$ is a random variable
- consider uniform density $p_{X}(x)= \begin{cases}1 /(b-a) & a \leq x \leq b \\ 0 & \text { otherwise }\end{cases}$
- use this probability density to obtain N outcomes $X_{1}, X_{2}, \ldots, X_{n}$
- apply function f to obtain random variables $Y_{j}=f\left(X_{j}\right)$
- law of large numbers tell us that

$$
\frac{1}{N} \sum_{j=1}^{N} Y_{j} \xrightarrow{N \rightarrow \infty} E(Y)=E(f(X))=\frac{1}{(b-a)} \int_{a}^{b} f(s) d s
$$

- define $\langle f\rangle \equiv \frac{1}{N} \sum_{j=1}^{N} f\left(X_{j}\right)$ then $(b-a) \lim _{N \rightarrow \infty}\langle f\rangle=\int_{a}^{b} f(s) d s$
- straightforward generalization to multiple dimensions
- how good is estimate for finite N ?

Central limit theorem

- Central limit theorem: Let $X_{1}, X_{2}, \ldots, X_{N}$ be independent random variables with common distribution having $E\left(X_{j}\right)=\mu$ and $V\left(X_{j}\right)=\sigma^{2}$, where μ, σ are finite, and let $A_{N}=\left(X_{1}+X_{2}+\cdots+X_{N}\right) / N$. Then for $a<b$,

$$
\lim _{N \rightarrow \infty} P\left(\frac{a \sigma}{\sqrt{N}}<\left(A_{N}-\mu\right)<\frac{b \sigma}{\sqrt{N}}\right)=\frac{1}{\sqrt{2 \pi}} \int_{a}^{b} e^{-x^{2} / 2} d x
$$

- alternatively: the distribution of $\left(X_{1}+\cdots+X_{N}-N \mu\right) /(\sigma \sqrt{N})$ tends to the standard normal (zero mean, unit variance)
- for proof, consult the literature
- for large N, the central limit theorem tells us that the error one makes in approximating $E(X)$ by A_{N} is $\sigma / \sqrt{N}=\sqrt{V(X) / N}$
- for $Y=f(X)$ as before, the error in approximating $E(f(X))$ by $\sum_{j} f\left(X_{j}\right) / N$ is $\sqrt{V(f(X)) / N}$
- use Monte Carlo method to estimate $V(f(X))$

$$
V(Y)=E\left((Y-E(Y))^{2}\right) \approx\left\langle(f-\langle f\rangle)^{2}\right\rangle=\left\langle f^{2}\right\rangle-\langle f\rangle^{2}
$$

Application with non-uniform sampling

- if X is a random variable with probability density $p_{X}(x)$ and f is a well-behaved real-valued function, then $Y=f(X)$ is a random variable
- if $p_{X}(x)$ can be easily sampled, then use $p_{X}(x)$ to obtain N outcomes $X_{1}, X_{2}, \ldots, X_{n}$
- apply function f to obtain random variables $Y_{j}=f\left(X_{j}\right)$
- law of large numbers tell us that

$$
\frac{1}{N} \sum_{j=1}^{N} Y_{j} \xrightarrow{N \rightarrow \infty} E(Y)=E(f(X))=\int_{a}^{b} p_{X}(s) f(s) d s
$$

Monte Carlo integration

- recap of Monte Carlo integration (uniform sampling):

$$
\begin{aligned}
& \int_{V} f(\vec{x}) d^{D} x \approx V\langle f\rangle \pm V \sqrt{\frac{\left\langle f^{2}\right\rangle-\langle f\rangle^{2}}{N}} \\
& \langle f\rangle \equiv \frac{1}{N} \sum_{i=1}^{N} f\left(\vec{x}_{i}\right) \quad\left\langle f^{2}\right\rangle \equiv \frac{1}{N} \sum_{i=1}^{N} f\left(\vec{x}_{i}\right)^{2}
\end{aligned}
$$

- N points $\vec{x}_{1}, \ldots, \vec{x}_{N}$ chosen independently and randomly with uniform probability dist. throughout D-dimensional volume V
- law of large numbers justifies correctness of estimate
- central limit theorem gives estimate of statistical uncertainty
- in the limit $N \rightarrow \infty$, MC estimate tends to normal distribution, uncertainty tends to standard deviation

Monte Carlo integration

- recap of Monte Carlo integration (non-uniform sampling):

$$
\begin{aligned}
& \int_{V} p(\vec{x}) f(\vec{x}) d^{D} x \approx\langle f\rangle \pm \sqrt{\frac{\left\langle f^{2}\right\rangle-\langle f\rangle^{2}}{N}} \\
& \langle f\rangle \equiv \frac{1}{N} \sum_{i=1}^{N} f\left(\vec{x}_{i}\right) \quad\left\langle f^{2}\right\rangle \equiv \frac{1}{N} \sum_{i=1}^{N} f\left(\vec{x}_{i}\right)^{2}
\end{aligned}
$$

- N points $\vec{x}_{1}, \ldots, \vec{x}_{N}$ chosen independently and randomly with probability dist. $p(\vec{x})$ throughout D-dimensional volume V
- normalization condition $\int_{V} p(\vec{x}) d^{D} x=1$
- law of large numbers justifies correctness of estimate
- central limit theorem gives estimate of statistical uncertainty

Pseudorandom number generators

- MC integration requires random numbers
- but computers are deterministic!!
- clever algorithms can produce sequences of numbers which appear to be random (pseudorandom)
- uniform deviates between 0 and 1

- example: the Mersenne twister
- http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
- currently holds the record for longest period $2^{19937}-1$
- very fast, passes all standard tests (Diehard) for good RNG
- devising good RNGs is a science in itself
- most utilize modulus function, bit shifting, shuffling

One-dimensional example

- simple example

$$
\int_{0}^{1} x(1-x) d x=\frac{1}{6}=0.166666 \cdots
$$

- plot of integrand and some Monte Carlo estimates

- not efficient for 1-dim integrals!

Importance sampling

- Monte Carlo method works best for flat functions, problems when integrand sharply peaked
- importance sampling can greatly improve efficiency of Monte Carlo integration \rightarrow variance reduction
- recall simple integration

$$
\int^{b} f(x) d x \approx \frac{(b-a)}{N} \sum^{N} f\left(x_{j}\right) \quad \begin{aligned}
& x_{j} \text { chosen with uniform probability } \\
& \text { between }
\end{aligned}
$$

$$
\begin{aligned}
& \qquad \int_{a}^{b} f(x) d x=\int_{a}^{b} h(x) g(x) d x \approx \frac{(b-a)}{N} \sum_{j=1}^{N} h\left(x_{j}\right) \\
& \text { where } x_{j} \text { now chosen with probability density } g(x)
\end{aligned}
$$

- must be able to sample with probability density $g(x)$
- how to choose $g(\vec{x})$ for complicated multi-dimensional integral?

Sampling non-uniform distributions

- random number generators sample the uniform distribution
- to sample other densities, apply transformation method
- random variable U with uniform density $p_{U}(u)=1$ for $0 \leq x \leq 1$
- transform to new random variable $Y=\phi(U)$ where ϕ is a strictly increasing function
- strictly increasing function ensures inverse function is single-valued
- also ensures that if $u+d u>u$ then $y+d y>y$ for $y=\phi(u)$
- what is density p_{Y} ?
- from conservation of probability

$$
p_{Y}(y) d y=p_{U}(u) d u \quad p_{Y}(y)=p_{U}(u) \frac{d u}{d y}=p_{U}\left(\phi^{-1}(y)\right) \frac{d \phi^{-1}(y)}{d y}
$$

Sampling non-uniform distributions (continued)

- desired density p_{Y} is usually known, so must determine ϕ

$$
\int_{0}^{u} d u^{\prime}=\int_{\phi(0)}^{\phi(u)} p_{Y}(y) d y \quad \Rightarrow \quad u=F_{Y}(\phi(u)) \quad \Rightarrow \quad \phi(u)=F_{Y}^{-1}(u)
$$

- F^{-1} unique since F is strictly increasing function
- summary: random variable Y with density $p_{Y}(y)$ and cumulative distribution $F_{Y}(y)=\int_{-\infty}^{y} p_{Y}(s) d s$ can be sampled by sampling with uniform deviate U then applying transformation

$$
Y=F_{Y}^{-1}(U)
$$

Exponential density

- transformation method requires density whose indefinite integral can be obtained and inverted
- method useful for only a handful of density functions
- one example: the exponential $p_{Y}(y)=e^{-y} /\left(1-e^{-b}\right)$ for $0 \leq y \leq b$
- cumulative distribution $F_{Y}(y)=\int_{0}^{y} p_{Y}(s) d s=\left(1-e^{-y}\right) /\left(1-e^{-b}\right)$
- inverse $F_{Y}^{-1}(u)=-\ln \left(1-\left(1-e^{-b}\right) u\right)$
- example integral: $\int_{0}^{3} \frac{e^{-s} d s}{1+s / 9} \approx 0.873109$

plot of integrand (left); dramatic improvement using importance sampling (right)

Rejection method

- can sample from probability density whose cumulative distribution is not easily calculable and invertible using the rejection method
- sampling from density $p_{X}(x)$ for $a \leq x \leq b$
\Rightarrow equivalent to choosing a random point in two dimensions with uniform probability in the area under curve $p_{X}(x)$
- simplest method: pick random point with uniform probability in box $a \leq x \leq b$ horizontally and $0 \leq y \leq \max \left(p_{X}(x)\right)$ vertically
- accept if below curve
- reject if above curve, repeat until
 acceptance
- if $p_{X}(x)$ sharply peaked, use a comparison function $f(x)$ satisfying $f(x) \geq p_{X}(x)$ for all $a \leq x \leq b$ and which can be sampled by transformation method

Integrals of very high dimension

- sampling methods described so far work well in one-dimension
- for multi-dimensional integrals, transformation and rejection methods not feasible
- use of stationary stochastic processes to handle highly multi-dimensional integrals

Stochastic processes

- stochastic process: a sequence of events $X_{t}, t=0,1,2, \ldots$. governed by probabilistic laws (limit attention to discrete "time" t)
- consider a system which can be in one of R discrete states $s_{1}, s_{2}, \ldots, s_{R}$ (can generalize to continuum of states)
- system moves successively from one state to another
- each move is called a step (discrete "time")
- given previous states of system $X_{0}, X_{1}, \ldots, X_{t-1}$, conditional probability to find system in state X_{t} at time t is $P\left(X_{0}, \ldots, X_{t-1} \mid X_{t}\right)$ which may depend on previous states of system and possibly t
- stochastic processes can be useful for Monte Carlo integration since sequence X_{t} samples conditional probability distribution $P\left(X_{0}, \ldots, X_{t-1} \mid X_{t}\right)$

Stationary stochastic processes

- a stochastic process is stationary when the probabilistic laws remain unchanged through shifts in time
- joint probability distribution of $\left(X_{t}, X_{t+j_{1}}, \ldots, X_{t+j_{n}}\right)$ is same as that of $\left(X_{t+h}, X_{t+h+j_{1}}, \ldots, X_{t+h+j_{n}}\right)$ for any h
- mean $E\left(X_{t}\right)=\mu$ is independent of t (if it exists)
- variance $E\left(\left(X_{t}-\mu\right)^{2}\right)=\sigma^{2}$ independent of t if $E\left(X_{t}^{2}\right)$ finite
- now X_{t} are usually not independent random variables
- autocovariance $E\left(\left(X_{t}-\mu\right)\left(X_{s}-\mu\right)\right)=R(|t-s|)$ depends only on time difference $|t-s|$
- define autocorrelation function $\rho(t)=R(t) / R(0)$ so that $\rho(0)=1$ and $-1 \leq \rho(t) \leq 1$ for all t (from Schwartz's inequality)

Law of large numbers for stationary process

- consider a stationary process X_{1}, X_{2}, \ldots with $E\left(X_{k}\right)=\mu$ and autocovariance $R(s)=E\left(\left(X_{k}-\mu\right)\left(X_{k+s}-\mu\right)\right)$ satisfying $\sum_{s=0}^{\infty}|R(s)|<\infty$, and define $\bar{X}_{N}=\frac{1}{N}\left(X_{1}+X_{2}+\cdots+X_{N}\right)$, then for any $\varepsilon>0, \quad \lim _{N \rightarrow \infty} P\left(\left|\bar{X}_{N}-\mu\right| \geq \varepsilon\right)=0$
- Proof:
- define $Y_{n}=X_{n}-\mu$ and $\bar{Y}_{N}=\frac{1}{N}\left(Y_{1}+\cdots+Y_{N}\right)$

$$
\begin{aligned}
E\left(\bar{Y}_{N}^{2}\right) & =\frac{1}{N^{2}} E\left(\sum_{k=1}^{N} Y_{k}^{2}+2 \sum_{k<l} Y_{k} Y_{l}\right)=\frac{1}{N^{2}}\left(N R(0)+2 \sum_{k<l} R(l-k)\right) \\
& =\frac{1}{N^{2}}\left(2 \sum_{p=1}^{N} \sum_{h=0}^{p-1} R(h)-N R(0)\right) \\
& =\frac{1}{N}\left(R(0)+\sum_{k=1}^{N-1} 2 R(k)(N-k) / N\right)
\end{aligned}
$$

Law of large numbers for stationary process (2)

- Proof (continued):
- continuing,

$$
\begin{aligned}
N E\left(\bar{Y}_{N}^{2}\right) & =\left|R(0)+\sum_{k=1}^{N-1} 2 R(k)(N-k) / N\right| \\
& \leq|R(0)|+\sum_{k=1}^{N-1} 2|R(k)|(N-k) / N \\
& \leq|R(0)|+\sum_{k=1}^{N=1} 2|R(k)|
\end{aligned}
$$

- since $\sum_{j}|R(j)|<\infty$ then $N E\left(\bar{Y}_{N}^{2}\right)<\infty$ so $\lim _{N \rightarrow \infty} E\left(\bar{Y}_{N}^{2}\right)=0$
- with Chebyshev inequality $P\left(\left|\bar{X}_{N}-\mu\right| \geq \varepsilon\right) \leq E\left(\left(\bar{X}_{N}-\mu\right)^{2}\right) / \varepsilon^{2}$

$$
\lim _{N \rightarrow \infty} E\left(\left(\bar{X}_{N}-\mu\right)^{2}\right)=0 \text { implies } \lim _{\substack{N \rightarrow \infty}} P\left(\left|\bar{X}_{N}-\mu\right| \geq \varepsilon\right)=0
$$

- limiting value $\lim _{N \rightarrow \infty} N E\left(\left(\bar{X}_{N}-\mu\right)^{2}\right)=\sum_{k=-\infty}^{\infty} R(k)$
- Proof: given absolutely summable autocovariance $\sum_{k}|R(k)|<\infty$, for any $\varepsilon>0$ there exists a q such that $\sum_{k=1}^{\infty} 2|R(q+k)|<\varepsilon / 2$
- so $\left|\sum_{j=-(N-1)}^{N-1} R(j)-N E\left(\bar{Y}_{N}^{2}\right)\right|=\left|R(0)+2 \sum_{j=1}^{\infty} R(j)-\left(R(0)+\sum_{k=1}^{N-1} 2 R(k)(N-k) / N\right)\right|$

Law of large numbers for stationary process (3)

- limiting value $\lim _{N \rightarrow \infty} N E\left(\left(\bar{X}_{N}-\mu\right)^{2}\right)=\sum_{k=-\infty}^{\infty} R(k)$
- Proof (continued):

$$
\begin{aligned}
\left|\sum_{j=-(N-1)}^{N-1} R(j)-N E\left(\bar{Y}_{N}^{2}\right)\right| & =\left|\sum_{k=1}^{N-1} 2 k R(k) / N\right| \leq \sum_{k=1}^{N-1} 2 k|R(k)| / N \\
& =\sum_{k=1}^{q} 2 k|R(k)| / N+\sum_{k=q+1}^{N-1} 2 k|R(k)| / N \\
& \leq \sum_{k=1}^{q} 2 k|R(k)| / N+\sum_{k=q+1}^{N-1} 2|R(k)| \\
& \leq \sum_{k=1}^{q} 2 k|R(k)| / N+\varepsilon / 2
\end{aligned}
$$

- since q fixed and finite, can always increase N so that $\sum_{k=1}^{q} 2 k|R(k)| / N<\varepsilon / 2$ which holds as $N \rightarrow \infty$
- so $\left|\sum_{j=-(N-1)}^{N-1} R(j)-N E\left(\bar{Y}_{N}^{2}\right)\right|<\varepsilon$ which proves the limit

M-dependent central limit theorem

- M-dependent central limit theorem: Let $X_{1}, X_{2}, \ldots, X_{N}$ be a stationary M-dependent sequence of random variables (X_{t} and X_{t+s} are independent for $s>M$) such that $E\left(X_{t}\right)=E\left(X_{1}\right)=\mu$ and $E\left(\left(X_{1}-\mu\right)^{2}\right)<\infty$, and define $\bar{X}_{N}=\left(X_{1}+X_{2}+\cdots+X_{N}\right) / N$ and $\sigma^{2}=E\left(\left(X_{1}-\mu\right)^{2}\right)+2 \sum_{h=1}^{M} E\left(\left(X_{1}-\mu\right)\left(X_{h+1}-\mu\right)\right)$. Then for $a<b$,

$$
\lim _{N \rightarrow \infty} P\left(\frac{a \sigma}{\sqrt{N}}<\left(\bar{X}_{N}-\mu\right)<\frac{b \sigma}{\sqrt{N}}\right)=\frac{1}{\sqrt{2 \pi}} \int_{a}^{b} e^{-x^{2} / 2} d x
$$

- distribution of $\left(X_{1}+\cdots+X_{N}-N \mu\right) /(\sigma \sqrt{N})$ tends to standard normal (zero mean, unit variance)
- for proof, see W. Hoeffding and H. Robbins, Duke Math. Journal 15, 773 (1948) or T. Anderson, The Statistical Analysis of Time Series, Wiley (1971).
- autocovariance $R(h)=R(-h)=E\left(\left(X_{t}-\mu\right)\left(X_{t+|h|}-\mu\right)\right)$
- note that $\sigma^{2}=\sum_{h=-M}^{M} R(h)=N E\left(\left(\bar{X}_{N}-\mu\right)^{2}\right)$ for $N \gg M$

Monte Carlo integration

- Monte Carlo integration using stationary stochastic process:

$$
\begin{gathered}
\int_{V} p(\vec{x}) f(\vec{x}) d^{D} x \approx\langle f\rangle \pm \sqrt{\frac{R_{0}(f)+2 \sum_{h \geq 1} R_{h}(f)}{N}} \\
\langle f\rangle \equiv \frac{1}{N} \sum_{i=1}^{N} f\left(\vec{x}_{i}\right), \quad R_{h}(f) \equiv \frac{1}{N-h} \sum_{i=1}^{N-h}\left(f\left(\vec{x}_{i}\right)-\langle f\rangle\right)\left(f\left(\vec{x}_{i+h}\right)-\langle f\rangle\right)
\end{gathered}
$$

- N points $\vec{x}_{1}, \ldots, \vec{x}_{N}$ are stationary sequence of random variables with probability dist. $p(\vec{x})$ throughout D-dimensional volume V
- normalization condition $\int_{V} p(\vec{x}) d^{D} x=1$
- absolutely summable autocovariance $\sum_{h=0}^{\infty}\left|R_{h}(f)\right|<\infty$
- law of large numbers justifies correctness of estimate
- m-dependent central limit theorem gives estimate of statistical uncertainty

Simple stationary stochastic processes

- how can we find a stationary stochastic process that yields the desired probability distribution $p(\vec{x})$?
- use of Markov chains to solve this problem

- Markov chains were introduced by the Russian mathematician Andrei Markov (1856-1922) in 1906
A. A. Mapkon (1886).

Markov chains

- discrete Markov chain: stochastic process which generates a sequence of states with probabilities depending only on current state
- consider a system which can be in one of R states $s_{1}, s_{2}, \ldots, s_{R}$
- system moves successively from one state to another
- each move is called a step (discrete "time")
- if current state is s_{i}, then chain moves to state s_{j} at next step with probability $p_{i j}$ which does not depend on previous states of chain
- probabilities $p_{i j}$ are called transition probabilities
- the square $R \times R$ real-valued matrix \mathbf{P} whose elements are $p_{i j}$ is called the transition matrix or the Markov matrix
- time homogeneous if transition probabilities $p_{i j}$ independent of "time" or position in chain
- definition generalizes to continuous set of states
- leads to matrix of transition densities
- will not deal with continuous-time chains here

Some basic properties of Markov chains

- transition matrix \mathbf{P} has non-negative entries $p_{i j} \geq 0$
- since probability of going from s_{i} to any state must be unity, then matrix elements must satisfy $\sum_{j=1}^{R} p_{i j}=1$ (rows sum to unity)
- if columns also sum to unity, \mathbf{P} is called doubly stochastic matrix
- if \mathbf{P}_{1} and \mathbf{P}_{2} are Markov matrices, then the matrix product $\mathbf{P}_{1} \mathbf{P}_{2}$ is also a Markov matrix
- every eigenvalue λ of a Markov matrix satisfies $|\lambda| \leq 1$
- every Markov matrix has at least one eigenvalue equal to unity

Eigenvalues/eigenvectors of real square matrices

- for a square matrix \mathbf{P}, a nonzero column vector \mathbf{v} which satisfies $\mathbf{P v}=\lambda \mathbf{v}$ for complex scalar λ is known as a right eigenvector corresponding to eigenvalue λ
- often, "right eigenvectors" are simply called "eigenvectors"
- a nonzero vector \mathbf{v} satisfying $\mathbf{v}^{T} \mathbf{P}=\lambda \mathbf{v}^{T}$, where T indicates transpose, is known as a left eigenvector
- every square $R \times R$ matrix has R complex eigenvalues, counting multiple roots according to their multiplicity
- for a real square matrix, the eigenvalues are either real or come in complex conjugate pairs
- eigenvectors for distinct eigenvalues are linearly independent
- a degenerate eigenvalue may not have distinct eigenvectors
- R linearly independent eigenvectors guaranteed only if all R eigenvalues distinct
- a matrix \mathbf{P} and its transpose \mathbf{P}^{T} have the same eigenvalues

Properties of Markov matrices (continued)

- every eigenvalue λ of Markov matrix \mathbf{P} satisfies $|\lambda| \leq 1$
- Proof: suppose complex number λ is an eigenvalue of \mathbf{P} with corresponding eigenvector \mathbf{v} so that $\mathbf{P v}=\lambda \mathbf{v}$
- let k be such that $\left|v_{k}\right| \geq\left|v_{j}\right|$ for all j
- k-th component of eigenvalue equation gives us $\sum_{j} p_{k j} v_{j}=\lambda v_{k}$
- use generalized triangle inequality for complex numbers $\left|\sum_{k} z_{k}\right| \leq \sum_{k}\left|z_{k}\right|=\left|\sum_{j} p_{k j}\right|$ to show $\sum_{j} p_{k j}\left|v_{j}\right| \leq \sum_{j} p_{k j}\left|v_{k}\right|=\left|v_{k}\right|$
- thus, $\left|\lambda v_{k}\right|=|\lambda|\left|v_{k}\right| \leq\left|v_{k}\right| \quad \rightarrow \quad|\lambda| \leq 1$
- every Markov matrix \mathbf{P} has a least one eigenvalue equal to unity
- Proof: let \mathbf{v} be a vector satisfying $v_{j}=1$ for all j
- then $\sum_{j} p_{i j} v_{j}=\sum_{j} p_{i j}=1=v_{i}$
- hence, \mathbf{v} is an eigenvector corresponding to eigenvalue 1

Multi-step probabilities

- n-step transition probability: $i j$-th element $p_{i j}^{(n)}$ of matrix \mathbf{P}^{n} is probability that Markov chain, starting in state s_{i}, will be in state s_{j} after n steps
- probability to go from s_{i} to s_{j} in 2 steps is $\sum_{k=1}^{R} p_{i k} p_{k j}$
- generalizes to n-steps
- for starting probability vector \mathbf{u}, probability that chain in state s_{j} after n steps is $u_{j}^{(n)}=\sum_{i=1}^{R} u_{i} p_{i j}^{(n)}$
- u_{i} is probability starting state is s_{i}, matrix form $\mathbf{u}^{(n) T}=\mathbf{u}^{T} \mathbf{P}^{n}$
- first visit probability: the probability that a Markov chain, starting in state s_{i}, is found for the first time in state s_{j} after n steps \rightarrow denoted by $f_{i j}^{(n)}$
- define $f_{i j}^{(0)}=0$ one step, $f_{i j}^{(1)}=p_{i j}$, two steps, $f_{i j}^{(2)}=\sum_{k \neq j} p_{i k} p_{k j}$
- generalize $f_{i j}^{(n)}=\sum p_{i k} f_{k j}^{(n-1)}$
- generalize $f_{i j}^{(n)}=\sum_{k \neq j} p_{i k} f_{k j}^{(n-1)}$
- important relation for later user: $p_{i j}^{(n)}=\sum_{m=1}^{n} f_{i j}^{(m)} p_{j i}^{(n-m)}$

Mean first passage and mean recurrence times

- total visit probability: probability that, starting from state s_{i}, chain will ever visit state s_{j} :

$$
f_{i j}=\sum_{n=1}^{\infty} f_{i j}^{(n)}
$$

- mean first passage time from s_{i} to s_{j} is expected number of steps to reach state s_{j} in an ergodic Markov chain for the first time, starting from state $s_{i} \rightarrow$ denoted by $m_{i j}$ (by convention, $m_{i i}=0$)

$$
m_{i j}=\sum_{n=1}^{\infty} n f_{i j}^{(n)}
$$

- mean recurrence time μ_{i} of state s_{i} is expected number of steps to return to state s_{i} for the first time in an ergodic Markov chain starting from s_{i}

$$
\mu_{i}=\sum_{n=1}^{\infty} n f_{i i}^{(n)}
$$

Classes

- state s_{j} is accessible from state s_{i} if $p_{i j}^{(n)}>0$ for some finite n
- often denoted by $s_{i} \rightarrow s_{j}$
- if $s_{i} \rightarrow s_{j}$ and $s_{j} \rightarrow s_{k}$, then $s_{i} \rightarrow s_{k}$
- states s_{i} and s_{j} communicate if $s_{i} \rightarrow s_{j}$ and $s_{j} \rightarrow s_{i}$
- denoted by $s_{i} \leftrightarrow s_{j}$
$-s_{i} \leftrightarrow s_{j}$ and $s_{j} \leftrightarrow s_{k}$ implies $s_{i} \leftrightarrow s_{k}$
- class = a set of states that all communicate with one another
- if C_{1} and C_{2} are communicating classes, then either $C_{1}=C_{2}$ or C_{1}, C_{2} are disjoint
- if C_{1} and C_{2} have a common state s_{i}, then $s_{i} \leftrightarrow s_{j 1}$ for all $s_{j 1} \in C_{1}$ and $s_{i} \leftrightarrow s_{j 2}$ for all $s_{j 2} \in C_{2}$, so $s_{j 1} \leftrightarrow s_{j 2}$ implying $C_{1}=C_{2}$
- set of all states can be partitioned into separate classes
- if transition from class C_{1} to different class C_{2} is possible, then transition from C_{2} to C_{1} not possible, otherwise $C_{1}=C_{2}$

Irreducible Markov chains

- a Markov chain is called irreducible if the probability to go from every state to every state (not necessarily in one step) is greater than zero
- all states in irreducible chain are in one single communicating class

Classification of states in Markov chains

- states in a Markov chain are
(a) recurrent (persistent) or transient
- recurrent states are either positive or null
(b) periodic (cyclic) or aperiodic
- recurrent or persistent state has $f_{i i}=\sum_{n=1}^{\infty} f_{i i}^{(n)}=1$
- unit probability of returning to state after a finite length transient state has $f_{i i}=\sum_{n=1}^{\infty} f_{i i}^{(n)}<1$
- recurrent state is positive if mean recurrence time finite $\mu_{i}<\infty$ otherwise, called null
- the period of a state in a Markov chain is the greatest common divisor of all $n \geq 0$ for which $p_{i i}^{(n)}>0$
- transition s_{i} to s_{i} not possible except for multiples of period $d(i)$
- periodic state s_{i} has period $d(i)>1$ aperiodic state s_{i} has period $d(i)=1$

Recurrent and transient states

- for a recurrent state, $\sum_{n=1}^{\infty} p_{i i}^{(n)}=\infty$, whereas for a transient state, $\sum_{n=1}^{\infty} p_{i i}^{(n)}<\infty$
- proof:
- we start with the following:

$$
\sum_{n=1}^{N} p_{i j}^{(n)}=\sum_{n=1}^{N} \sum_{m=1}^{n} f_{i j}^{(m)} p_{j j}^{(n-m)}=\sum_{m=1}^{N} f_{i j}^{(m)} \sum_{n=0}^{N-m} p_{i j}^{(n)} \leq \sum_{m=1}^{N} f_{i j}^{(m)} \sum_{n=0}^{N} p_{i j}^{(n)}
$$

- but for $N>N^{\prime}$ we also have

$$
\sum_{n=1}^{N} p_{i j}^{(n)}=\sum_{m=1}^{N} f_{i j}^{(m)} \sum_{n=0}^{N-m} p_{i j}^{(n)} \geq \sum_{m=1}^{N^{\prime}} f_{i j}^{(m)} \sum_{n=0}^{N-m} p_{j j}^{(n)} \geq \sum_{m=1}^{N^{\prime}} f_{i j}^{(m)} \sum_{n=0}^{N-N^{\prime}} p_{i j}^{(n)}
$$

- putting together above results:

$$
\sum_{m=1}^{N^{\prime}} f_{i j}^{(m)} \sum_{n=0}^{N-N^{\prime}} p_{i j}^{(n)} \leq \sum_{n=1}^{N} p_{i j}^{(n)} \leq \sum_{m=1}^{N} f_{i j}^{(m)} \sum_{n=0}^{N} p_{i j}^{(n)}
$$

- take $N \rightarrow \infty$ first, then $N^{\prime} \rightarrow \infty$ to get

$$
f_{i j} \sum_{n=0}^{\infty} p_{i j}^{(n)} \leq \sum_{n=1}^{\infty} p_{i j}^{(n)} \leq f_{i j} \sum_{n=0}^{\infty} p_{i j}^{(n)} \Rightarrow f_{i j} \sum_{n=0}^{\infty} p_{i j}^{(n)}=\sum_{n=1}^{\infty} p_{i j}^{(n)}
$$

Recurrent and transient states (2)

- for a recurrent state, $\sum_{n=1}^{\infty} p_{i i}^{(n)}=\infty$, whereas for a transient state, $\sum_{n=1}^{\infty} p_{i i}^{(n)}<\infty$
- proof (continued):
- so far have shown $f_{i j} \sum_{n=0}^{\infty} p_{i j}^{(n)}=\sum_{n=1}^{\infty} p_{i j}^{(n)}$
- set $i=j$ then $f_{i i}\left(1+\sum_{n=1}^{\infty} p_{i i}^{(n)}\right)=\sum_{n=1}^{\infty} p_{i i}^{(n)}$
- so finally

$$
\sum_{n=1}^{\infty} p_{i i}^{(n)}=\frac{f_{i i}}{1-f_{i i}}
$$

- $f_{i i}=1$ for a recurrent state and $f_{i i}<1$ for a transient state, which proves the above statements
- note that the above results also imply

$$
\sum_{n=1}^{\infty} p_{i j}^{(n)}=\frac{f_{i j}}{1-f_{i i}}
$$

Recurrent and transient states (3)

- a Markov chain returns to a recurrent state infinitely often and returns to a transient state only a finite number of times
- proof:
- let $g_{i j}(m)$ denote probability that chain enters state s_{j} at least m times, starting from s_{i}
- clearly $g_{i j}(1)=f_{i j}$
- one also sees $g_{i j}(m+1)=f_{i j} g_{j j}(m)$ so $g_{i j}(m)=\left(f_{i j}\right)^{m}$
- probability of entering s_{j} infinitely many times is

$$
g_{i j}=\lim _{m \rightarrow \infty} g_{i j}(m)=\lim _{m \rightarrow \infty}\left(f_{i j}\right)^{m}
$$

- so starting in s_{j} then

$$
g_{i j}=\lim _{m \rightarrow \infty}\left(f_{j j}\right)^{m}= \begin{cases}1 & \text { for recurrent state } f_{i j}=1 \\ 0 & \text { for transient state } f_{j j}<1\end{cases}
$$

Important result for recurrent states

- if s_{i} is recurrent and $s_{i} \rightarrow s_{j}$, then $f_{j i}=1$
- proof:
- let $\alpha>0$ denote probability to reach s_{j} from s_{i} without previously returning to s_{i}
- probability of never returning to s_{i} from s_{j} is $1-f_{j i}$
- probability of never returning to s_{i} from s_{i} is at least $\alpha\left(1-f_{j i}\right)$
- but s_{i} is recurrent so probability of no return is zero
- thus, $f_{j i}=1$
- for two communicating states $s_{i} \leftrightarrow s_{j}$ that are each recurrent, it follows that $f_{i j}=f_{j i}=1$

Similarity of states in a class

- all states in a class of a Markov chain are of the same type, and if periodic, all have the same period
- proof:
- for any two states s_{i} and s_{j} in a class, there exists integers r and s such that $p_{i j}^{(r)}=\alpha>0$ and $p_{j i}^{(s)}=\beta>0$ so

$$
p_{i i}^{(n+r+s)}=\sum_{k l} p_{i k}^{(r)} p_{k l}^{(n)} p_{l i}^{(s)} \geq \sum_{k} p_{i k}^{(r)} p_{k k}^{(n)} p_{k i}^{(s)} \geq p_{i j}^{(r)} p_{j j}^{(n)} p_{j i}^{(s)}=\alpha \beta p_{j j}^{(n)}
$$

- if s_{i} is transient, then left-hand side is a term of a convergent series $\sum_{k} p_{i i}^{(k)}<\infty$, so the same must be true for $p_{i j}^{(k)}$, and if $p_{i i}^{(k)} \rightarrow 0$, then $p_{i j}^{(k)} \rightarrow 0$
- the same statements remain true if the roles of i and j are reversed, so either both s_{i} and s_{j} are transient, or neither is
- if s_{j} is null (infinite mean recurrence time $\mu_{j}=\sum_{n=1}^{\infty} n f_{i j}^{(n)}=\infty$), then s_{i} must be null as well
- same statements true if i, j reversed, so if one is a null state, then so is the other

Similarity of states in a class (2)

- again, we have
- for any two states s_{i} and s_{j} in a class, there exists integers r and s such that $p_{i j}^{(r)}=\alpha>0$ and $p_{j i}^{(s)}=\beta>0$ so

$$
p_{i i}^{(n+r+s)}=\sum_{k l} p_{i k}^{(r)} p_{k l}^{(n)} p_{l i}^{(s)} \geq \sum_{k} p_{i k}^{(r)} p_{k k}^{(n)} p_{k i}^{(s)} \geq p_{i j}^{(r)} p_{j j}^{(n)} p_{j i}^{(s)}=\alpha \beta p_{j j}^{(n)}
$$

- suppose s_{i} has period t, then for $n=0$, the right-hand side is positive, so $p_{i i}^{(r+s)}>0$ which means that $r+s$ must be a multiple of t
- hence, left-hand side vanishes unless n is multiple of t, so $p_{j j}^{(n)}$ can be nonzero only if n is multiple of t, so s_{i} and s_{j} have same period
- chain aperiodic if $p_{i i}>0$ for at least one s_{i}

Periodic irreducible chains

- states in an irreducible chain with period d can be partitioned into d mutually exclusive subsets G_{0}, \cdots, G_{d-1} such that if state $s_{k} \in G_{\alpha}$, then $p_{1 k}^{(n)}=0$ unless $n=\alpha+\nu d$
- proof:
- since irreducible, all states have same period d and every state can be reached from every other state
- there exist for every state s_{k} two integers a and b such that $p_{1 k}^{(a)}>0$ and $p_{1 k}^{(b)}>0$
- but $p_{11}^{(a+b)}=\sum_{j} p_{1 j}^{(a)} p_{j 1}^{(b)} \geq p_{1 k}^{(a)} p_{k 1}^{(b)}>0$ so $a+b$ divisible by d
- thus, $a+b=m d$ for integer m, or $a=-b+m d$
- rewrite as $a=\alpha+\nu d$ for integer ν and $0 \leq \alpha<d$
- α is characteristic of state s_{k} so all states partitioned into d mutually exclusive subsets $G_{0}, G_{1}, \cdots, G_{d-1}$
- with proper ordering of G_{α} subsets, one-step transition from state in G_{α} always leads to state in $G_{\alpha+1}$, or from G_{d-1} to G_{0}
- each subset G_{α} closed in aperiodic Markov chain with transition matrix \mathbf{P}^{d}

Fact concerning finite Markov chains

- in an irreducible chain having finite number R of states, there are no null states and it is impossible that all states are transient
- proof:
- all rows of the matrix \mathbf{P}^{n} must add to unity
- since each row contains finite number of non-negative elements, it is impossible that $p_{i j}^{(n)} \rightarrow 0$ for all i, j pairs
- thus, impossible that all states are transient
- so at least one state must be non-null
- but since irreducible (one class), all states must be non-null
- in an R-state irreducible Markov chain, it is possible to go from any state to any other state in at most $R-1$ steps

A crucial theorem about two sequences

- important theorem: (basic limit theorem of the renewal equation) given a sequence $f_{0}, f_{1}, f_{2}, \ldots$ such that

$$
f_{0}=0, \quad f_{n} \geq 0, \quad \sum_{n=0}^{\infty} f_{n}=1
$$

and greatest common divisor of those n for which $f_{n}>0$ is $d \geq 1$ and another sequence $u_{0}, u_{1}, u_{2}, \ldots$ defined by

$$
u_{0}=1, \quad u_{n}=\sum_{m=1}^{n} f_{m} u_{n-m} \quad(n \geq 1)
$$

then

- proof:

$$
\lim _{n \rightarrow \infty} u_{n d}= \begin{cases}d \mu^{-1} & \text { if } \mu=\sum_{n=1}^{\infty} n f_{n}<\infty \\ 0 & \text { if } \mu=\infty\end{cases}
$$

- see W. Feller, An Introduction to Probability Theory and Its Applications, Vol. I.
- or S. Karlin and H. Taylor, A First Course in Stochastic Processes.

Basic limit theorem

- we shall only sketch the proof of this theorem
- first, some key properties of these sequences
- $0 \leq f_{n} \leq 1$ for all n since $f_{n} \geq 0$ and $\sum_{n=0}^{\infty} f_{n}=1$
- $0 \leq u_{n} \leq 1$ for all n can be established inductively
- $u_{0}=1, u_{1}=f_{1}, u_{2}=f_{2}+f_{1}^{2}$ satisfy above bounds
- assume $0 \leq u_{k} \leq 1$ for all $0 \leq k \leq n$
- since $f_{m} \geq 0$ and $\sum_{m=1}^{\infty} f_{m}=1$ then
$u_{n+1}=\sum_{m=1}^{n+1} f_{m} u_{n+1-m} \geq 0$ since sum of nonnegative terms, and
$u_{n+1}=\sum_{m=1}^{n+1} f_{m} u_{n+1-m} \leq \sum_{m=1}^{n+1} f_{m} \leq 1$
- next, limit our attention to $d=1$ (nonperiodic)
- since u_{n} is a bounded sequence, $\lambda \equiv \lim \sup _{n \rightarrow \infty} u_{n}$ is finite and there exists a subsequence $n_{1}<n_{2}<\cdots$ tending to infinity such that $\lim _{j \rightarrow \infty} u_{n_{j}}=\lambda$
- next step in proof is to show $\lim _{j \rightarrow \infty} u_{n_{j}-q}=\lambda$ for any integer $q \geq 0$ when $f_{1}>0$ (we'll skip this)

Basic limit theorem (2)

- define a new sequence $r_{n}=\sum_{k>n} f_{k}$
- some important properties of this sequence
- $r_{n} \geq 0$ for all n, and $r_{0}=1$
- $r_{n-1}-r_{n}=f_{n}$ for $n \geq 1$
- $\sum_{n=0}^{\infty} r_{n}=\sum_{n=1}^{\infty} n f_{n} \equiv \mu$
- one very crucial identity: $\sum_{k=0}^{N} r_{k} u_{N-k}=1$ for all $N \geq 0$
- define $A_{N}=\sum_{k=0}^{N} r_{k} u_{N-k}$
- start with $u_{N}=\sum_{m=1}^{N} f_{m} u_{N-m}=\sum_{m=1}^{N}\left(r_{m-1}-r_{m}\right) u_{N-m}$
- use $r_{0}=1$ and rearrange $r_{0} u_{N}+\sum_{m=1}^{N} r_{m} u_{N-m}=\sum_{m=1}^{N} r_{m-1} u_{N-m}$
- take $m \rightarrow k+1$ on right: $\sum_{m=0}^{N} r_{m} u_{N-m}=\sum_{k=0}^{N-1} r_{k} u_{N-1-k}$
- have shown $A_{N}=A_{N-1}$ for all N
- $A_{N}=A_{N-1}=A_{N-2}=\cdots=A_{0}=r_{0} u_{0}=1$

Basic limit theorem (3)

- recall that $n_{1}<n_{2}<\cdots$ is subsequence such that $\lim _{j \rightarrow \infty} u_{n_{j}-q}=\lambda$ for any integer $q \geq 0$
- since $\sum_{k=0}^{n_{j}} r_{k} u_{n_{j}-k}=1$ for all n_{j} and $r_{k} \geq 0, u_{k} \geq 0$ for all k, then $\sum_{k=0}^{N} r_{k} u_{n_{j}-k} \leq 1$ for fixed $N<n_{j}$
- take limit $j \rightarrow \infty$ so $\lim _{j \rightarrow \infty} \sum_{k=0}^{N} r_{k} u_{n_{j}-k}=\lambda \sum_{k=0}^{N} r_{k} \leq 1$
- already know $\lambda \geq 0$, take $N \rightarrow \infty$ to have $0 \leq \lambda \leq 1 /\left(\sum_{k=0}^{\infty} r_{k}\right)$
- if $\sum_{k=0}^{\infty} r_{k}=\infty$ then $\lim _{n \rightarrow \infty} u_{n}=\lambda=0$
- if $\mu=\sum_{k=0}^{\infty} r_{k}$ is finite, $N \rightarrow \infty$ gives $\mu \lambda \leq 1$
- define $M=\sup _{n \geq 0} u_{n}$ so $0 \leq u_{k} \leq M \leq 1$ for all k
- define $g(D)=\sum_{k=D+1}^{\infty} r_{k}$, note $g(D) \geq 0$ for all D and $\lim _{D \rightarrow \infty} g(D)=0$
- consider $\sum_{k=0}^{D} r_{k} u_{n_{j}-k}+\sum_{k=D+1}^{n_{j}} r_{k} u_{n_{j}-k}=1$ for $D<n_{j}$
- thus $\sum_{k=0}^{D} r_{k} u_{n_{j}-k}+M g(D) \geq 1$ for $D<n_{j}$

Basic limit theorem (4)

- again, $\sum_{k=0}^{D} r_{k} u_{n_{j}-k}+M g(D) \geq 1$ for $D<n_{j}$
- take $j \rightarrow \infty$ to conclude $\lambda\left(\sum_{k=0}^{D} r_{k}\right)+M g(D) \geq 1$
- take limit $D \rightarrow \infty$ to obtain $\lambda \mu \geq 1$
- have now shown $1 \leq \mu \lambda \leq 1$ so $\mu \lambda=1$
- proof for nonperiodic ($d=1$) case now complete
- when $d>1$ then $f_{m}=0$ unless $m=n d$
- can then show $u_{m}=0$ unless $m=n d$
- define new sequences $f_{n}^{\prime}=f_{n d}$ and $u_{n}^{\prime}=u_{n d}$ for $n=0,1,2, \ldots$
- since new sequence aperiodic, know $\lim _{n \rightarrow \infty} u_{n}^{\prime}=1 / \mu^{\prime}$ where $\mu^{\prime}=\sum_{n=0}^{\infty} n f_{n}^{\prime}$
- since $f_{m}=0$ when $m \neq n d$ then
$\mu^{\prime}=\sum_{n=0}^{\infty} n f_{n d}=d^{-1} \sum_{m=0}^{\infty} m f_{m}=\mu / d$
- thus, $\lim _{n \rightarrow \infty} u_{n d}=d \mu^{-1}$ as required

Asymptotic behavior of $p_{j j}^{(n)}$

- asymptotic behavior of $p_{j j}^{(n)}$ can be summarized as
- proof:

$$
\lim _{n \rightarrow \infty} p_{j j}^{(d n)}= \begin{cases}0 & s_{j} \text { transient or null recurrent } \\ \mu_{j}^{-1} & s_{j} \text { aperiodic positive recurrent } \\ d \mu_{j}^{-1} & s_{j} \text { positive recurrent with period } d\end{cases}
$$

- if s_{j} transient, $\sum_{n} p_{j j}^{(n)}$ finite (converges) requiring $p_{j j}^{(n)} \rightarrow 0$
- for recurrent s_{j}, let $f_{n}=f_{j j}^{(n)}$ and $u_{n}=p_{j j}^{(n)}$
- sequences f_{n}, u_{n} so defined satisfy conditions of basic limit theorem
- basic limit theorem gives $p_{i j}^{(d n)} \rightarrow d \mu_{j}^{-1}$ where $\mu_{j}=\sum_{n} n f_{j j}^{(n)}$ is mean recurrence time
- aperiodic case when $d=1$
- null recurrent s_{j} has $\mu_{j}=\infty$ so $p_{i j}^{(n)} \rightarrow \mu_{j}^{-1}=0$

Asymptotic behavior of $p_{i j}^{(n)}$

- asymptotic behavior of $p_{i j}^{(n)}$ can be summarized as

$$
\lim _{n \rightarrow \infty} p_{i j}^{(n)}= \begin{cases}0 & s_{j} \text { transient or null recurrent } \\ f_{i j} \mu_{j}^{-1} & s_{j} \text { aperiodic positive recurrent }\end{cases}
$$

- ignore periodic case here
- proof:
- $p_{i j}^{(n)}=\sum_{m=1}^{n} f_{i j}^{(m)} p_{j j}^{(n-m)}=\sum_{m=1}^{n^{\prime}} f_{i j}^{(m)} p_{j j}^{(n-m)}+\sum_{m=n^{\prime}+1}^{n} f_{i j}^{(m)} p_{j j}^{(n-m)} \quad\left(n^{\prime}<n\right)$
- since $0 \leq \sum_{m=n^{\prime}+1}^{n} f_{i j}^{(m)} p_{j j}^{(n-m)} \leq \sum_{m=n^{\prime}+1}^{n} f_{i j}^{(m)}$ then

$$
0 \leq\left(p_{i j}^{(n)}-\sum_{m=1}^{n^{\prime}} f_{i j}^{(m)} p_{j j}^{(n-m)}\right) \leq \sum_{m=n^{\prime}+1}^{n} f_{i j}^{(m)} \quad\left(n^{\prime}<n\right)
$$

- take $n \rightarrow \infty$, then $n^{\prime} \rightarrow \infty$ above, denote $p_{i j}=\lim _{n \rightarrow \infty} p_{j j}^{(n)}$

$$
0 \leq\left(\lim _{n \rightarrow \infty} p_{i j}^{(n)}-p_{j j} f_{i j}\right) \leq 0 \Rightarrow \lim _{n \rightarrow \infty} p_{i j}^{(n)}=p_{j i j} f_{i j}
$$

- for s_{j} transient or null recurrent, $p_{i j}=0$ and $f_{i j}$ finite, so $\lim _{n \rightarrow \infty} p_{i j}^{(n)}=0$
- for s_{j} aperiod positive recurrent, $p_{i j}=\mu_{j}^{-1}$ so $p_{i j}^{(n)} \rightarrow f_{i j} \mu_{j}^{-1}$

Fixed-point or stationary distributions

- a probability vector \mathbf{w} is called stationary or invariant or a fixed-point if $\mathbf{w}^{T}=\mathbf{w}^{T} \mathbf{P}$
- clearly, one also has $\mathbf{w}^{T}=\mathbf{w}^{T} \mathbf{P}^{n}$
- the probability vector is always the same (stationary) for the chain
- when this occurs, the Markov chain is said to be in equilibrium

Fatou's lemma

- lemma: let $a_{n}(t)$ for $n=1,2, \ldots$ be a function on a discrete set $T=\{1,2, \ldots\}$, assume $\lim _{n \rightarrow \infty} a_{n}(t)$ exists for each t in T, and suppose $a_{n}(t) \geq 0$ for all t, n, then
- proof:

$$
\sum_{t \in T}\left(\lim _{n \rightarrow \infty} a_{n}(t)\right) \leq \lim _{n \rightarrow \infty} \sum_{t \in T} a_{n}(t)
$$

- for any integer M

$$
\sum_{t=1}^{M}\left(\lim _{n \rightarrow \infty} a_{n}(t)\right)=\lim _{n \rightarrow \infty} \sum_{t=1}^{M} a_{n}(t) \leq \lim _{n \rightarrow \infty} \sum_{t=1}^{\infty} a_{n}(t)
$$

since all $a_{n}(t) \geq 0$

- take limit $M \rightarrow \infty$ to obtain required result
- example: $a_{n}(t)=\frac{n}{n^{2}+t^{2}}$
- for $n>t$ then $\lim _{n \rightarrow \infty} a_{n}(t)=0$ so $\sum_{t=1}^{\infty}\left(\lim _{n \rightarrow \infty} a_{n}(t)\right)=0$
- $\sum_{t=1}^{\infty} a_{n}(t)=\frac{\pi}{2} \operatorname{coth}(n \pi)-\frac{1}{2 n}$ so $\lim _{n \rightarrow \infty} \sum_{t=1}^{\infty} a_{n}(t)=\frac{\pi}{2}$

Dominated convergence theorem

- theorem: let $a_{n}(t)$ for $n=1,2, \ldots$ be a function on a discrete set $T=\{1,2, \ldots\}$, assume $\lim _{n \rightarrow \infty} a_{n}(t)$ exists for each t in T, and suppose a function $B(t)$ exists such that $\left|a_{n}(t)\right| \leq B(t)$ for all t, n and $\sum_{t \in T} B(t)<\infty$, then

$$
\sum_{t \in T}\left(\lim _{n \rightarrow \infty} a_{n}(t)\right)=\lim _{n \rightarrow \infty} \sum_{t \in T} a_{n}(t)
$$

- proof:
- let $a(t)=\lim _{n \rightarrow \infty} a_{n}(t)$ and since $|a(t)| \leq B(t)$ then $\sum_{t=1}^{\infty} a(t)$ converges
- for any integer M
- for any integer M

$$
\left|\sum_{t=1}^{\infty} a_{n}(t)-\sum_{t=1}^{\infty} a(t)\right| \leq \sum_{t=1}^{M}\left|a_{n}(t)-a(t)\right|+\sum_{t=M+1}^{\infty}\left(\left|a_{n}(t)\right|+|a(t)|\right)
$$

- now $\lim _{n \rightarrow \infty} \sum_{t=1}^{M}\left|a_{n}(t)-a(t)\right|=\sum_{t=1}^{M}\left(\lim _{n \rightarrow \infty}\left|a_{n}(t)-a(t)\right|\right)=0$

$$
\sum_{t=M+1}^{\infty}\left(\left|a_{n}(t)\right|+|a(t)|\right) \leq 2 \sum_{t=M+1}^{\infty} B(t)
$$

- so for any integer M

$$
\left|\lim _{n \rightarrow \infty} \sum_{t=1}^{\infty} a_{n}(t)-\sum_{t=1}^{\infty} \lim _{n \rightarrow \infty} a_{n}(t)\right| \leq 2 \sum_{t=M+1}^{\infty} B(t)
$$

- right-hand side is remainder of convergent series so equals zero in $M \rightarrow \infty$ limit

Fundamental limit theorem for ergodic Markov chains

- Theorem: an irreducible aperiodic Markov chain with transition matrix \mathbf{P} has a stationary distribution w satisfying $w_{j}>0$, $\sum_{j} w_{j}=1$, and $\mathbf{w}^{T}=\mathbf{w}^{T} \mathbf{P}$ if, and only if, all its states are positive recurrent, and this stationary distribution is unique and identical to the limiting distribution $w_{j}=\lim _{n \rightarrow \infty} p_{i j}^{(n)}$ independent of initial state s_{i}
- Proof:
- for irreducible aperiodic chain, the following possibilities exist:
(a) all states are positive recurrent
(b) all states are null recurrent
(c) all states are transient
- if all states transient or null recurrent, $\lim _{n \rightarrow \infty} p_{i j}^{(n)}=0$
- if all states positive recurrent, then since all states communicate, $f_{i j}=1$ for all i, j and previous result becomes $\lim _{n \rightarrow \infty} p_{i j}^{(n)}=\mu_{j}^{-1}$
- can define $w_{j}=\lim _{n \rightarrow \infty} p_{i j}^{(n)}$ which is independent of initial state s_{i}
- for all states positive recurrent, then $0<\mu_{j}<\infty$ so $w_{j}>0$ for all j

Fundamental limit theorem (2)

- Theorem: an irreducible aperiodic Markov chain with transition matrix \mathbf{P} has a stationary distribution w satisfying $w_{j}>0$, $\sum_{j} w_{j}=1$, and $\mathbf{w}^{T}=\mathbf{w}^{T} \mathbf{P}$ if, and only if, all its states are positive recurrent, and this stationary distribution is unique and identical to the limiting distribution $w_{j}=\lim _{n \rightarrow \infty} p_{i j}^{(n)}$ independent of initial state s_{i}
- Proof (continued):
- we have $p_{i j}^{(m+n)}=\sum_{k=1}^{\infty} p_{i k}^{(n)} p_{k j}^{(m)}$ so using Fatou's lemma:

$$
\lim _{n \rightarrow \infty} p_{i j}^{(m+n)}=\lim _{n \rightarrow \infty} \sum_{k=1}^{\infty} p_{i k}^{(n)} p_{k j}^{(m)} \geq \sum_{k=1}^{\infty} \lim _{n \rightarrow \infty} p_{i k}^{(n)} p_{k j}^{(m)}
$$

- taking the limit $n \rightarrow \infty$ yields $w_{j} \geq \sum_{k=1}^{\infty} w_{k} p_{k j}^{(m)}$
- define $s \equiv \sum_{k=1}^{\infty} w_{k}$ then sum above equation over j :

$$
s=\sum_{j=1}^{\infty} w_{j} \geq \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} w_{k} p_{k j}^{(m)}=\sum_{k=1}^{\infty} w_{k} \sum_{j=1}^{\infty} p_{k j}^{(m)}=\sum_{k=1}^{\infty} w_{k}=s
$$

interchanging order of the two infinite summations is possible since all summands non-negative (Fubini's theorem)

- since $s \geq s$, equality must hold for all j :

$$
w_{j}=\sum_{k=1}^{\infty} w_{k} p_{k j}^{(m)}
$$

Fundamental limit theorem (3)

- Theorem: an irreducible aperiodic Markov chain with transition matrix \mathbf{P} has a stationary distribution w satisfying $w_{j}>0$, $\sum_{j} w_{j}=1$, and $\mathbf{w}^{T}=\mathbf{w}^{T} \mathbf{P}$ if, and only if, all its states are positive recurrent, and this stationary distribution is unique and identical to the limiting distribution $w_{j}=\lim _{n \rightarrow \infty} p_{i j}^{(n)}$ independent of initial state s_{i}
- Proof (continued):
- have shown $w_{j}=\sum_{k=1}^{\infty} w_{k} p_{k j}^{(m)}$
- for $m=1$, we see the limiting vector \mathbf{w} is stationary!!
- next, from $\sum_{j=1}^{\infty} p_{i j}^{(n)}=1$ then use Fatou:

$$
1=\lim _{n \rightarrow \infty} \sum_{j=1}^{\infty} p_{i j}^{(n)} \geq \sum_{j=1}^{\infty} \lim _{n \rightarrow \infty} p_{i j}^{(n)}=\sum_{j=1}^{\infty} w_{j}
$$

- given $\sum_{j} w_{j} \leq 1$ then consider the limit $m \rightarrow \underset{(m)}{\infty}$ of

$$
w_{j}=\lim _{m \rightarrow \infty} \sum_{k=1}^{\infty} w_{k} p_{k j}^{(m)}
$$

- since $0 \leq p_{k j}^{(m)} \leq 1$ then $\left|w_{k} p_{k j}^{(m)}\right| \leq w_{k}$ and $\sum_{k=1}^{\infty} w_{k}<\infty$ so the dominated convergence theorem can be applied

$$
w_{j}=\lim _{m \rightarrow \infty} \sum_{k=1} w_{k} p_{k j}^{(m)}=\sum_{k=1}^{\infty} w_{k} \lim _{m \rightarrow \infty} p_{k j}^{(m)}=\left(\sum_{k=1}^{\infty} w_{k}\right) w_{j}
$$

- can at last conclude $\sum_{j=1} w_{j}=1$

Fundamental limit theorem (4)

- Theorem: an irreducible aperiodic Markov chain with transition matrix \mathbf{P} has a stationary distribution w satisfying $w_{j}>0$, $\sum_{j} w_{j}=1$, and $\mathbf{w}^{T}=\mathbf{w}^{T} \mathbf{P}$ if, and only if, all its states are positive recurrent, and this stationary distribution is unique and identical to the limiting distribution $w_{j}=\lim _{n \rightarrow \infty} p_{i j}^{(n)}$ independent of initial state s_{i}
- Proof (continued):
- only uniqueness of stationary state to show
- if another stationary vector \mathbf{v} existed, it would have to satisfy $v_{j}>0$, $\sum_{j=1}^{\infty} v_{j}=1$, and $v_{j}=\sum_{i=1}^{\infty} v_{i} i_{i j}^{(n)}$
- conditions for dominated convergence theorem again apply, so taking $n \rightarrow \infty$ limit gives

$$
v_{j}=\lim _{n \rightarrow \infty} \sum_{i=1}^{\infty} v_{i} p_{i j}^{(n)}=\sum_{i=1}^{\infty} v_{i} \lim _{n \rightarrow \infty} p_{i j}^{(n)}=\left(\sum_{i=1}^{\infty} v_{i}\right) w_{j}=w_{j}
$$

- since $\mathbf{v}=\mathbf{w}$, then \mathbf{w} is unique

An example

- consider the following transition matrix $\mathbf{P}=\left[\begin{array}{ccc}\frac{3}{4} & \frac{1}{4} & 0 \\ 0 & \frac{2}{3} & \frac{1}{3} \\ \text { - } \mathbf{P}^{2} \text { all positive entries, so chain is irreducible } & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{2}\end{array}\right]$
- eigenvalues are $1, \frac{1}{2}, \frac{5}{12}$
- right and left eigenvectors (unnormalized) are

1	$\frac{1}{2}$	$\frac{5}{12}$		
right:				
$\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\left[\begin{array}{r}2 \\ -2 \\ 1\end{array}\right]\left[\begin{array}{r}3 \\ -4 \\ 3\end{array}\right]$			\quad	left: $\left[\begin{array}{l}2 \\ 3 \\ 2\end{array}\right]\left[\begin{array}{r}-1 \\ 0 \\ 1\end{array}\right]\left[\begin{array}{r}\frac{5}{12} \\ -3 \\ 4\end{array}\right]$
:---				

- left fixed-point probability vector

$$
\mathbf{w}=\frac{1}{7}\left[\begin{array}{l}
2 \\
3 \\
2
\end{array}\right] \quad \lim _{n \rightarrow \infty} \mathbf{P}^{n}=\mathbf{W}=\frac{1}{7}\left[\begin{array}{lll}
2 & 3 & 2 \\
2 & 3 & 2 \\
2 & 3 & 2
\end{array}\right]
$$

Summary of results

- positive recurrent chain guarantees existence of at least one invariant probability vector
- irreducibility guarantees uniqueness of invariant probability vector
- aperiodicity guarantees limit distribution coincides with invariant distribution

Equilibrium in Markov chains

- suppose a Markov chain is started with probability vector given by \mathbf{w}, the left fixed-point vector of the transition matrix \mathbf{P}
- this means the probability of starting in state s_{i} is w_{i}
- the probability of being in state s_{j} after n steps is $\left(\mathbf{w}^{T} \mathbf{P}^{n}\right)_{j}$, but $\mathbf{w}^{T} \mathbf{P}^{n}=\mathbf{w}^{T}$, so this probability is w_{j}
- thus, the probability vector is always the same, that is, it is stationary or invariant
- when this occurs, the Markov chain is said to be in equilibrium
- recall that an ergodic Markov chain which starts in any probability vector y eventually tends to equilibrium
- the process of bringing the chain into equilibrium from a random starting probability vector in known as thermalization

Reversibility in Markov chains

- an ergodic Markov chain is reversible if the probability of going from state s_{i} to s_{j} is the same as that for going from state s_{j} to s_{i} once the chain is in equilibrium
- the probability that a transition from s_{i} to s_{j} occurs is the probability w_{i} of finding the chain in state s_{i} in equilibrium times the transition probability $p_{i j}$
- reversibility occurs when $w_{i} p_{i j}=w_{j} p_{j i}$
- the above condition is often referred to as detailed balance
- note that detailed balance guarantees the fixed-point condition: since $\sum_{j} p_{i j}=1$ then

$$
\sum_{j} w_{j} p_{j i}=\sum_{j} w_{i} p_{i j}=w_{i}
$$

Law of large numbers for Markov chains

- consider an R-state ergodic Markov chain which starts in state s_{i}
- define $X_{j}^{(m)}= \begin{cases}1 & \text { if chain in state } s_{j} \text { after } m \text { steps } \\ 0 & \text { otherwise }\end{cases}$
- define $N_{j}^{(n)}$ as number of times chain in state s_{j} in first n steps

$$
N_{j}^{(n)}=X_{j}^{(1)}+X_{j}^{(2)}+\cdots+X_{j}^{(n)}
$$

- often called occupation times
- expected value $E\left(X_{j}^{(m)}\right)=p_{i j}^{(m)}$ so

$$
E\left(N_{j}^{(n)}\right)=\sum_{h=1}^{n} p_{i j}^{(h)}
$$

- it can be shown that

$$
\lim _{n \rightarrow \infty} E\left(N_{j}^{(n)}\right) / n=w_{j}
$$

- can show law of large numbers for ergodic Markov chain:

$$
P\left(\left|N_{j}^{(n)} / n-w_{j}\right|>\varepsilon\right) \rightarrow 0 \text { as } n \rightarrow \infty
$$

Central limit and ergodic theorem for Markov chains

- can show a central limit holds

$$
\lim _{n \rightarrow \infty} P\left(\frac{a \sigma_{j}}{\sqrt{n}}<\left(\frac{N_{j}^{(n)}}{n}-w_{j}\right)<\frac{b \sigma_{j}}{\sqrt{n}}\right)=\frac{1}{\sqrt{2 \pi}} \int_{a}^{b} e^{-x^{2} / 2} d x
$$

where σ_{j} depends on w_{j}

- distributions of random variables $N_{j}^{(n)}$ tend to normal distributions
- let $X_{1}, X_{2}, \ldots, X_{n}$ be the actual outcomes that make up an ergodic R-state Markov chain
- from the definition of $X_{j}^{(n)}$, it follows that $\sum_{j=1}^{R} X_{j}^{(n)}=1$ so

$$
\frac{1}{n} \sum_{h=0}^{n-1} f\left(X_{h}\right)=\frac{1}{n} \sum_{h=0}^{n-1} \sum_{j=1}^{R} X_{j}^{(h)} f\left(s_{j}\right)=\sum_{j=1}^{R} N_{j}^{(n)} f\left(s_{j}\right) \rightarrow \sum_{j=1}^{R} w_{j} f\left(s_{j}\right)
$$

- Markov-chain "time"-average approaches required ensemble average!!
- already knew this for stationary stochastic processes

Monte Carlo integration

- Monte Carlo integration using Markov chain in equilibrium:

$$
\begin{gathered}
\int_{V} p(\vec{x}) f(\vec{x}) d^{D} x \approx\langle f\rangle \pm \sqrt{\frac{R_{0}(f)+2 \sum_{h \geq 1} R_{h}(f)}{N}} \\
\langle f\rangle \equiv \frac{1}{N} \sum_{i=1}^{N} f\left(\vec{x}_{i}\right), \quad R_{h}(f) \equiv \frac{1}{N-h} \sum_{i=1}^{N-h}\left(f\left(\vec{x}_{i}\right)-\langle f\rangle\right)\left(f\left(\vec{x}_{i+h}\right)-\langle f\rangle\right)
\end{gathered}
$$

- each point in D-dim. volume V is a state of a Markov chain
- N points $\vec{x}_{1}, \ldots, \vec{x}_{N}$ are elements of an irreducible aperiodic Markov chain with positive recurrent states and stationary or limiting probability dist. $p(\vec{x})$ throughout D-dimensional volume V
- Markov chain should be in equilibrium
- normalization condition $\int_{V} p(\vec{x}) d^{D} x=1$
- absolutely summable autocovariance $\sum_{h=0}^{\infty}\left|R_{h}(f)\right|<\infty$

Autocorrelations

- configurations generated by Markov process depend on previous elements in the chain
- this dependence known as autocorrelation
- this autocorrelation can actually be measured!
- for any observable (integrand) O_{i}, autocorrelation $\varrho(\tau)$ defined by

$$
\frac{\left\langle O_{i} O_{i+\tau}\right\rangle-\left\langle O_{i}\right\rangle^{2}}{\left\langle O_{i}^{2}\right\rangle-\left\langle O_{i}\right\rangle^{2}}
$$

- highly correlated \rightarrow value near 1
- independent \rightarrow value near 0
- decreasing autocorrelations decreases Monte Carlo error
- dependence decreases as distance between elements in chain increases
- do not use every element in chain for "measurements"
- skip some number of elements between measurements

Constructing the transition probability

- generally know probability density $\pi(\phi)$ we need to sample
- for our path integrals, we need to generate paths with probability distribution

$$
\pi(\phi)=\frac{e^{-S[\phi] / \hbar}}{\int_{a}^{b} \mathcal{D} \phi^{\prime} e^{-S\left[\phi^{\prime}\right] / \hbar}}
$$

- in imaginary time formalism, path integral weight is real and positive \rightarrow probability interpretation for Monte Carlo
- how do we construct the Markov transition matrix $P(\widetilde{\phi} \leftarrow \phi)$?
- change to quantum mechanical notation of putting earlier states on right, later states on left
- simplest answer to this question is

the Metropolis-Hastings method

- useful for local updating so changes to action are small
- probability normalization never enters in the calculation!

The Metropolis-Hastings algorithm

- this method uses an auxiliary proposal density $R(\widetilde{\phi} \leftarrow \phi)$ which
- must be normalized
- can be evaluated for all $\phi, \widetilde{\phi}$
- can be easily sampled
- no relationship to the fixed-point probability density $\pi(\phi)$ needed
- given this proposal density, the Metropolis-Hastings method updates $\phi \rightarrow \widetilde{\phi}$ as follows:
(1) use $R(\widetilde{\phi} \leftarrow \phi)$ to propose new value $\widetilde{\phi}$ from current value ϕ
(2) accept the new value with probability

$$
P_{\mathrm{acc}}(\widetilde{\phi} \leftarrow \phi)=\min \left(1, \frac{R(\phi \leftarrow \widetilde{\phi}) \pi(\widetilde{\phi})}{R(\widetilde{\phi} \leftarrow \phi) \pi(\phi)}\right)
$$

(3) if rejected, the original value ϕ is retained

- if proposal density satisfies reversibility $R(\widetilde{\phi} \leftarrow \phi)=R(\phi \leftarrow \widetilde{\phi})$, then acceptance probability reduces to $\min (1, \pi(\widetilde{\phi}) / \pi(\phi))$
- original Metropolis method

Detailed balance in Metropolis-Hastings

- Metropolis-Hastings satisfies detailed balance
- proof:
- (normalized) transition probability density is

$$
\begin{aligned}
& W(\widetilde{\phi} \leftarrow \phi)=P_{\mathrm{acc}}(\widetilde{\phi} \leftarrow \phi) R(\widetilde{\phi} \leftarrow \phi) \\
& +\delta(\widetilde{\phi}-\phi)\left(1-\int \mathcal{D} \bar{\phi} P_{\mathrm{acc}}(\bar{\phi} \leftarrow \phi) R(\bar{\phi} \leftarrow \phi)\right)
\end{aligned}
$$

$$
\begin{aligned}
A(\widetilde{\phi} \leftarrow \phi) & \equiv P_{\operatorname{acc}}(\widetilde{\phi} \leftarrow \phi) R(\widetilde{\phi} \leftarrow \phi) \pi(\phi) \\
& =\min \left(1, \frac{R(\phi \leftarrow \widetilde{\phi}) \pi(\widetilde{\phi})}{R(\widetilde{\phi} \leftarrow \phi) \pi(\phi)}\right) R(\widetilde{\phi} \leftarrow \phi) \pi(\phi) \\
& =\min (R(\widetilde{\phi} \leftarrow \phi) \pi(\phi), R(\phi \leftarrow \widetilde{\phi}) \pi(\widetilde{\phi}))
\end{aligned}
$$

where last line follows from $R(\widetilde{\phi} \leftarrow \phi) \pi(\phi) \geq 0$

- symmetric: $A(\widetilde{\phi} \leftarrow \phi)=A(\phi \leftarrow \widetilde{\phi})$.

Detailed balance in Metropolis-Hastings (continued)

- so we have

$$
\begin{aligned}
& \begin{array}{r}
W(\widetilde{\phi} \leftarrow \phi) \pi(\phi)=P_{\mathrm{acc}}(\widetilde{\phi} \leftarrow \phi) R(\widetilde{\phi} \leftarrow \phi) \pi(\phi) \\
+ \\
+\delta(\widetilde{\phi}-\phi)\left(1-\int \mathcal{D} \bar{\phi} P_{\mathrm{acc}}(\bar{\phi} \leftarrow \phi) R(\bar{\phi} \leftarrow \phi)\right) \pi(\phi) \\
=A(\widetilde{\phi} \leftarrow \phi)+\delta(\widetilde{\phi}-\phi)\left(\pi(\phi)-\int \mathcal{D} \bar{\phi} A(\bar{\phi} \leftarrow \phi)\right) \\
=A(\widetilde{\phi} \leftarrow \phi)+\delta(\widetilde{\phi}-\phi) K(\phi) \\
\\
\text { where } \quad K(\phi)=\pi(\phi)-\int \mathcal{D} \bar{\phi} A(\bar{\phi} \leftarrow \phi)
\end{array}
\end{aligned}
$$

- given symmetry of A and Dirac δ-function, then detailed balance holds

$$
W(\widetilde{\phi} \leftarrow \phi) \pi(\phi)=W(\phi \leftarrow \widetilde{\phi}) \pi(\widetilde{\phi})
$$

A one dimensional example

- does this really work?
- let $g(x)=\cos \left(\sqrt{1+x^{2}}\right)$ and $h(x)=e^{-x^{2}} /\left(x^{2}+2\right)$
- $g(x)$ changes sign, $h(x) \geq 0$
- consider ratio of integrals $I=\frac{\int_{-\infty}^{\infty} g(x) h(x) d x}{\int_{-\infty}^{\infty} h(x) d x}=0.3987452$
- sampling density $\pi(x)=Z^{-1} h(x)$ where $Z=\int_{-\infty}^{\infty} h(x) d x$
- algorithm:
- choose δ uniform probability for $-\Delta \leq \delta \leq \Delta$
- propose $\widetilde{x}=x+\delta$
- acceptance probability $\min (1, \pi(\tilde{x}) / \pi(x))=\min (1, h(\widetilde{x}) / h(x))$
- $\Delta=1.5$ for acceptance $\sim 50 \%$
- never needed Z

Part III

Monte Carlo study of the simple harmonic oscillator

Discretization of SHO action

- action of harmonic oscillator (imaginary time formalism)

$$
S[x(\tau)]=\int_{\tau_{a}}^{\tau_{b}} d \tau\left(\frac{1}{2} m \dot{x}^{2}+\frac{1}{2} m \omega^{2} x^{2}\right)
$$

- discretize time $N \varepsilon=\tau_{b}-\tau_{a}$ for Monte Carlo evaluation

$$
\frac{S}{\hbar}=\frac{m \varepsilon}{2 \hbar} \sum_{j=0}^{N-1}\left[\left(\frac{x_{j+1}-x_{j}}{\varepsilon}\right)^{2}+\omega^{2}\left(\frac{x_{j+1}+x_{j}}{2}\right)^{2}\right]
$$

- choose ε so discretization errors sufficiently small
- introduce dimensionless parameters

$$
\begin{gathered}
x_{k}=d_{k} \sqrt{\frac{\varepsilon \hbar}{m}} \quad \kappa=\frac{1}{4} \varepsilon^{2} \omega^{2} \\
\frac{S}{\hbar}=\frac{1}{2} \sum_{j=0}^{N-1}\left[\left(d_{j+1}-d_{j}\right)^{2}+\kappa\left(d_{j+1}+d_{j}\right)^{2}\right]
\end{gathered}
$$

Discretization of action (continued)

- a few more manipulations produce

$$
\frac{S}{\hbar}=\frac{1}{2}(1+\kappa)\left(d_{0}^{2}+d_{N}^{2}\right)+(1+\kappa)\left[\sum_{j=1}^{N-1} d_{j}^{2}\right]-(1-\kappa)\left[\sum_{j=0}^{N-1} d_{j} d_{j+1}\right]
$$

- first constant irrelevant (set to zero), then one last rescaling

$$
u_{j}=d_{j} \sqrt{1+\kappa} \quad g=\frac{1-\kappa}{1+\kappa} \quad d_{0}=d_{N}=0
$$

- final result for action

$$
\frac{S}{\hbar}=\left[\sum_{j=1}^{N-1} u_{j}^{2}\right]-g\left[\sum_{j=0}^{N-1} u_{j} u_{j+1}\right]
$$

Metropolis updating of path

- to update location (at a single time)
- propose random shift - $\Delta \leq \delta \leq \Delta$ with uniform probability
- calculate change to the action

$$
\delta S / \hbar=\delta\left(\delta+2 u_{j}-g\left(u_{j-1}+u_{j+1}\right)\right)
$$

- accept $u_{j}^{\text {new }}=u_{j}+\delta$ with probability $\min \left(1, e^{-\delta S / \hbar}\right)$
- rule of thumb: fix Δ for about 50% acceptance rate
- lower rate = wasting too much time with rejections
- higher rate = moving through phase space too slowly
- repeat for each u_{j} for $j=1, \ldots, N-1$ (this is called one sweep)
- repeat for certain number of sweeps
- until autocorrelations sufficiently small

Actual C++ code

- here is actual $\mathrm{C}++$ code which does the updating

```
void markov::update()
{
    double shift,deltaS;
    for (int i=1;i<=Nsweeps;i++)
        for (int t=1;t<Ntimesteps;t++){
                            // propose shift in location[t]
        shift=2.0*max_shift_per_instance*(rng.generate()-0.5);
                            // compute change in action
        deltaS=shift*(shift+2.0*locations[t]
                                    -hop_param*(locations[t-1]+locations[t+1]));
                            // Metropolis accept or reject
        if (deltaS<0.0) accept=1;
        else accept=(rng.generate()<=exp(-deltaS));
        if (accept) locations[t]+=shift;
            }
}
```


Simulation guidelines

- to start Markov chain
- choose a random path (hot start)
- or choose $u_{j}=0$ for all j (cold start)
- update $N_{\text {therm }}$ sweeps until fixed point of chain achieved (thermalization) \rightarrow check some simple observable
- once thermalized, begin "measurements"
- must choose
- ε so discretization errors sufficiently small
- Δ for adequate acceptance rate
- $N_{\text {sweeps }}$ for sufficiently small autocorrelations
- $N_{\text {meas }}$ for desired precision of results

Path animation

- animation of first 100 time slices of u_{j} path

Acceptance rate and autocorrelations

- choose Δ so acceptance rate near 0.5
- choose $N_{\text {sweeps }}$ so autocorrelations near 0.1

Correlation function

- comparison of final Monte Carlo estimates with exact results

- exact result shown as curve
- Monte Carlo estimates shown by circles (statistical uncertainties too small to see)

Part IV

Monte Carlo calculations in real scalar field theory in 2+1 dimensions

Action in continuous space-time

- action in continuous Euclidean D-dimensional space-time (imaginary time formalism) given by

$$
S=\int d^{D} x\left(\frac{1}{2} \partial_{\mu} \varphi(x) \partial_{\mu} \varphi(x)+\frac{1}{2} m^{2} \varphi(x)^{2}+\frac{g}{4!} \varphi(x)^{4}\right) .
$$

- action must be dimensionless (natural units $\hbar=c=1$)
- m has units of a derivative ∂_{μ}, that is, of a mass
- units of field $[\phi]=[m]^{\frac{1}{2} D-1}$
- coupling g has units $[g]=[m]^{4-D}$
- coupling dimensionless in 4 space-time dimensions
- has units of mass in 3 space-time dimensions so g / m dimensionless

Quantization

- quantization using path integrals
- generalize notion of "path": a path here is a field configuration
- path integral is now integrations over all field configurations
- for real scalar field, integral $-\infty \leq \phi(x) \leq \infty$ at every space-time point x
- time-ordered two-point function given by

$$
\left\langle T \phi\left(x_{1}\right) \phi\left(x_{2}\right)\right\rangle=\frac{\int \mathcal{D} \phi \phi\left(x_{1}\right) \phi\left(x_{2}\right) \exp (-S[\phi])}{\int \mathcal{D} \phi \exp (-S[\phi])} .
$$

- generalizes to n-point functions: time-ordered product of n fields

Discretization of action

- Monte Carlo study requires action on a space-time lattice
- use anisotropic cubic lattice with temporal lattice spacing a_{t} and spatial lattice spacing a_{s}
- use simplest finite difference for the field derivatives
- action is given by

$$
\begin{aligned}
S & =a_{s}^{D-1} a_{t} \sum_{x}\left(\sum_{\mu} \frac{\left(\varphi\left(x+a_{\mu} \hat{\mu}\right)-\varphi(x)\right)^{2}}{2 a_{\mu}^{2}}+\frac{1}{2} m^{2} \varphi(x)^{2}+\frac{g}{4!} \varphi(x)^{4}\right) \\
& =a_{s}^{D-1} a_{t} \sum_{x}\left(-\sum_{\mu} \frac{\varphi\left(x+a_{\mu} \hat{\mu}\right) \varphi(x)}{a_{\mu}^{2}}+\frac{1}{2}\left(m^{2}+\sum_{\nu} \frac{2}{a_{\nu}^{2}}\right) \varphi(x)^{2}+\frac{g}{4!} \varphi(x)^{4}\right)
\end{aligned}
$$

- redefine the field: $\sqrt{a_{s}^{D-3} a_{t}} \varphi(x)=\sqrt{2 \kappa_{s}} \phi(x)$
where κ_{s} is dimensionless number, new field $\phi(x)$ is dimensionless

Action on lattice

- a few more dimensionless parameters:

$$
\begin{aligned}
& a_{s} / a_{t}=\zeta, \quad \lambda=\frac{g \zeta \kappa_{s}^{2}}{6 a_{s}^{D-4}}, \\
& \kappa_{s}\left(a_{s}^{2} m^{2}+2 \zeta^{2}+2 D-2\right)=1-2 \lambda, \quad \kappa=\zeta \kappa_{s}
\end{aligned}
$$

- final form for lattice action

$$
\begin{gathered}
S=\sum_{x}\left(-\frac{2 \kappa}{\zeta} \sum_{j=1}^{D-1} \phi(x) \phi\left(x+a_{s} \hat{j}\right)-2 \kappa \zeta \phi(x) \phi\left(x+a_{t} \hat{t}\right)\right. \\
\left.+(1-2 \lambda) \phi(x)^{2}+\lambda \phi(x)^{4}\right)
\end{gathered}
$$

- hopping parameter κ essentially sets mass parameter, λ is interaction coupling

Exact results in free field theory

- the free field theory $\lambda=0$ is exactly soluable
- path integrals are multivariate gaussians
- free action can be written in form

$$
S[\phi]=\frac{1}{2} \sum \phi(x) M(x, y) \phi(y)
$$

- for N lattice sites, M is real and symmetric $N \times N$ matrix having positive eigenvalues
- this matrix given by

$$
\begin{aligned}
M(x, y)= & -\frac{2 \kappa}{\zeta} \sum_{j=1}^{D-1}\left(\delta\left(y, x+a_{s} \hat{j}\right)+\delta\left(x, y+a_{s} \hat{j}\right)\right) \\
& -2 \kappa \zeta\left(\delta\left(y, x+a_{t} \hat{t}\right)+\delta\left(x, y+a_{t} \hat{t}\right)\right)+2 \delta(x, y)
\end{aligned}
$$

Gaussian integrals in free theory

- N-dimensional multivariate Gaussian integral of form

$$
\begin{aligned}
& \prod_{i=1}^{N}\left(\int_{-\infty}^{\infty} d \phi_{i}\right) \exp \left(-\frac{1}{2} \phi_{j} M_{j k} \phi_{k}+J_{n} \phi_{n}\right) \\
= & \left(\operatorname{det}\left(\frac{M}{2 \pi}\right)\right)^{-1 / 2} \exp \left(\frac{1}{2} J_{j} M_{j k}^{-1} J_{k}\right)
\end{aligned}
$$

- J-trick: use derivatives wrt to J_{k}, followed by $J_{k} \rightarrow 0$ to evaluate all integrals involving any number of products of the fields

$$
\begin{aligned}
& \prod_{i=1}^{N}\left(\int_{-\infty}^{\infty} d \phi_{i}\right) \phi_{m_{1}} \phi_{m_{2}} \ldots \phi_{m_{r}} \exp \left(-\frac{1}{2} \phi_{j} M_{j k} \phi_{k}\right) \\
= & \frac{\delta}{\delta J_{m_{1}}} \cdots \frac{\delta}{\delta J_{m_{r}}} \prod_{i=1}^{N}\left(\int_{-\infty}^{\infty} d \phi_{i}\right) \exp \left(-\frac{1}{2} \phi_{j} M_{j k} \phi_{k}+J_{n} \phi_{n}\right)
\end{aligned}
$$

- does Wick contractions automagically!

Two-point function

- two-point function given by $\left\langle T \phi\left(x_{1}\right) \phi\left(x_{2}\right)\right\rangle=M^{-1}\left(x_{1}, x_{2}\right)$
- invert M by method of Green functions and use Fourier series
- for $L_{x} \times L_{y} \times L_{t}$ lattice, result is

$$
M^{-1}(x, y)=\frac{\zeta}{2 \kappa L_{x} L_{y} L_{t}} \sum_{k_{\mu}} \frac{\cos (k \cdot(x-y))}{\left(a_{s}^{2} m^{2}+4 \sum_{j=1}^{2} \sin ^{2}\left(\frac{1}{2} k_{j}\right)+4 \zeta^{2} \sin ^{2}\left(\frac{1}{2} k_{t}\right)\right)}
$$

where $k_{\mu}=2 \pi n_{\mu} / L_{\mu}$ for $n_{\mu}=0,1,2, \ldots, L_{\mu}-1$

- pole gives energy $a_{t} E_{p}$ of single particle of momentum $a_{s} p$

$$
a_{t} E_{p}=2 \sinh ^{-1}\left(\frac{1}{2 \zeta} \sqrt{a_{s}^{2} m^{2}+4 \sin ^{2}\left(\frac{1}{2} a_{s} p_{x}\right)+4 \sin ^{2}\left(\frac{1}{2} a_{s} p_{y}\right)}\right)
$$

- for small a_{t}, a_{s} this becomes $E_{p}=\sqrt{m^{2}+p_{x}^{2}+p_{y}^{2}}$
- spectrum is sum of free particle energies

Single-site Monte Carlo updating

- Metropolis-Hastings method needs acceptable acceptance rate
- changing all field values at once generally leads to large changes in action \rightarrow near zero acceptance rate
- reasonable acceptance rate achieved by updating field at a single lattice site at any given time
- ergodicity ensured by sweeping through lattice, updating each and every site one at a time
- in battle against autocorrelations, expect
- small wavelength modes updated well
- long wavelength modes updated not so well

δS for single-site update

- recall action is

$$
\begin{gathered}
S=\sum_{x}\left(-\frac{2 \kappa}{\zeta} \sum_{j=1}^{D-1} \phi(x) \phi\left(x+a_{s} \hat{j}\right)-2 \kappa \zeta \phi(x) \phi\left(x+a_{t} \hat{t}\right)\right. \\
\left.+(1-2 \lambda) \phi(x)^{2}+\lambda \phi(x)^{4}\right)
\end{gathered}
$$

- for $\widetilde{\phi} \leftarrow \phi$, change in action is $\delta S=S[\widetilde{\phi}]-S[\phi]$
- define neighborhood

$$
N(x)=-\frac{2 \kappa}{\zeta} \sum_{j=1}^{D-1}\left(\phi\left(x+a_{s} \hat{j}\right)+\phi\left(x-a_{s} \hat{j}\right)\right)-2 \kappa \zeta\left(\phi\left(x+a_{t} \hat{t}\right)+\phi\left(x-a_{t} \hat{t}\right)\right)
$$

- if field at one site x changed $\phi(x) \rightarrow \phi(x)+\Delta$, then

$$
\delta S=\Delta\left(N(x)+(\Delta+2 \phi(x))\left(1+\lambda\left((\Delta+2 \phi(x)) \Delta+2\left(\phi(x)^{2}-1\right)\right)\right)\right)
$$

δS for single-site update (continued)

- change in action can also be written

$$
\begin{aligned}
\delta S & =\Delta\left(a_{0}+a_{1} \Delta+a_{2} \Delta^{2}+a_{3} \Delta^{3}\right), \\
a_{0} & =N(x)+2 \phi(x)\left(1+2 \lambda\left(\phi(x)^{2}-1\right)\right) \\
a_{1} & =1+2 \lambda\left(3 \phi(x)^{2}-1\right) \\
a_{2} & =4 \lambda \phi(x) \\
a_{3} & =\lambda
\end{aligned}
$$

Metropolis sweeps

- single-site updates involve a single continuous real variable ϕ
- use simplest proposal density

$$
R(\widetilde{\phi} \leftarrow \phi)= \begin{cases}\frac{1}{\Delta_{0}} & -\frac{1}{2} \Delta_{0} \leq(\tilde{\phi}-\phi) \leq \frac{1}{2} \Delta_{0} \\ 0 & |\widetilde{\phi}-\phi|>\frac{1}{2} \Delta_{0}\end{cases}
$$

- width Δ_{0} chosen for acceptance probability around 50%
- proposed new value accepted with probability $\min (1, \exp (-\delta S))$
- if rejected, keep current field value
- sweeping through lattice ensures ergodicity
- in sweeping through the lattice in predetermined order, detailed balance no longer holds
- not a problem since the fixed-point stability condition still holds
- detailed balance maintained by updating sites in random order

Battling autocorrelations

- when the single particle mass $a_{t} m_{\text {gap }}$ is small, the coherence length $\xi=1 /\left(a_{t} m_{\text {gap }}\right)$ becomes large
- $\xi \rightarrow \infty$ signals continuum limit
- $\xi \rightarrow \infty$ occurs near critical point (2nd order phase transition)
- we will see that autocorrelations with Metropolis updating become long ranged as ξ becomes large
\rightarrow known as critical slowing down
- autocorrelations problematic even for $\xi \approx 5$ with Metropolis
- need help to better update long wavelength modes

Microcanonical updating

- long wavelength modes are associated with lower frequencies, lower energies
- in other words, long-wavelength modes associated with very small changes to the action
- possible way to improve autocorrelations:
\rightarrow make large but action preserving $\delta S=0$ changes to field at one site
- call this a microcanonical update
- often referred to as overrelaxation
- local updating is so easy, don't want to give up on it yet!
- must still update in such a way to satisfy detailed balance
- not ergodic, so microcanonical sweeps must be used in combination with ergodic scheme, such as Metropolis sweeps

Microcanonical updating (2)

- we know Metropolis-Hasting method satisfies detailed balance
- choose proposal density strongly peaked about action-preserving value of field, then carefully take δ-function limit
- revisit Metropolis-Hastings with sharply-peaked Breit-Wigner proposal probability density

$$
R_{f}(\tilde{\phi} \leftarrow \phi)=\frac{1}{\pi} \frac{\varepsilon}{(\widetilde{\phi}-f(\phi))^{2}+\varepsilon^{2}}
$$

where ε is a constant and $f(\phi)$ is well-behaved, single-valued, invertible function

- acceptance probability

$$
P_{\mathrm{acc}}(\widetilde{\phi} \leftarrow \phi)=\min \left(1, \frac{R_{f}(\phi \leftarrow \widetilde{\phi}) \pi(\widetilde{\phi})}{R_{f}(\widetilde{\phi} \leftarrow \phi) \pi(\phi)}\right)=\min \left(1, \frac{\left((\widetilde{\phi}-f(\phi))^{2}+\varepsilon^{2}\right) \pi(\widetilde{\phi})}{\left((\phi-f(\widetilde{\phi}))^{2}+\varepsilon^{2}\right) \pi(\phi)}\right)
$$

Microcanonical updating (3)

- carefully take $\varepsilon \rightarrow 0$ limit: $R_{f}(\widetilde{\phi} \leftarrow \phi) \rightarrow \delta(\widetilde{\phi}-f(\phi))$
- determining acceptance probability is tricky
- probability of proposing a value between
$f(\phi)-\sqrt{\varepsilon} \leq \widetilde{\phi} \leq f(\phi)+\sqrt{\varepsilon}$ is

$$
\int_{f(\phi)-\sqrt{\varepsilon}}^{f(\phi)+\sqrt{\varepsilon}} d \widetilde{\phi} R_{f}(\widetilde{\phi} \leftarrow \phi)=\frac{2}{\pi} \tan ^{-1}\left(\frac{1}{\sqrt{\varepsilon}}\right)
$$

which does tends to unity as $\varepsilon \rightarrow 0$

- if $f(\phi)$ more than $\sqrt{\varepsilon}$ away from ϕ, probability transition is actually made is

$$
\begin{aligned}
& \int_{f(\phi)-\sqrt{\varepsilon}}^{f(\phi)+\sqrt{\varepsilon}} d \widetilde{\phi} W_{f}(\widetilde{\phi} \leftarrow \phi)=\int_{f(\phi)-\sqrt{\varepsilon}}^{f(\phi)+\sqrt{\varepsilon}} d \widetilde{\phi} P_{\operatorname{acc}}(\widetilde{\phi} \leftarrow \phi) R_{f}(\widetilde{\phi} \leftarrow \phi) \\
& =\min \left(\frac{2}{\pi} \tan ^{-1}\left(\frac{1}{\sqrt{\varepsilon}}\right), \frac{1}{\pi} \int_{f(\phi)-\sqrt{\varepsilon}}^{f(\phi)+\sqrt{\varepsilon}} d \frac{\varepsilon \pi(\widetilde{\phi})}{\left((\phi-f(\widetilde{\phi}))^{2}+\varepsilon^{2}\right) \pi(\phi)}\right)
\end{aligned}
$$

Microcanonical updating (4)

- write $\widetilde{\phi}=f(\phi)+y$, then remaining integral becomes

$$
\frac{1}{\pi} \int_{-\sqrt{\varepsilon}}^{\sqrt{\varepsilon}} d y \frac{\varepsilon \pi(f(\phi)+y)}{\left((\phi-f(f(\phi)+y))^{2}+\varepsilon^{2}\right) \pi(\phi)}
$$

- if $f(f(\phi)) \neq \phi$, can show this integral goes to zero as $\varepsilon \rightarrow 0$
- for self-inverse function $f(f(\phi))=\phi$, expansion about $y=0$ must be carefully done, integral has form

$$
\frac{\varepsilon}{\pi} \int_{-\sqrt{\varepsilon}}^{\sqrt{\varepsilon}} d y \frac{\left(a_{0}+a_{1} y+a_{2} y^{2}+\ldots\right)}{\left(\varepsilon^{2}+b_{2} y^{2}+b_{3} y^{3}+b_{4} y^{4} \ldots\right)}
$$

- must retain $b_{2} y^{2}$ in denominator, expand rest about $y=0$:

$$
\frac{\varepsilon}{\pi} \int_{-\sqrt{\varepsilon}}^{\sqrt{\varepsilon}} d y \frac{a_{0}}{\left(\varepsilon^{2}+b_{2} y^{2}\right)}\left\{1+\frac{a_{1}}{a_{0}} y+\frac{a_{2}}{a_{0}} y^{2}+\left(\frac{a_{3}}{a_{0}}-\frac{b_{3}}{\varepsilon^{2}}\right) y^{3} \ldots\right\}
$$

- for $b_{2}>0$, result of integration is

$$
\frac{2 a_{0}}{\pi \sqrt{b_{2}}} \tan ^{-1}\left(\sqrt{\frac{b_{2}}{\varepsilon}}\right)\left\{1+d_{1} \sqrt{\varepsilon}+d_{2} \varepsilon+d_{3} \varepsilon^{3 / 2}+\cdots\right\}
$$

Microcanonical updating (5)

- acceptance probability in limit $\varepsilon \rightarrow 0$ given by

$$
P_{\mathrm{acc}}=\min \left(1, \frac{a_{0}}{\sqrt{b_{2}}}\right)
$$

- here $a_{0}=\pi(f(\phi)) / \pi(\phi)$ and $b_{2}=\left(f^{\prime}(f(\phi))\right)^{2}$
- differentiate both sides of $f(f(\phi))=\phi$ with respect to ϕ, so for self-inverse function

$$
\begin{aligned}
& 1=\frac{d}{d \phi}(f(f(\phi)))=f^{\prime}(f(\phi)) f^{\prime}(\phi) \\
& \frac{1}{\left(f^{\prime}(f(\phi))\right)^{2}}=\left|\frac{f^{\prime}(\phi)}{f^{\prime}(f(\phi))}\right| \quad \text { (self-inverse function) }
\end{aligned}
$$

- take limit $\varepsilon \rightarrow 0$ acceptance probability goes to

$$
P_{\mathrm{acc}}(\widetilde{\phi} \leftarrow \phi)=\min \left(1, \frac{\sqrt{\left|f^{\prime}(\phi)\right|} \pi(\widetilde{\phi})}{\sqrt{\left|f^{\prime}(\widetilde{\phi})\right|} \pi(\phi)}\right)
$$

Microcanonical updating (6)

- specialize to action preserving function $f(\phi)$
- for infinitesimal change $\phi \rightarrow \phi+\delta \phi$

$$
S(\phi+\delta \phi)=S(f(\phi+\delta \phi))
$$

- expand both sides

$$
\begin{aligned}
S(\phi)+S^{\prime}(\phi) \delta \phi+O\left(\delta \phi^{2}\right) & =S\left(f(\phi)+f^{\prime}(\phi) \delta \phi+O\left(\delta \phi^{2}\right)\right) \\
& =S(f(\phi))+S^{\prime}(f(\phi)) f^{\prime}(\phi) \delta \phi+O\left(\delta \phi^{2}\right) \\
& =S(\phi)+S^{\prime}(f(\phi)) f^{\prime}(\phi) \delta \phi+O\left(\delta \phi^{2}\right) .
\end{aligned}
$$

- solve order by order in $\delta \phi$

$$
S^{\prime}(\phi)=S^{\prime}(f(\phi)) f^{\prime}(\phi) \rightarrow f^{\prime}(\phi)=\frac{S^{\prime}(\phi)}{S^{\prime}(f(\phi))}, \quad f^{\prime}(f(\phi))=\frac{S^{\prime}(f(\phi))}{S^{\prime}(\phi)}
$$

- proposal and acceptance probability densities are

$$
\begin{aligned}
& R_{f}(\widetilde{\phi} \leftarrow \phi)=\delta(\widetilde{\phi}-f(\phi)), \quad f(f(\phi))=\phi, \quad S(f(\phi))=S(\phi), \\
& P_{\mathrm{acc}}(\widetilde{\phi} \leftarrow \phi)=\min \left(1,\left|\frac{S^{\prime}(\phi)}{S^{\prime}(\widetilde{\phi})}\right|\right), \quad \pi(\phi)=\frac{\exp (-S[\phi])}{\int \mathcal{D} \widetilde{\phi} \exp (-S[\tilde{\phi}])}
\end{aligned}
$$

Microcanonical updating (7)

- generalize to multiple self-inverse functions
- for ϕ^{4} at most four field values with same local action
- generalize to probability μ of proposing a change
- sometimes need $\mu<1$ to prevent (damped) oscillations in autocorrelation function
- summary of microcanonical updating process:
(1) decide to propose new field value with probability μ (skip steps below if no proposal)
(2) solve $\delta S(\phi)=0$, let ϕ_{j} denote real solutions different from ϕ
- these are roots of a cubic polynomial
(3) randomly choose one of the ϕ_{j} with equal probability, let $\widetilde{\phi}$ denote the chosen value
(9) accept with probability

Autocorrelations

- studied autocorrelation function $\rho(\tau)$ of $\langle\Phi(t) \Phi(0)\rangle$ for $t=1 /\left(2 a_{s} m\right)$ and $\Phi(t)=\sum_{x y} \phi(x, y, t)$
- τ is number of Metropolis sweeps in plots below
- $a_{s} m=0.10,0.25,0.50$ for $\lambda=0$ on 24^{3} isotropic lattice
- 2200 sweeps to reduce autocorrelations to 0.1 for $a_{s} m=0.10$

Autocorrelations

- autocorrelations $\rho(\tau)$ of $\langle\Phi(t) \Phi(0)\rangle$ for $t=1 /\left(2 a_{s} m\right)$
- τ is number of compound sweeps,
- compound sweep = 1 Metropolis + 1 microcanonical sweep
- μ is probability of proposing change in microcanonical updates
- $a_{s} m=0.10,0.25,0.50$ for $\lambda=0$ on 24^{3} isotropic lattice
- undesirable oscillations on left removed using $\mu=0.98$ or updating sites in random order

Autocorrelations

- autocorrelations $\rho(\tau)$ of $\langle\Phi(t) \Phi(0)\rangle$ for $t=1 /\left(2 a_{s} m\right)$
- τ is number of compound sweeps
- compound sweep $=1$ Metropolis $+N_{\mu}$ microcanonical sweeps
- μ is probability of proposing change in microcanonical updates
- $a_{s} m=0.10$ for $\lambda=0$ on 24^{3} isotropic lattice
- left-hand plot, $N_{\mu}=1$ and μ is varied
- right-hand plot, $\mu=0.98$ and N_{μ} is varied

Autocorrelations

- autocorrelations $\rho(\tau)$ of $\langle\Phi(t) \Phi(0)\rangle$ for $t=1 /\left(2 a_{s} m\right)$
- τ is number of compound sweeps
- compound sweep $=1$ Metropolis $+N_{\mu}$ microcanonical sweeps
- $\mu=0.98$ probability of proposing change in microcanonical
- $a_{s} m=0.25,0.50$ for $\lambda=0$ on 24^{3} isotropic lattice

Calculating the spectrum

- stationary-state energies extracted from asymptotic decay rates of temporal correlations of the fields
- temporal evolution of field as Heisenberg-picture quantum operator

$$
\phi(t)=e^{H t} \phi(0) e^{-H t}
$$

- under certain general assumptions and ignoring temporal boundary conditions, then for $t \geq 0$

$$
\begin{aligned}
\langle 0| \phi(t) \phi(0)|0\rangle & =\sum_{n}\langle 0| e^{H t} \phi(0) e^{-H t}|n\rangle\langle n| \phi(0)|0\rangle, \\
& \left.=\sum_{n}^{n}|\langle n| \phi(0)| 0\right\rangle\left.\right|^{2} e^{-\left(E_{n}-E_{0}\right) t}=\sum_{n} A_{n} e^{-\left(E_{n}-E_{0}\right) t},
\end{aligned}
$$

- where complete set of ${ }^{n}$ (discrete) eigenstates of H^{n} satisfying $H|n\rangle=E_{n}|n\rangle$ inserted
- if $\langle 1| \phi(0)|0\rangle \neq 0$, then A_{1} and $E_{1}-E_{0}$ can be extracted as t becomes large, assuming $\langle 0| \phi(0)|0\rangle=0$
- can use any operator $O(t)$ which is a function of the field $\phi(t)$ only on a time slice t

Calculating the spectrum (2)

- extraction of A_{1} and $E_{1}-E_{0}$ done using correlated- χ^{2}

$$
\chi^{2}=\sum_{t t^{\prime}}(C(t)-M(t, \alpha)) \sigma_{t t^{\prime}}^{-1}\left(C\left(t^{\prime}\right)-M\left(t^{\prime}, \alpha\right)\right)
$$

where $C(t)$ represents Monte Carlo estimates of correlation function with covariance matrix $\sigma_{t t^{\prime}}$ and model function is $M(t, \alpha)=\alpha_{1} e^{-\alpha_{0} t}$.

- minimize expression with respect to the model parameters α_{0}, α_{1}
- uncertainties in the best-fit parameters $\alpha_{0}=E_{1}-E_{0}$ and $\alpha_{1}=A_{1}$ are obtained by a jackknife or bootstrap procedure
- fit must be done for a time range $t_{\min } \leq t \leq t_{\text {max }}$ such that an acceptable fit quality is obtained, that is, $\chi^{2} / \mathrm{dof} \approx 1$
- sum of two-exponentials as model function can be used to minimize sensitivity to $t_{\text {min }}$
- but fit parameters associated with faster-decaying exponential generally not good estimates of gap to next energy level and should be discarded

Jackknife resampling

- return to independent trials process $X_{1}, X_{2}, \ldots, X_{N}$
- expected value $E(f(X))$ estimated using $\langle f\rangle=\frac{1}{N} \sum_{k=1}^{N} f\left(X_{k}\right)$
- sometimes f is a very complicated function, or it could be a function of the expected value!
- propagation of errors often not possible \rightarrow resampling schemes
- let $\langle f\rangle$ denote Monte Carlo estimate of some quantity f using all X_{k} for $k=1,2, \ldots, N$
- let $\langle f\rangle_{J}$ denote Monte Carlo estimate of f omitting X_{J} (so use the other $N-1$ values X_{k})
- jackknife error estimate given by

$$
\sigma^{(J)}=\left(\frac{N-1}{N} \sum_{J=1}^{N}\left(\langle f\rangle_{J}-\langle f\rangle\right)^{2}\right)^{1 / 2}
$$

- Monte Carlo error formula can be used to determine covariance matrix $\sigma_{t t^{\prime}}$ for correlation function itself in χ^{2}
- jackknife gives errors in model fit parameters

Bootstrap resampling

- another resampling scheme is the bootstrap
- again, let $\langle f\rangle$ denote Monte Carlo estimate of some quantity f using all X_{k} for $k=1,2, \ldots, N$
- let $\langle f\rangle_{b}$ denote Monte Carlo estimate of f using a new set \widehat{X}_{k} for $k=1,2, \ldots, N$ where each \widehat{X}_{k} is one of the original X_{j} chosen randomly with equal probability (a bootstrap sample)
- a given X_{j} can occur multiple times in the bootstrap sample
- obtain large number B of such estimates
- let $\widehat{\langle f\rangle}=(1 / B) \sum_{b=1}\langle f\rangle_{b}$
- bootstrap error given by

$$
\sigma^{(B)}=\left(\frac{1}{B-1} \sum_{b=1}^{B}\left(\langle f\rangle_{b}-\widehat{\langle f\rangle}\right)^{2}\right)^{1 / 2}
$$

- plot of probability distribution from bootstrap estimates

The effective mass

- particularly good visual tool to see how well energy extracted is so-called effective mass
- for correlator $C(t)$, effective mass defined by

$$
m_{\mathrm{eff}}(t)=\ln \left(\frac{C(t)}{C\left(t+a_{t}\right)}\right)
$$

- function which tends to $E_{1}-E_{0}$ as t becomes large

$$
\begin{aligned}
\lim _{t \rightarrow \infty} m_{\mathrm{eff}}(t) & =\lim _{t \rightarrow \infty} \ln \left(\frac{A_{1} e^{-\left(E_{1}-E_{0}\right) t}\left(1+\left(A_{2} / A_{1}\right) e^{-\left(E_{2}-E_{1}\right) t}+\ldots\right)}{A_{1} e^{-\left(E_{1}-E_{0}\right)\left(t+a_{t}\right)}\left(1+\left(A_{2} / A_{1}\right) e^{-\left(E_{2}-E_{1}\right)\left(t+a_{t}\right)}+. .\right)}\right) \\
& =\ln \left(e^{\left(E_{1}-E_{0}\right) a_{t}}\right)=a_{t}\left(E_{1}-E_{0}\right)
\end{aligned}
$$

- value $E_{1}-E_{0}$ seen as large-time plateau in effective mass
- contributions from faster-decaying exponentials seen as deviations of the effective mass from its asymptotic plateau value
- "good" operator with little coupling to higher-lying states = rapid onset of plateau
- statistically noise generally grows with t

The effective mass (continued)

- two examples of effective masses
- left: static quark-antiquark potential for separation 0.5 fm
- right: nucleon

Excited states from correlation matrices

- extracting more than just the lowest energy in a symmetry channel requires a hermitiam matrix of correlation functions $C_{i j}(t)$
- let $\lambda_{n}\left(t, t_{0}\right)$ denote eigenvalues of $C\left(t_{0}\right)^{-1 / 2} C(t) C\left(t_{0}\right)^{-1 / 2}$, for t_{0} some fixed reference time
- these eigenvalues can be viewed as principal correlators
- ordered such that $\lambda_{0} \geq \lambda_{1} \geq \cdots$ as t becomes large
- can show that

$$
\begin{aligned}
\lim _{t \rightarrow \infty} \lambda_{n}\left(t, t_{0}\right) & =e^{-E_{n}\left(t-t_{0}\right)}\left(1+O\left(e^{-\Delta_{n}\left(t-t_{0}\right)}\right)\right) \\
\Delta_{n} & =\min _{k \neq n}\left|E_{k}-E_{n}\right|
\end{aligned}
$$

- principal effective masses associated with principal correlators

$$
m_{\mathrm{eff}}^{(n)}(t)=\ln \left(\frac{\lambda_{n}\left(t, t_{0}\right)}{\lambda_{n}\left(t+a_{t}, t_{0}\right)}\right)
$$

- for $N \times N$ correlation matrix, these functions plateau to N lowest lying energies

Principal effective masses

- LHPC currently holds world record for most energy levels extracted in any lattice QCD computation: 9 in nucleon channel

Spectrum for free scalar field theory

- for free-field case on $N_{x} \times N_{y} \times N_{t}$ lattice, define

$$
\Phi\left(t, n_{x}, n_{y}\right)=\sum_{x, y} \phi(x, y, t) e^{2 \pi i x n_{x} / N_{x}+2 \pi i n_{y} / N_{y}}
$$

- lowest six levels having total zero momentum can be extracted using the following set of six operators:

$$
\begin{aligned}
O_{0}(t) & =\Phi(t, 0,0) \\
O_{1}(t) & =\Phi(t, 0,0) \Phi(t, 0,0) \\
O_{2}(t) & =\Phi(t, 1,0) \Phi(t,-1,0) \\
O_{3}(t) & =\Phi(t, 0,1) \Phi(t, 0,-1) \\
O_{4}(t) & =\Phi(t, 1,1) \Phi(t,-1,-1) \\
O_{5}(t) & =\Phi(t, 1,-1) \Phi(t,-1,1)
\end{aligned}
$$

Spectrum for $\lambda=0$

- extracted six lowest-lying levels in $\lambda=0$ scalar field theory
- $24^{2} \times 48$ isotropic lattice with $a_{s} m=0.25$
- exact results: 0.24935 for the mass, 0.49871 for twice the mass, 0.71903 for the two states having minimal relative momenta, and 0.88451 for the next two states

Autocorrelations in the interacting theory

- autocorrelations $\rho(\tau)$ of $\langle\Phi(t) \Phi(0)\rangle$ for $t \sim 1 /\left(2 a_{s} m_{\text {gap }}\right)$
- compound sweep $=1$ Metropolis $+N_{\mu}$ microcanonical sweep
- $\mu=1$ is probability of proposing change in microcanonical
- left plot: $t=2 a_{t}$ used with $\kappa=0.1930$ and $\lambda=0.300$ on $24^{2} \times 48$ isotropic lattice and $a_{s} m_{\text {gap }} \sim 0.25$
- right plot: $t=5 a_{t}$ used with $\kappa=0.1970$ and $\lambda=0.300$ on $32^{2} \times 96$ isotropic lattice and $a_{s} m_{\text {gap }} \sim 0.10$
- microcanonical acceptance rate about 80% in both cases

Mass gaps

- various single particle masses on 24^{3} isotropic lattice

Phase structure

- theory has two phases separated by a line of critical points
- for each value of λ, there exists a critical value $\kappa_{c}(\lambda)$ at which mass gap goes to zero
- symmetric phase for $\kappa<\kappa_{c}(\lambda)$
- $\phi \rightarrow-\phi$ symmetry holds, $\langle\phi\rangle=0$
- broken phase for $\kappa>\kappa_{c}(\lambda)$
- $\phi \rightarrow-\phi$ spontaneously broken, $\langle\phi\rangle \neq 0$

Part V

Monte Carlo calculations in lattice Quantum Chromodynamics

Lattice QCD

- hypercubic space-time lattice
- quarks reside on sites, gluons reside on links between sites
- for gluons, 8 dimensional integral on each link
- path integral has dimension $32 N_{x} N_{y} N_{z} N_{t}$
- 10.6 million for 24^{4} lattice
- more sophisticated updating algorithms
- systematic errors
- discretization
- finite volume

Glueball spectrum in pure gauge theory

- gluons can bind to form glueballs
- e.m. analogue: massive globules of pure light!
- states labeled by $J^{P C}$
- scale set by $r_{0}^{-1}=410(20) \mathrm{MeV}$
- computed using pseudo-heatbath and microcanonical
- 24×24 correlation matrix in each symmetry channel
- spin identification
- mass gap with a bounty
- Clay mathematics institute will pay \$ 1 million
C. Morningstar and M. Peardon,

Phys. Rev. D 60, 034509 (1999)

Conclusion

- observables in quantum mechanical systems can be extracted from the correlation functions of the theory
- correlation functions can be computed using path integrals
- path integrals in the imaginary time formalism can be evaluated using the Monte Carlo method
- importance sampling from Markov chains
- Metropolis-Hastings method
- microcanonical updating
- 1-dimensional simple harmonic oscillator was first example
- calculations in real scalar ϕ^{4} theory in $2+1$ dimensions

For Further Reading

© C.M. Grinstead and J.L. Snell, Introduction to Probability
© E. Parzen, Stochastic Processes (Holden-Day, San Francisco, 1962).
\otimes N.U. Prabhu, Stochastic Processes
(Macmillan, New York, 1965).
I. Montvay and G. Münster

Quantum Fields on a Lattice
(Cambridge Press, 1994).
Q S. Karlin and H. Taylor,
A First Course in Stochastic Processes
(Academic Press, 1975).
© J. Hamilton, Time Series Analysis
(Princeton University Press, 1994).

