Supplement: Gas Dynamic Shocks
lecture III

(a) Scale

Consider Burgers Eqn.

\[\frac{\partial}{\partial t} V + V \frac{\partial}{\partial x} V - \gamma \frac{\partial^2}{\partial x^2} V = 0 \]

\[\bar{P} \]
\[\int \Delta V \]

For shock width

\[\Delta V \frac{\Delta V}{W} \sim \gamma \frac{\Delta V}{W^2} \]

\[W \sim \frac{\gamma}{\Delta V} \]

dissipation sets shock thickness

for \(\gamma \sim \text{lsmp} \epsilon_s \)

\[\Delta V \sim \epsilon_s \]

\[W \sim \text{lsmp} \]

characteristic thickness of shock layer.
6. Entropy Production

In gas dynamics
- initially ideal dynamics
- entropy constant

but... pulse steepens and shocks

- sharp gradients produced in shock
 ⇒ couple to diffusive dissipation
 ⇒ drive collisional transport
 ⇒ produce entropy.

N.B.: − Entropy production required in shock
 − sets arrow of time
- to calculate:

\[\frac{dS}{dt} = \left(1 - \frac{\Gamma^x}{A^x} \right) \rightarrow \]

\[\Delta x \rightarrow \text{thermodynamic force} \]

\[\Gamma^x \rightarrow \text{Flux} \]

\[\therefore \Gamma^x = -A^x \Delta x \]

\[\frac{dS}{dt} \sim \left(1 - \frac{\Gamma^x}{A^x} \right) \Delta x^2 \]

\[\Delta x^2 \rightarrow \text{entropy production rate density} \]

then, for Burgers shock:

\[\frac{dS}{dt} \sim \Delta \left(\frac{\Delta v}{V} \right)^2 \]

\[\sim \frac{1}{W^2} \frac{\Delta v^2}{V} \sim \frac{\Delta v^2}{V} \frac{\Delta v^2}{\Delta v^2} \]

\[\sim \Delta v^4 / V \]
but total entropy production is integrated over shock thickness

\[\int dx \frac{dS}{dt} \sim \frac{dS'}{dt} \implies \frac{dS}{dt} \frac{dS'}{dt} \]

\[\sim R \frac{v^2}{A v^2} (A v)^2 \]

\[\sim (A v)^3 \]

so total entropy production:

\[\frac{dS}{dt} \sim (A v)^3 \]

- independent of \(v \)

- entropy / heating produced by collisions but total \(\frac{dS}{dt} \) independent of \(v \).