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a b s t r a c t

An asymmetric double-well potential is considered, assuming that
the minima of the wells are quadratic with a frequency x and the
difference of the minima is close to a multiple of �hx. A WKB wave
function is constructed on both sides of the local maximum
between the wells, by matching the WKB function to the exact
wave functions near the classical turning points. The continuities
of the wave function and its first derivative at the local maximum
then give the energy-level splitting formula, which not only repro-
duces the instanton result for a symmetric potential, but also elu-
cidates the appearance of resonances of tunneling in the
asymmetric potential.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

The quantum tunneling in a double-well potential appears in a variety of physical cases. Well-
known examples include inversion of ammonia molecule [1], for which the double-well is symmetric,
and proton tunneling in hydrogen bonds, for which the two wells could be unsymmetrical [2]. For a
symmetric potential, instanton method developed in [3], has been elaborated and applied to calculate
energy splitting [4]. The tunneling splitting calculated from the instanton method exactly agrees with
the WKB result when the quadratic connection formula is adopted, and it has been confirmed that the
result is very accurate for large separation between the two wells [5–7].

Quantum tunneling in asymmetric double-well potentials has also long been considered [8,9], and
it is known that calculations of the tunneling are necessary to locate the diabolic points of the mag-
netic molecule Fe8, where the bottoms of the wells can be moved around by applying magnetic fields
[10]. Furthermore, recent realizations of Bose–Einstein condensations (BECs) in the asymmetric
(tilted) double-well potentials [11] provide the need for the theoretical analysis of the tunneling
c. All rights reserved.
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[12]. Though interactions are important in the tunneling of the BECs realized so far [13], as the inter-
actions between atoms are controllable, the quantum mechanics of a single particle is directly relevant
to physics of the BECs or quantum degenerate Fermi atoms in the noninteracting limit [14].

One of the intriguing properties of the tunneling in asymmetric double-well potentials is the
appearance of resonances. For example, the wave function appropriate for the false vacuum of the
potential
Fig. 1.
energy
VDðxÞ ¼
mx2

2 ðxþ aÞ2 þ ðb2 � a2Þ
h i

for x < 0

mx2

2 ðx� bÞ2 for x P 0;

8<
: ð1Þ
ðb > a > 0Þ can significantly tunnel to the side of x P 0 only when b is tuned to satisfy the condition
mx2

2
ðb2 � a2Þ � n�hx; n ¼ 0;1;2;3 � � � : ð2Þ
Through various numerical calculations, it has been known that the appearance of these resonances is
not limited to VDðxÞ, but is a general property of tunneling in asymmetric potentials [8]. In this paper,
in order to elucidate the analytic structure of the resonances, we construct the WKB wave functions
for a class of asymmetric double-well potentials.

Specifically, we consider a smooth double-well potential VðxÞ, assuming that VðxÞ has minima at
x ¼ b and at x ¼ �a ða; b > 0Þ, and a local maximum at x ¼ 0. The minima are taken to be quadratic
with a frequency x, VðbÞ ¼ 0, and Vð�aÞ ¼ ðnþ �Þ�hx (See Fig. 1). As in the instanton method, we
are interested in the large separation between the two wells, and consider the ground and low lying
excited states of energy eigenvalue E satisfying Vð0Þ � E > n�hx. We also assume that the potential is
still quadratic near the classical turning points between the wells.

Around the minima, exact solutions to the Schrödinger equation are described by the parabolic cyl-
inder functions [15]. As anticipated in [10], on both sides of x ¼ 0, a WKB wave function is constructed
by matching the WKB function to the asymptotic forms of the exact solutions near the classical turn-
ing points. The continuities of the wave function and its first derivative at the local maximum then
give the energy-level splitting formula. Though our method of requiring continuities is very different
from the instanton or WKB method in [4], the splitting formula reduces to the known one in the sym-
metric case [4,16,17].

In the symmetric potential, for a given energy, an approximate solution to the Schrödinger equa-
tion localized in left(right) well implies, by the inversion symmetry, another solution localized in
the right(left) well, and this fact has been conveniently used to evaluate energy splittings [18,16].
In this paper, we also show that tunneling in the asymmetric potential of � ¼ 0 can be explored by
V( )x

−a b

An asymmetric double-well potential VðxÞ: VðbÞ ¼ 0, Vð�aÞ ¼ ðnþ �Þ�hx, ðn ¼ 0;1;2; � � �Þ. We assume that, for a given
E, VðxÞ is quadratic in the regions of classical motions with the frequency x, and concentrate on the case of �� 1.
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assuming the degenerate approximate solutions to the Schrödinger equation wRðxÞ and wLðxÞwhich are
localized in the right and left wells, respectively. By explicitly constructing wRðxÞ and wLðxÞ, the split-
ting formula is found from these wave functions. Indeed it turns out that the WKB wave functions sat-
isfying the continuities could be written as linear combinations of wRðxÞ and wLðxÞ, while the linear
combinations lift the degeneracy to make the splitting. Therefore, a linear combination of the time-
dependent WKB wave functions gives a system which shuttles back and forth between wRðxÞ and
wLðxÞ, to clearly elucidate the resonance structure of the tunneling in the asymmetric potential of
� ¼ 0.

This paper is organized as follows: in Section 2, we construct the WKB wave function on both
sides of the local maximum and, by requiring the continuities at the maximum, we evaluate the en-
ergy splitting. In Section 3, we find the appropriate localized wave functions wRðxÞ and wLðxÞ, to re-
obtain the energy splitting formula. We also establish a time-dependent WKB wave function of a
system shuttling back and forth. In Section 4, we give some concluding remarks. Finally in Appendix
A we give exact solutions for the system of VDðxÞ in the limit of large separation between the two
wells.

2. WKB method with continuity requirements

As the results could be easily modified to incorporate the small non-zero �, we start with � ¼ 0.

2.1. WKB wave function for x P 0

For the wave function wIðxÞ of the energy eigenvalue E ¼ mþ nþ 1
2

� �
�hx around the right minimum,

the Schrödinger equation is written as
� �h2

2m
d2

dx2 wI þ
mx2

2
ðx� bÞ2wI ¼ �hx mþ nþ 1

2

� �
wI: ð3Þ
By introducing
lho ¼
ffiffiffiffiffiffiffiffiffi

�h
mx

r
; ð4Þ
and zR ¼
ffiffiffi
2
p
ðx� bÞ=lho, we rewrite the equation as
d2wI

dz2
R

þ mþ nþ 1
2
� z2

R

4

� �
wI ¼ 0;
to obtain
wIðxÞ ¼ CRDmþn zRð Þ ¼ CRDmþn

ffiffiffi
2
p
ðx� bÞ
lho

 !
; ð5Þ
where CR is a constant and Dmþn denotes the parabolic cylinder function [15]. Bearing in mind that we
wish to construct a normalizable wave function, we choose the solution in Eq. (5) so that

R1
b jwIðxÞj

2dx
is finite if the expression of wIðxÞ is valid for x > b. Asymptotic expansions of the parabolic cylinder
function are well-known. For large and negative z (z� �1 and z� � j k j), we have
DkðzÞ � e�
z2
4 zk 1� kðk� 1Þ

2z2 þ � � �
� �

�
ffiffiffiffiffiffiffi
2p
p

Cð�kÞ e
kpie

z2
4 z�k�1 1þ ðkþ 1Þðkþ 2Þ

2z2 þ � � �
� �

: ð6Þ
For x > 0, a classical turning point may be written as
x ¼ bm ¼ b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mþ 2nþ 1

p
lho: ð7Þ
In the classically forbidden region of bm � x� lho, within the WKB approximation, a solution wIIðxÞ to
the Schrödinger equation is given as a linear combination of exponentially growing and decaying
functions:
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wIIðxÞ ¼
ARffiffiffiffiffiffiffiffiffi
pðxÞ

p e
R x

0
pðyÞ

�h dy þ BRffiffiffiffiffiffiffiffiffi
pðxÞ

p e�
R x

0
pðyÞ

�h dy
; ð8Þ
where pðxÞ is defined as
pðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m½VðxÞ � E�

p
; ð9Þ
and AR;BR are constants. In the region of quadratic potential satisfying b� x� b� bm, by introducing
URðxÞ ¼ �
Z bm

x

pðyÞ
�h

dy ¼ �
Z bm

x

ðb� yÞ2 � ðb� bmÞ2
h i1=2

l2ho

dy; ð10Þ
we have [19,16]
URðxÞ ¼ �
ðb� xÞ2

2l2
ho

þ 1
4
ð2mþ 2nþ 1Þ þ 1

2
ð2mþ 2nþ 1Þ ln 2ðb� xÞ

b� bm

� �
þO

b� bv

b� x

� �2
 !

; ð11Þ
and thus
wIIðxÞ �
ARffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mxðb� xÞ
p 2

ffiffiffi
e
p
ðb� xÞ

b� bm

� �mþnþ1
2

exp
Z bm

0

pðyÞ
�h

dy� ðb� xÞ2

2l2
ho

" #

þ BRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mxðb� xÞ

p b� bm

2
ffiffiffi
e
p
ðb� xÞ

� �mþnþ1
2

exp �
Z bm

0

pðyÞ
�h

dyþ ðb� xÞ2

2l2
ho

" #
: ð12Þ
As we are interested in the limit of large separation between the two wells where the energy splitting
is small, we introduce dl with an integer l ð¼ ½m�Þ as
dl ¼ m� l; ð13Þ
so that
jdlj � 1: ð14Þ
In the region of the quadratic potential the wave function is also described by wIðxÞ. Making use of the
asymptotic form in (6), for b� x� lho, in the leading orders we obtain
wIðxÞ � CR e
�ðx�bÞ2

2l2
ho

ffiffiffi
2
p
ðx� bÞ
lho

 !lþn

þ dle
ðx�bÞ2

2l2
ho

ffiffiffiffiffiffiffi
2p
p

ðlþ nÞ!ffiffiffi
2
p

l�1
ho ðx� bÞ

	 
lþnþ1

2
64

3
75: ð15Þ
By matching the asymptotic form of wIðxÞ onto that of wIIðxÞ in this overlap region, we have
AR ¼ ð�1ÞlþnCR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hðlþ nÞ!glþn

2
ffiffiffiffi
p
p

lho

s
e�
R bl

0
pðyÞ

�h dy
; ð16Þ

BR ¼ ð�1Þlþnþ1CRdl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p3=2�hðlþ nÞ!

lhoglþn

s
e
R bl

0
pðyÞ

�h dy
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where
gk ¼
ffiffiffiffiffiffiffi
2p
p

k!
kþ 1

2

� �kþ1
2

e�ðkþ1=2Þ: ð18Þ
2.2. WKB wave function for x 6 0

Since VðxÞ ¼ mx2ðxþ aÞ2=2þ n�hx near the minimum of the left well, a classical turning point is
given as
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x ¼ �am ¼ �aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mþ 1

p
lho: ð19Þ
In the classically forbidden region of am þ x� lho, a WKB solution may be written as
wIIIðxÞ ¼
ALffiffiffiffiffiffiffiffiffi
pðxÞ

p e�
R 0

x

pðyÞ
�h dy þ BLffiffiffiffiffiffiffiffiffi

pðxÞ
p e

R 0

x

pðyÞ
�h dy

; ð20Þ
where AL;BL are constants. In the region of the quadratic potential satisfying aþ x� a� av, from the
fact that
ULðxÞ ¼ �
Z x

�am

pðyÞ
�h

dy ¼ �
Z x

�am

ðaþ yÞ2 � ða� amÞ2
h i1=2

l2ho

dy; ð21Þ
we obtain
wIIIðxÞ �
ALffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mxðaþ xÞ
p a� am

2
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e
p
ðaþ xÞ
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2

exp �
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2l2
ho

" #

þ BLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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e
p
ðaþ xÞ

a� am

� �lþ1
2

exp
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With zL ¼
ffiffiffi
2
p
ðxþ aÞ=lho, the Schrödinger equation around the left minimum is written as
d2wIV

dz2
L

þ mþ 1
2
� z2

L

4

� �
wIV ¼ 0;
and thus
wIVðxÞ ¼ CLDm �zLð Þ ¼ CLDm �
ffiffiffi
2
p
ðxþ aÞ
lho

 !
; ð23Þ
with a constant CL. The solution in (23) is chosen, so that
R�a
�1 jwIVðxÞj

2 dx is finite if the expression of
wIVðxÞ is valid for x < �a. Around the left minimum of aþ x� lho, from (14) and the asymptotic form in
(6), in the leading orders we have
wIVðxÞ � ð�1ÞlCL e
�ðxþaÞ2

2l2
ho

ffiffiffi
2
p
ðxþ aÞ
lho

 !l

� dl e
ðxþaÞ2

2l2
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2p
p
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2
p
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2
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3
75: ð24Þ
By matching wIIIðxÞ to wIVðxÞ in the overlap region, we obtain
AL ¼ ð�1Þlþ1CLdl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p3=2�hl!

lhogl

s
e
R 0

�al

pðyÞ
�h dy

; ð25Þ

BL ¼ ð�1ÞlCL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hl!gl

2
ffiffiffiffi
p
p

lho

s
e
�
R 0

�al

pðyÞ
�h dy

: ð26Þ
2.3. Continuity and energy splitting

For a smooth potential, a wave function and its first derivative must be continuous at x ¼ 0, which
gives the relations
AL ¼ AR; BL ¼ BR: ð27Þ
There are three unknowns CL;CR; dl in these two equations, while another equation may come from
the normalization of the wave function. From AL=BL ¼ AR=BR, making use of Eqs. (16), (17), (25), and
(26), we obtain



2996 D.-Y. Song / Annals of Physics 323 (2008) 2991–2999
d2
l ¼

glglþn

ð2pÞ2
exp �2

Z bl

�al

pðyÞ
�h

dy

" #
; ð28Þ
which indicates that the splitting of the energy level Dl is given by
Dl ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
glglþn

p �hx
p

exp �
Z bl

�al

pðyÞ
�h

dy

" #
: ð29Þ
For a symmetric potential of n ¼ 0, (29) exactly agrees with the result in [16,17].
Expression in (29) is not easy to use, because the integrand in the exponential is close to a singu-

larity near the limits. By introducing
Ia ¼
Z 0

�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m½VðyÞ � n�hx�

q
dy; Ib ¼

Z b

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mVðyÞ

p
dy; ð30Þ
and
ca ¼
Z a

0

ffiffiffiffiffiffiffiffiffiffiffi
mx2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½Vðy� aÞ � n�hx�

p � 1
y

 !
dy;

cb ¼
Z b

0

ffiffiffiffiffiffiffiffiffiffiffi
mx2
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Vðb� yÞ

p � 1
y

 !
dy;

ð31Þ
the splitting is written for a general potential as
Dl ¼ �hx
ffiffiffi
2
p

e� IaþIbð Þ=�hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðlþ nÞ!l!

p
ffiffiffi
2
p

aeca

lho

 !lþ1=2 ffiffiffi
2
p

becb

lho

 !lþnþ1=2

: ð32Þ
The expression in (32) can be conveniently used to find that our formula reduces to the known one
in [17] for a symmetric potential.

2.4. For a non-zero �

The above formalism can be modified to include non-zero �, as far as dl � �� 1. In this case, without a
change in wIðxÞand wIIðxÞ, the modifications ofwIIIðxÞand wIVðxÞare obtained by replacing dl withdl � � (or,
m with m� �). Due to the changes in Eqs. (24,25), the continuity requirements then give the relation
dl dl � �ð Þ ¼ Dl

2�hx

� �2

: ð33Þ
If D�l denotes the energy splitting in the presence of �, (33) implies
D�l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

l þ �hx�ð Þ2
q

: ð34Þ
3. An alternative method with localized wave functions

For � ¼ 0, if we assume two states of the normalized real wave functions wRðxÞ and wLðxÞ with en-
ergy E0 as mentioned in Section 1, the Hamiltonian in this two-state subspace may be given by
H ¼
E0 D=2
D=2 E0

� �
¼ E0I þ D

2
rx; ð35Þ
with the Pauli matrices riði ¼ 1;2;3Þ, where the small tunneling splitting D is written as
D ¼ 2
Z 1

�1
wLðxÞ �

�h2

2m
d2

dx2 þ VðxÞ
 !

wRðxÞdx

�����
�����: ð36Þ
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The two eigenstates of the Hamiltonian are given by ðwRðxÞ 	 wLðxÞÞ=
ffiffiffi
2
p

. From the Schrödinger
equations for these eigenstates, and the equations
� �h2

2m
d2

dx2 þ VðxÞ
" #

wiðxÞ ¼ E0wiðxÞði ¼ R; LÞ;
and from the requirements
Z 1

0
wRðxÞð Þ2dx � 1;

Z 0

�1
wLðxÞð Þ2 dx � 1;

Z 1

0
wLðxÞwRðxÞdx � 0; ð37Þ
we find
D � �h2

m
wLð0Þw0Rð0Þ � wRð0Þw0Lð0Þ
�� ��; ð38Þ
with w0iðxÞ ¼ dwiðxÞ=dx ði ¼ R; LÞ, which is a generalization of the method used for the symmetric case
[16,18].

In the classically forbidden region, we may write
wRðxÞ ¼
NRffiffiffiffiffiffiffiffiffi
pðxÞ

p e
R x

0
pðyÞ

�h dy
; wLðxÞ ¼

NLffiffiffiffiffiffiffiffiffi
pðxÞ

p e�
R x

0
pðyÞ

�h dy
; ð39Þ
where NR and NL are constants. From these expressions of wRðxÞ and wLðxÞ, by assuming that the valid-
ity condition for the WKB approximation
d
dx

�h
p

����
����� 1 ð40Þ
is satisfied at x ¼ 0, we obtain
D � 2
�h
m

NLNRj j: ð41Þ
For E0 ¼ ðlþ nþ 1
2Þ�hx, near the right-hand well, wRðxÞ would be accurately described by the ðlþ nÞth

harmonic oscillator eigenfunction. This description holds well into the forbidden region, and, for
ðb� xÞ=lho � 1, we may write
wRðxÞ �
exp � ðx�bÞ2

2l2ho

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p
p

lhoðlþ nÞ!
q

ffiffiffi
2
p
ðx� bÞ
lho

 !lþn

: ð42Þ
On the other hand, making use of (11), we can find the asymptotic expansion form of wRðxÞ of (39) in
the overlap region. By matching the asymptotic form onto the expression in (42), we obtain
NR ¼ ð�1Þlþn

ffiffiffiffiffiffiffiffiffiffiffi
�hglþn

p
ffiffiffiffiffiffiffi
2p
p

lho

exp �
Z bm

0

pðyÞ
�h

dy

" #
: ð43Þ
Similarly, by matching the asymptotic form of wLðxÞ onto that of the lth excited harmonic oscillator
state near the left-hand well, we have
NL ¼
ffiffiffiffiffiffiffi
�hgl

p
ffiffiffiffiffiffiffi
2p
p

lho

exp �
Z 0

�am

pðyÞ
�h

dy
� �

: ð44Þ
By plugging these explicit forms of NR and NL into (41), for E0 ¼ ðlþ nþ 1
2Þ�hx, we confirm that D re-

duces to Dl.
If (27) is satisfied, after some algebra, we find that wIIðxÞ and wIIIðxÞ of � ¼ 0 can be merged, in the

classically forbidden region, into
w	WKBðxÞ ¼
ffiffiffiffiffiffiffi
2p
p

ARlhoffiffiffiffiffiffiffiffiffiffiffi
�hglþn

p exp
Z bm

0

pðyÞ
�h

dy

" #
ð�1ÞlþnwRðxÞ 
 wLðxÞ
h i

; ð45Þ
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namely, w	WKBðxÞ becomes wIIðxÞ for x P 0, and wIIIðxÞ for x 6 0, where wþWKBðxÞ ðw
�
WKBðxÞÞ is given when

we choose dl > 0 ðdl < 0Þ in (28). Thus this alternative method is in fact equivalent to the WKB method
of requiring the continuities. We also note that wþWKBðxÞ has a node in the classically forbidden region
between the wells, while w�WKBðxÞ has no node in the same region.

A (unnormalized) time-dependent WKB solution is given as
wðx; tÞ ¼ e�ix nþlþ1
2þjdl jð ÞtwþWKBðxÞ þ e�ix nþlþ1

2�jdl jð Þtw�WKBðxÞ

¼ 2

ffiffiffiffiffiffiffi
2p
p

ARlhoffiffiffiffiffiffiffiffiffiffiffi
�hglþn

p exp �ix nþ lþ 1
2

� �
t þ

Z bm

0

pðyÞ
�h

dy

" #

� ð�1Þlþn cos
Dl

2�h
t

� �
wRðxÞ � i sin

Dl

2�h
t

� �
wLðxÞ

� �
:

ð46Þ
This last form shows clearly that the system shuttles back and forth between wRðxÞ and wLðxÞ with the
frequency Dl=�h.

In order to include �, let us consider a slight modification of the potential around the left well so
that Vð�aÞ changes from n�hx to ðnþ �Þ�hx. While wRðxÞ would still be an appropriate solution of
the new system with energy E0, we introduce w�LðxÞ as an approximate solution with energy
E0 þ ��hx localized in the left well. If we confine our attention on the two state subspace described
by wRðxÞ and w�LðxÞ, within the approximation that w�LðxÞ is the same with wLðxÞ, the Hamiltonian of
the new system is written as
E0 þ
1
2
��hx

� �
I þ 1

2
���hxrz þ Dlrxð Þ;
which is analogous to that of a particle in a magnetic field [20]. This spin analogy can be used to derive
(34) and to easily find the time-evolution of the system. If w�ðx; tÞ is a solution in this subspace with
w�ðx;0Þ ¼ wRðxÞ, the maximum of the probability of j

R1
�1ðw

�
LðxÞÞ

�w�ðx; tÞdxj2 during the time-evolution
can be evaluated to be D2

l =½D
2
l þ ð��hxÞ

2�, which indicates that the resonance peaks in tunneling have
the Lorentzian shape.
4. Concluding remarks

Energy splitting formula has been obtained for the asymmetric double-well potential, by assuming
that the potential is quadratic near the minima. As has been well known for the symmetric case, we
expect that the splitting formula given here would be very accurate for the large separation between
wells, which needs to be confirmed through numerical calculations. If we could add a linear term sx to
the potential VðxÞ of � ¼ 0 with a controllable constant s, VðxÞ þ sx has two minima at x ¼ b� s=mx2

and at x ¼ �a� s=mx2. Since the difference of the minima is given as n�hx� sðaþ bÞ, in the light of
numerical results [8], the tunneling would be significant only if s is close to a multiple of
�hx=ðaþ bÞ. It would be of great interest to realize the asymmetric system with controllable constants,
as is partially accomplished in dynamical situations [11]. For n ¼ 0 and � ¼ 0, we note that
D2l=D0 ¼ ð2abecaþcb=l2

hoÞ
2l
=ð2lÞ! which shows the quasi-Weierstrassian nature of the tunneling spec-

trum [17]. In this asymmetric case, thus, the tunneling behavior of an initially squeezed wave packet
is erratic, and the trajectory of the expected position of the wave packet has a fractal structure. As a
final remark, though the results obtained in this paper would be exact in the limit of a; b� lho where
an energy splitting is very small, numerical calculations imply that the appearance of resonances is
manifest even when a and b are only a few times larger than lho [8], which could be important in
the quantum tunnelings of the BECs.
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Appendix A. For the potential VDðxÞ in (1), WKB method may not be applicable, since the potential is
not differentiable at x ¼ 0. In this case, however, exact wave functions could be written in terms of the
parabolic cylinder functions on both sides of x ¼ 0. From the continuities of the wave function and its
first derivative at x ¼ 0, assuming mx2

2 ðb
2 � a2Þ ¼ ðnþ �Þ�hx; we find that the eigenstate of an energy

eigenvalue ðmþ nþ �þ 1
2Þ�hx exists if the condition
Dm �
ffiffiffi
2
p

a
lho

 !
D0mþnþ� �

ffiffiffi
2
p

b
lho

 !
¼ �D0m �

ffiffiffi
2
p

a
lho

 !
Dmþnþ� �

ffiffiffi
2
p

b
lho

 !
ð47Þ
is satisfied. (47) can be solved in the limit of a; b� lho and �� 1. Making use of the asymptotic expan-
sion of (6), in this limit we obtain
d2
l þ r Rl � Llð Þ þ �ð Þdl � RlLl � �rLl ¼ 0; ð48Þ
where
Rl ¼
ð
ffiffiffi
2
p

b=lhoÞ2ðnþlÞþ1ffiffiffiffiffiffiffi
2p
p

ðlþ nÞ!
e�b2=l2ho ; Ll ¼

ð
ffiffiffi
2
p

a=lhoÞ2lþ1ffiffiffiffiffiffiffi
2p
p

l!
e�a2=l2ho ;

r ¼ b� a
aþ b

: ð49Þ
(48) implies that the energy splitting is given as
�hx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4RlLl þ �2 þ 2�r Rl þ Llð Þ þ r2 Rl � Llð Þ2

q
: ð50Þ
If we formally use the formulas in Eqs. (30,31) by replacing VðxÞwith VDðxÞ, Dl coincides with the split-
ting of (50) in the symmetric case ðn ¼ 0; � ¼ 0Þ.
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