Turbulence

- a crucial example in scaling and self-similarity is turbulence

Self-similarity:

- phenomenon looks the same over a range of scales if
 \(l_i < l < l_o \) in the inner to outer

\[\psi \left(\frac{r}{R(t)} \right) = \psi \left(\frac{r}{R(t)} \right) \]

\[R(t) = \frac{t}{T} \]

\[t \rightarrow \infty \]

\[r \rightarrow \infty \]

leaves a invariant

- power law dependence is symptom

\(i.e. \frac{dV}{dL} \sim L^{1/3} \)

\(\frac{d}{dx} \sim dV \sim L^{1/3} dV \)
Some examples:

1. Cascade & hierarchical fragmentation — "shattering" → 3D Fluid Turbulence

2. Aggregation ("inverse cascade")
 → colloidal aggregation, also Schmeluchowsky

3. Fractals and B-models:
 → memory of dimension
 → fractals

4. Fluid Turbulence (c.f.: Frisch)

 What is it?

 - spatio-temporal disorder

 - broad range of space-time scales

 - power transfer through broad range of scales

 - energy dissipation
- can view as consisting of sequence of basic interactions.

\[\text{cascade} \rightarrow \text{fragmentation sequence} \rightarrow \# \text{eddys in check} \]

- aggregating/mixing cascade

- plain vanilla collision

- # particles conserved.
More characteristics:
- decay of large scales
- irreversible mixing
- can be intermittent/bursty

Key parameter:

\[\text{Re} = \frac{\nu(L) L}{\nu} \]

Where \(\text{Re} \) is the Reynolds number, \(\nu(L) \) is the velocity at length scale \(L \), and \(\nu \) is the kinematic viscosity. For atmospheric turbulence:

\[BL \text{ on hot day} \]

\[\text{Re} \approx 10^8 \]

\[\text{hour} \approx \text{few km} \]

\[\text{lin} \approx \text{few mm} \]
Laws (Empirical)

- Recall

\[F_d = C_D A_0 V^2 \]
\[C_0 = C_0 (Re) \] Flat in turbulent regime

\[\square \]

- Finite Energy Dissipation Rate

If, in experiment on turbulent flow all control parameters kept the same except viscosity, which is lowered as much as possible, energy dissipation per mass \(dE/dt \) approaches a finite limit.

Simple Terms: Energy dissipation is due to viscosity yet does not depend explicitly on \(C_0 \).

\[\square \]

recall \(F_d \sim c_0 \rho S_A U^2 \)

\[dE/dt \sim F_d U \sim c_0 \rho S_A U^3 \]

\[dE/dt \sim \frac{U^3}{\eta} \]
\[\frac{dE}{dt} = \frac{u^3}{l} = \epsilon \]

where does energy go?

\[\Rightarrow \text{viscous dissipation} \]

\[\text{effective large scale forcing} \]

\[\nabla \cdot \mathbf{u} = 0 \]

\[\dot{\langle u^3 \rangle} + \langle \nabla \cdot (\mathbf{u} \mathbf{u}) \rangle = -\nabla \langle (\mathbf{u} \mathbf{u})^2 \rangle \]

\[-\left\langle \nabla \cdot (\mathbf{u} \mathbf{p}) \right\rangle + \left\langle F \cdot \mathbf{u} \right\rangle \]

\[\Rightarrow \text{pressure no net effect} \]

\[\text{forcing } \Rightarrow \nabla \langle (\mathbf{u}^2) \rangle = \left\langle F \cdot \mathbf{u} \right\rangle \]

Now necessarily \[\left\langle F \cdot \mathbf{u} \right\rangle = \epsilon \]
\[\bar{c} = \gamma \langle \text{\textcircled{UV}}^2 \rangle \rightarrow \text{balance} \]

\[\text{under } \gamma \Rightarrow \text{\textcircled{UV}}_{\text{rms}} \sim \frac{1}{\sqrt{\nu}} \]

\[\Rightarrow \text{turbulence forms singular velocity gradient} \]

\[\Rightarrow \text{must necessarily access small scales} \]

How? Cascade \rightarrow \text{hierarchical Fragmentation}

\[\text{○ ○ ○ ○ ○} \rightarrow l_0 \]

\[\text{○ ○ ○ ○ ○ ○ ○ ○ ○} \rightarrow l_1 \]

\[\text{○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○} \rightarrow l_2 \]

\[\cdots \cdots \cdots \cdots \ldots \]

\[\sim \text{again empirical \& broad range of scales, with no gaps} \]
How described \(\rightarrow \) structure functions

\[
\sigma V(l) = \left(\frac{V(l + \ell) - V(l)}{\ell} \right)
\]

\(\ell \rightarrow \) difference in velocity across scale \(\ell \)

\(\Delta \)

\(\langle \sigma V(l)^2 \rangle \rightarrow \langle \sigma^2 V(l) \rangle \)

related energy distribution on scale

\(\rightarrow \) 2/3 law (Empirical)

\[
S_2(l) = \langle (\Delta V(e))^2 \rangle \sim l^{2/3}
\]

\(\hat{s}_2 \) fn \(S_2 \)

\(\rightarrow \) Rigorous:

\[
\langle (\sigma V(l))^3 \rangle = \frac{4}{5} \bar{e} \ell
\]

4/5 Law

energetics
What's the Story?

- K41 (Kolmogorov Phenomenology)

Ideas:

- Flux of energy in scale space from l_0 (input/increment scale) to l_0 (dissipation scale - set by r).
- Energy flux is same at all scales between l_0 and l_0, self-similarity.
- Energy dissipation - set as $\nu \rightarrow 0$ but not $\rightarrow 0$, breaking.
- Symmetry of stirring, etc. lost \Rightarrow Symmetry restored.

Ingredients / Players

- exciter \rightarrow eddy

- l: scale parameter, eddy scale
\[\nu(e) \sim \left(\frac{\partial u_i \partial e_i}{2} \right) \]

Velocity increment

\[\partial u_i \sim \left[u_i(e+\epsilon) - u_i(e) \right] \cdot \frac{\epsilon}{\epsilon} \]

\[\partial \vec{u} \sim \text{rms eddy fluctuation} \]

\[\nu(e_0) \sim \nu_0 \]

\[T(e) \sim \text{eddy transfer/lifetime} \]

\[\to \text{characteristic scale of transfer in cascade step} \]

Now, self-similarity \(\Rightarrow \) constant flow-they rate:

\[\epsilon = \frac{\nu(e)^2}{\gamma(e)} \]

\[\gamma(e) \]
The \(\ell \):

- dimensionally \(\rightarrow \) lifetime of structure of scale \(\ell \)
- time to distort out of existence.

For scale \(\ell' \) which \(\ell' \) effect lifetime \(\ell' \)

\[\ell' \gg \ell \]

Advent oddly but don't distort if

\(\Rightarrow \) irrelevant physics not change under random Galilean boost

\(\Rightarrow \) violates symmetry restoration

- scales \(\ell' \ll \ell \)

\(\Rightarrow \) irrelevant, as very little energy shears in such eddies
strongest interaction on $\ell \sim l$

Composable scalar distinct one another

cascading @ local in scale!

\[T(\ell) \sim \ell / v(\ell) \]

\[E \sim v(\ell)^2 \sim v(\ell)^3 \]

i.e.

\[v_{\ell}^3 \sim v(\ell)^3 \]

\[\frac{l_{\ell}}{l_{\ell}} \sim \ell \]

\[v(\ell) \sim (\ell / \ell)^{\frac{1}{3}} \]
\[V(l) = E^{2/3} l^{2/3} \]
\[\approx v_o^2 \left(\frac{l}{l_o} \right)^{2/3} \]

- Power law
- RET monopole 2/3 law
- Dependence on \(l \), \(v_o \) only, \(\propto E \).

For \(k \) spectrum:
\[E(k) = |\nu(k)|^2 \]

\[E = \int dk \, |\nu(k)|^2 = \int dk \, E(k) \]
\[\text{c.e. absorb density of states} \]

then
\[V(l) = \int_{k_{n-1}}^{k_n} dk \, E(k) \]
$V(e)^2 \sim \epsilon^{2/3} l^{4/3} \sim \epsilon^{2/3} k^4$

$E(k) \sim \epsilon^{2/3} k^{-5/3}$

Kolmogorov spectrum.

\[\frac{1}{V(e)} \sim \frac{V(e)}{l} \sim \epsilon^{4/3} l^{-2/3} \]

N.B.

transfer rate increases as scale decreases.

finite time to end?

"**total time**"

\[T = \sum_{n=0}^{\infty} T_n \]

\[= \sum_{n=0}^{\infty} \frac{\ell_0}{v_0} \left(\frac{\ell_n}{\ell_0} \right)^{2/3} \]

\[\ln l_0 / l_0 \sim l_0^{1/2} \] for \(x < 1 \)

\[T = \sum_{n=0}^{\infty} \frac{\ell_0}{v_0} \ell_0^{-2/3} \]
\[T \sim \frac{\nu_l}{\nu_0} \frac{1}{1 - x^{2/3}} \]

\(T_0 \) sets cascade time.

- Cascade can go through \(\infty \) steps in finite time.
- Hence analogy with "shattering".

\(\nu \) for dissipation scale \(l_\xi \)

- Occurs when viscous diffusion kicks in and cuts off cascade.

\[\frac{1}{T_0} \sim \frac{1}{\nu_0 l_2} \rightarrow \text{diffusive and } \nu_0 \text{ time scales cross} \]

\[\frac{1}{l_\xi} \sim x^{2/3} \sim \nu l_2 \]

\[\delta_l \sim \nu^{3/4} \ell_1^{1/4} \]

\(\rightarrow \) dissipation scale.
Finally

$\# \text{ of FIs} \sim \left(\frac{h_0}{l_0} \right)^3 \sim \left(\frac{h_i}{l_0} \right)^3 \sim \left(\frac{h_i}{l_i} \right) \sim (Re^{3/4})^3 \sim Re^{3/4}$

For $h_0 \sim 1 \text{ km, } l_0 \sim 1 \text{ mm} \implies N \sim \frac{18}{10}$

N.B.: What is missing?