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Nonlinear wave–particle interaction

Vortices on the flow either annihilate or emerge and have never stayed long.
(Kamo no Chomei, Hojoki)

4.1 Prologue and overview

In this chapter, and those which follow, we introduce and discuss plasma tur-
bulence theory. A working theory of plasma turbulence is critical to our under-
standing of the saturation mechanisms and levels for plasma instabilities, and
their associated turbulent transport. Quasi-linear theory alone is not sufficient for
these purposes, since fluctuations and turbulence can saturate by coupling to other
modes, and ultimately to dissipation, as well as by relaxing the mean distribu-
tion function. The energy flow in plasma turbulence is shown schematically in
Figure 4.1. In nearly all cases of interest, linear instabilities, driven by externally
pumped free energy reservoirs, grow and interact to produce a state of fluctuations
and turbulence. As an aside, we note that while the word turbulence is used freely
here, we emphasize that the state in question is frequently one of spatiotemporal
chaos, wave turbulence or weak turbulence, all of which bear little resemblance to
the familiar paradigm of high Reynolds number fluid turbulence, with its character-
istically broad inertial range. Indeed, it is frequently not even possible to identify
an inertial range in plasma turbulence, since sources and sinks are themselves dis-
tributed over a wide range of scales. Fundamentally there are two channels by
which turbulence can evolve to a saturated state. These are by:

(i) quasi-linear relaxation of the distribution function or profile gradient associated with
the free energy reservoir. In this channel 〈f 〉, evolves toward a state where γk → 0,
for all modes k;

(ii) nonlinear interaction of unstable modes with other modes and ultimately with damped
modes. In this channel, which resembles the well-known cascade in fluid turbulence,
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Fig. 4.1. Energy flow in plasma turbulence.

γk remains finite (γk �= 0) but γ L
k + γNL

k

(|E|2) → 0, at each k, so that the sum of
linear growth or damping and nonlinear transfer allows a finite free energy source and
growth rate to be sustained against collisional or Landau damping.

Taken together, routes (i) and (ii) define the pathway from instability to a saturated
state of plasma turbulence. Several caveats should be added here. First, the satu-
rated state need not be absolutely stationary, but rather can be cyclic or in bursts,
as long as the net intensity does not increase on average in the observed time.
Second, the mechanism of nonlinear transfer can work either by wave–wave cou-
pling or by the nonlinear scattering of waves on particles. These two mechanisms
subdivide the “nonlinear interaction” channel into two sub-categories referred to,
respectively, as “nonlinear wave–wave interaction” and “nonlinear wave–particle
interaction”. These two sub-categories for energy transfer are the subjects of this
chapter (wave–particle) and the next (wave–wave), and together define the topic of
wave turbulence in plasma. The ideas and material of these chapters constitute the
essential foundations of the subject of plasma turbulence theory. Finally, we should
add that in nearly all cases of practical interest, quasi-linear relaxation co-exists
with a variety of nonlinear interaction processes (wave–wave, wave–particle, etc.).
Only in rare cases does a single process or transfer channel dominate all the others.

The quasi-linear theory and its structure have already been discussed. The major
elements of plasma turbulence theory which we must address are the theory of
nonlinear wave–particle and wave–wave interactions. The general structure of
plasma turbulence theory is shown schematically in Figure 4.2. Both for particles
(via the evolution of fk) or waves (via the evolution of N , the wave popula-
tion density), a paradigmatic goal is to derive and understand the physics of the
turbulent collision operators CP

k and CW
k . In practice, these two operators are

usually strongly coupled. Examples of CP
k include:
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116 Nonlinear wave–particle interaction

Fig. 4.2. General structure of plasma turbulence theory.

(i) the quasi-linear operator for 〈f 〉 relaxation, discussed in Chapter 3;
(ii) the Balescu–Lenard collision integral, describing the relaxation of 〈f 〉 in a stable

plasma near equilibrium, discussed in Chapter 2;
(iii) the Vlasov propagator renormalization,

q

m
Ẽ
∂f̃

∂v
→ − ∂

∂v
Dk,w

∂fk,ω

∂v
,

where Dk,ω = D
{∣∣Ek′,ω′

∣∣2 , τ ac
k′,ω′

}
. Here the operator −∂/∂v Dk,ω ∂/∂v may be

viewed as similar to an “eddy viscosity” for Vlasov turbulence, and describes particle
scattering by a spectrum of fluctuating electrostatic modes;

(iv) the scattering operator for nonlinear Landau damping CP
k fk ∼ Nfk , which is due

to the class of interactions described schematically in Figure 4.3(a). In this case, a
nonlinearly generated beat or virtual mode resonates with particles with their velocity
equal to its phase velocity. Mechanisms (iii) and (iv) are discussed in this chapter.

Nonlinear wave–wave interaction processes result from resonant coupling,
which is schematically depicted in Figure 4.3(b). The wave–wave collision
operator has the generic form CW

k N ∼ NN , so the spectral evolution equation
takes the form,

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511780875.005
Downloaded from https://www.cambridge.org/core. Access paid by the UC San Diego Library, on 06 Dec 2018 at 16:50:52, subject to the Cambridge Core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511780875.005
https://www.cambridge.org/core


4.2 Resonance broadening theory 117

test wave

background wave

beat wave

resonance

(a)

=
k – k'

wk, k
wk–wk', k – k'

wk – wk'

wk', k'

u

wk", k"

wk, k
wk', k'

(b)

Fig. 4.3. Nonlinear wave–wave interaction process. (a) Nonlinear Landau
resonance interaction with beat waves. (b) Nonlinear wave–wave coupling of
three resonant modes, where k + k′ + k′′ = 0 and ωk + ωk′ + ωk′′ = 0.

∂ |Ek|2
∂t

− γk |Ek|2 +
∑
k′

C1
(
k, k′) |Ek′ |2 |Ek|2 =

∑
k′,k′′

k′+k′′=k

C2
(
k′, k′′) |Ek′ |2|Ek′′ |2.

Here, the wave kinetics is akin to that of a birth and death process. Usually,
the incoherent emission term on the right-hand side (so named because it is not
proportional to |Ek|2) corresponds to birth, while the coherent mode coupling
term i.e. the third term on the left-hand side (so named because it is propor-
tional to, and coherent with, |Ek|2) corresponds to death or nonlinear damping.
The competition between these two defines the process of nonlinear wave energy
transfer, i.e. nonlinear cascade. Generally,

∑
k (incoherent) = ∑

k (coherent),
confirming that energy is conserved in the couplings. For weak turbulence, the
three-wave resonance function Rk,k′,k′′ has negligible width, so Re Rk,k′,k′′ =
πδ (ωk − ωk′ − ωk′′), while for strong turbulence, Rk,k′,k′′ is broadened, and has
the form Rk,k′,k′′ = i

/ {(ωk − ωk′ − ωk′′) +i (�ωk + �ωk′ + �ωk′′)
}
. The width

of Rk,k′,k′′ is due to the effects of nonlinear scrambling on the coherence of
the three interacting modes. The subject of nonlinear wave–wave interaction is
discussed at length in Chapters 4 and 5.

4.2 Resonance broadening theory

4.2.1 Approach via resonance broadening theory

We begin our discussion of nonlinear wave–particle interaction by presenting the
theory of resonance broadening (Dupree, 1966). Recall that quasi-linear theory
answers the question, “How does 〈f 〉 evolve in the presence of a spectrum of
waves, given that the particle orbits are stochastic?”. Continuing in that vein, reso-
nance broadening theory answers the question, “How does the plasma distribution
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Fig. 4.4. Calculation of the plasma response for given electric field perturbation,
and calculation of the evolution of the mean (a). Coupling with test wave and
background spectrum is given in (b), depicting the test wave approximation.

function f respond to a test wave Ek,ω at (k, ω), given an existing spectrum of
background waves?”. This situation is depicted in Figure 4.4.

4.2.1.1 Basic assumptions

It cannot be over-emphasized that resonance broadening theory rests upon two
fundamental assumptions. First the particle orbits are assumed to be stochastic, so
excursions from unperturbed orbits may be treated as a diffusion process. Thus,
resonance broadening theory (RBT) is valid only in regions of phase space where
the islands around phase space resonances overlap. Resonance broadening theory
also tacitly assumes the convergence of the second moment of the scattering step
pdf (probability density function) i.e.

〈(�v)2 P 〉 < ∞,

for velocity step �v with pdf P . This allows the scattering to be treated as a diffu-
sion process, via the central limit theorem. Second, the “test wave” approximation
is assumed to be valid. The test wave approximation, which appears in various
forms in virtually every statistical theory of turbulence, envisions the ensemble of
interacting modes to be sufficiently large and statistically homogeneous so that any
one mode may be removed from the ensemble and treated as a test wave, without
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4.2 Resonance broadening theory 119

altering the physics of the ensemble of remaining modes. The test wave hypoth-
esis is thus not applicable to problems involving coherent mode coupling, nor to
problems involving a few large amplitude or coherent modes interacting with a
stochastic bath. In practice, validity of the test wave approximation almost always
requires that the number of waves in the ensemble be large, and that the spectral
auto-correlation time be short.

4.2.1.2 Ensemble and path integral

The essential idea of resonance broadening theory resembles that of the Weiner–
Feynman path integral, in that the formal solution of the Vlasov equation, which
can be written as an integration over the time history of the exact (“perturbed”)
orbit, is replaced by an average over a statistical ensemble of excursions from the
linear or, “unperturbed”, orbit. This concept is shown schematizally in Figure 4.5.
To implement this, it is useful to recall that the Vlasov response fk to an electric
field fluctuation Ek may be written as an integration over orbits. So starting from,

dfk
dt

= − q

m
Ek

∂〈f 〉
∂v

, (4.1a)

when d/dt is determined by the characteristic equations (of the Vlasov equation),

dx

dt
= v

dv

dt
= q

m
E, (4.1b)

which are also the equations of particle motion, we can write,

fk,ω = − q

m
e−ikx

∫ ∞

0
dτ eikτ u(−τ )

[
eikxEk,ω

∂〈f 〉
∂v

]
, (4.2a)

where u(−τ ) is the formal, exact orbit propagator, which has the property that,

u(−τ )eikx = eikx(−τ). (4.2b)

Fig. 4.5. Schematic illustration for decomposition of the particle orbit in
resonance broadening theory.
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120 Nonlinear wave–particle interaction

Here, x(−τ ) is the full, perturbed orbit. We can again formally decompose x(−τ )
into the unperturbed piece and a fluctuation around it, as,

x(−τ ) = x0(−τ )+ δx(−τ ). (4.2c)

Along the unperturbed orbit x0 (−τ ), in this case, x0(−τ ) = x − vτ . This gives,

fk,ω = −
∫ ∞

0
dτ ei(ω−kv)τ eikδx(−τ) q

m
Ek,ω

∂〈f 〉
∂v

. (4.3)

Note that here we have assumed that the time scale for orbit scattering τs is short
compared to the time scale upon which 〈f 〉 varies (i.e. τs < τrelax, where τrelax

is the quasi-linear relaxation time in Table 3.1), so that 〈f 〉 may be treated as
constant.

4.2.1.3 Introduction of approximation

So far all the calculations have been purely formal. We now come to the critical
substantive step of resonance broadening theory, which is to approximate fk,ω by
its average over a statistical ensemble of orbit perturbations, i.e. to take fk,ω →
〈fk,ω〉OE, where

〈fk,ω〉OE = −
∫ ∞

0
dτ ei(ω−kv)τ 〈

eikδx(−τ)
〉
OE

q

m
Ek,ω

∂〈f 〉
∂v

. (4.4)

Here the bracket 〈 〉OE signifies an average over an ensemble of orbits. Note that
by employing this ansatz, the orbit perturbation factor appearing in the response
time history, i.e. exp [ikδx(−τ )], which we don’t know, is replaced by its ensemble
average, which we can calculate, by exploiting an assumption concerning the pdf
of δx. The approximation, which is used in quasi-linear theory, corresponds to,〈

eiωτ−ikx(τ)
〉
QL

∼ exp 〈iωτ − ikx (τ )〉 = exp (iωτ − ikvτ ) .

The mean field theory is employed in evaluating the quasi-linear response.
To calculate 〈exp [ikδx(−τ )]〉OE in RBT, we first note that,

dx

dt
= v = v0 + δv, (4.5a)

so

δx(−τ ) = −
∫ τ

0
dτ ′ δv

(−τ ′) , (4.5b)
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4.2 Resonance broadening theory 121

and we find,

〈exp [ikδx(−τ )]〉OE =
〈
exp

[
−ik

∫ τ

0
δv(−τ ′)dτ ′

]〉
OE

. (4.5c)

Thus the problem has now been reduced to calculating the expectation value in
Eq.(4.5c). Now, excursions in velocity from the unperturbed orbit are produced
by the fluctuating electric fields of the turbulent wave ensemble, i.e. dδv/dt =
qẼ/m. Consistent with the test wave hypothesis of a statistically homogeneous
ensemble of weakly correlated fluctuation, we assume a Gaussian pdf of Ẽ, so that
δv behaves diffusively, i.e.

pdf[δv] = 1√
πDτ

exp
[
−δv2/Dτ

]
, (4.6a)

and the expectation value of A(δv) is just,

〈A〉OE =
∫

d δv√
πDτ

exp
[
−δv2/Dτ

]
A. (4.6b)

Here D is the velocity diffusion coefficient which, like the quasi-linear D, char-
acterizes stochastic scattering of particles by the wave ensemble. In practice, D
has the same structure as does the quasi-linear diffusion coefficient. It cannot be
over emphasized that the Gaussian statistics of Ẽ and the diffusive pdf of δv are
input by assumption, only. While Gaussian statistics, etc., are often characteristic
of nonlinear systems with large numbers of interacting degrees of freedom, there is
no a-priori guarantee this will be the case. One well-known example of a dramatic
departure from Gaussian behaviour is the Kuramoto transition, in which the phases
of an ensemble of N (for N � 1) strongly coupled oscillators synchronize for cou-
pling parameters above some critical strength (Kuramoto, 1984). Another is the
plethora of findings of super-diffusive or sub-diffusive scalings in various studies
of the transport of test particles in a turbulent flow. Such non-diffusive behaviours
(Yoshizawa et al., 2004), which demand more advanced methods, like SOC models
(Bak et al., 1987; Dendy and Helander, 1997; Carreras et al., 1998) and frac-
tional kinetic (Podlubny, 1998; del Castillo-Negrete et al., 2004; Zaslavsky, 2005;
Sanchez, 2005), are frequently, but not always associated with the presence of
structures in the flow. In spite of these caveats, the Gaussian diffusive assumption is
a logical starting point. Furthermore, it is quite plausible that resonance broadening
theory can be generalized to treat the fractional kinetics of orbit perturbations, and
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Fig. 4.6. Accelerated decorrelation of resonant particles via diffusion in the
velocity space. The deviation of the particle velocity from the phase velocity of
the wave enhances the rate of phase change, ω − kv.

so encompass non-diffusive particle motion. Proceeding then, the orbit averaged
response factor is given by,〈

exp

[
−ik

∫ τ

0
dτ ′ δv

(−τ ′)]〉
OE

= exp

[
−k2Dτ 3

6

]
. (4.7a)

The scaling 〈δx2〉 ∼ Dτ 3 is a consequence of the fact that velocity, not position,
is directly scattered by electric field fluctuations, so linear streaming can couple to
the random walk in velocity to enhance decorrelation. This is shown schematically
in Figure 4.6.

4.2.1.4 Response function and decorrelation rate

Using Eq.(4.6a), the RBT approximation to the response function is then just,

fk,ω = −
∫ ∞

0
dτ exp

[
i(ω − kv)τ − k2Dτ 3

6

]
q

m
Ek,ω

∂〈f 〉
∂v

. (4.7b)

If we define the wave–particle correlation time τc according to the width in time
of the kernel of this response, we have,

1

τc
=

(
k2D

6

)1/3

, (4.7c)

so that,

fk,ω = −
∫ ∞

0
dτ exp

[
i(ω − kv)τ − τ 3

τ 3
c

]
q

m
Ek,ω

∂〈f 〉
∂v

. (4.7d)

Of course, the origin of the name “resonance broadening theory” is now clear,
since the effect of scattering by the turbulent spectrum of background waves is to
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4.2 Resonance broadening theory 123

broaden the linear wave–particle resonance, from a delta function of zero width
in linear theory to a function of finite width proportional to 1/τc. In this regard,
it is often useful to approximate the result of Eq.(4.7d) by a Lorentzian of width
1/τc, so,

fk,ω = − i

(ω − kv + i/τc)

q

m
Ek,ω

∂〈f 〉
∂v

. (4.7e)

The principal result of RBT is the identification of 1/τc as given by Eq.(4.7c),
as the wave–particle decorrelation rate. This is the rate (inverse time) at which a
resonant particle scatters a distance of one wavelength (λ = 2π/k) relative to the
test wave, and so defines the individual coherence time of a resonant particle with
a specific test wave. Of course, τc corresponds to τs, the particle scattering time
referred to earlier but not defined. Since 1

/
τc defines the width of the resonance

in time, it also determines a width in velocity, i.e.

1
/
τc

(ω − kv)2 + 1
/
τ 2

c

= 1
/
τc{(

ω
/
k − v

)2 + 1
/
k2τ 2

c

}
k2
,

so

�vT = 1

kτc
=

(
D

6k

)1/3

(4.8)

is the width in velocity of the broadened resonance. Together, �x ∼ k−1 and �vT

define the fundamental scales of an element or chunk of turbulent phase space
fluid. This fluid element is the analogue for Vlasov turbulence of eddy paradigm,
familiar from ordinary fluid turbulence. Note that in contrast to the eddy, with
spatial scale independent of amplitude, the velocity scale of a turbulent Vlasov
fluid element varies with turbulence intensity via its dependence upon D. In this
regard then, 1

/
τck may be viewed as the analogue of the eddy turn-over or decay

rate �ωk ∼ kṽk .
To better understand the dependencies and scalings of the RBT parameters τc,

�v, etc, and to place these new scales in the context of the fundamental time scales
which we encountered in Chapter 3, it is instructive to re-visit the calculation of the
quasi-linear diffusion coefficient DQL, now employing the response fk calculation
via RBT. Thus,

D = Re

[
q2

m2

∑
k

|Ek|2 i

ω − kv + i
/
τck

]
; (4.9a)
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124 Nonlinear wave–particle interaction

so employing the Lorentzian spectrum as before,

D = Re

⎡
⎢⎣ q2

m2

∑
k

∣∣∣Ẽ∣∣∣2 /
�k

1 + {(k − k0)
/
�k}2

i

ω − kv + i
/
τck

⎤
⎥⎦ , (4.9b)

and performing the spectral summation by contour integration gives,

D = q2

m2

∣∣Ẽ∣∣2Re
{
i
/ (

ωk0 − k0v + i |�k| ∣∣vgr − v
∣∣ + i

/
τck

)}
. (4.9c)

Taking v=ωk0

/
k0 at resonance, we see that D reduces to its quasi-linear

antecedent (D→DQL) for
∣∣�k (

vgr − vph
)
k

∣∣ > 1
/
τck. Thus quasi-linear diffusion

is recovered for τac < τc.

4.2.2 Application to various decorrelation processes

4.2.2.1 Scattering in action variable

The structure of the above calculation and the resulting super-diffusive decor-
relation are straightforward consequences of the fact that the action variable is
scattered (i.e. particle velocity v → v + δv), while the response decorrelation is
measured by the excursion of the associated angle variable (i.e. x = ∫

vdτ →
x + δx). Moreover drag, a key component in Brownian dynamics, is absent. Thus,
we have,

φ ∼
∫

ω (J ) dτ, (4.10a)

so the scattering induced excursion is,

δφ ∼
∫

∂ω

∂J
δJ dτ, (4.10b)

and

〈δφ〉 ∼
(
∂ω

∂J

)2

DJτ
3, (4.10c)

so the mean square excursion of the angle variable grows in time ∼ τ 3, not ∼ τ .
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4.2 Resonance broadening theory 125

Two particularly important examples of this type of decorrelation process are
concerned with:

(a) the decorrelation of an electron by radial scattering in a sheared magnetic field
(Fig. 4.7);

(b) the decorrelation of a particle or fluid element by radial scattering in a sheared flow,
(Fig. 4.9).

4.2.2.2 Decorrelation in a sheared magnetic field

Regarding electron scattering in the configuration of Figure 4.7, consideration of
streaming in the poloidal direction gives,

r
dθ

dt
= v‖

Bθ

BT
(4.11a)

(θ : poloidal angle), so
dθ

dt
= v‖

Rq (r)
. (4.11b)

With radial scattering δr , the change in the poloidal angle follows

δθ ∼
∫

v‖
Rq (r + δr)

dτ

∼ −v‖
Rq2

q ′δr dτ, (4.11c)

Fig. 4.7. Illustration of the sheared magnetic field in the toroidal plasma. When
the pitch of magnetic field is different from one magnetic surface to the other
surface, magnetic field has a shear. In this example, the pitch is weaker if the
minor radius r increases. Two starting points are at the same poloidal angle at C
(the toroidal angle ζ = 0), but θ < θ1 holds at C′ following the magnetic field
lines.
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126 Nonlinear wave–particle interaction

r– r0

q(r) – q(r0)

zz+Δz

(a) (b)

q(r) – q(r0)

Fig. 4.8. In sheared magnetic field configuration, the poloidal angle of two neigh-
bouring magnetic field lines deviates when the magnetic field lines are followed
(a). In this circumstance, accelerated decorrelation (against the wave propagating
in the poloidal direction) occurs via diffusion in the velocity space (b).

as is illustrated in Figure 4.8. So, we have (Hirshman and Molvig, 1979),

〈
δθ2

〉
∼ v2‖

L2
s

D

r2 τ
3. (4.11d)

Here L−1
s = rq ′/Rq2 is the magnetic shear length and D is the radial diffusion

coefficient. As in the 1D velocity scattering case, decorrelation occurs via the syn-
ergy of radial scattering with parallel streaming. A useful measure of decorrelation
is the time at which k2

θ r
2
〈
δθ2

〉 ∼ 1. This then defines the decorrelation time τc,
where,

1

τc
∼

(
k2
θ v

2‖
L2

s
D

)1/3

. (4.11e)

In practice, the result of Eq.(4.11e) is a very rapid rate for electron scattering, and
one which frequently exceeds the wave frequency for drift waves. Note too, that
since 1/τc ∼ D1/3, this process is less sensitive to fluctuation levels, etc. than the
familiar purely diffusive decorrelation rate 1/τc ∼ k2⊥D. Of course, this is a simple
consequence of the underlying hybrid structure of the decorrelation process.

4.2.2.3 Decorrelation in sheared mean flow

Similarly, if one considers the motion of a particle or fluid element which under-
goes radial scattering in a sheared flow (Fig. 4.9) (Biglari et al., 1990; Itoh and
Itoh, 1990; Shaing et al., 1990; Zhang and Mahajan, 1992), we have,

dy

dt
= Vy (x) , (4.12a)
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4.2 Resonance broadening theory 127

Fig. 4.9. The case of sheared mean flow. Accelerated decorrelation occurs
via diffusion in the x-direction. The deviation of the plasma elements in the
x-direction enhances the rate of phase change, ω − kV .

so

y ∼
∫

dτ Vy (x + δx) , (4.12b)

and

δy ∼
∫

dτ

(
∂Vy

∂x

)
δx. (4.12c)

The variance in the y-direction evolves as,

〈
δy2

〉
∼

(
∂Vy

∂x

)2

Dxτ
3, (4.12d)

and the decorrelation rate follows as,

1

τc
∼

((
∂Vy

∂x

)2

k2
yDx

)1/3

. (4.12e)

Again, note that the hybrid character of the process implies reduced sensitivity to
Dx and the fluctuation levels which drive it (Biglari et al., 1990). The interplay
of sheared streaming and radial scattering which yields the hybrid decorrelation
rate given in Eq.(4.12e) is relevant to the phenomena of suppression of turbu-
lence and transport by a sheared flow (Hahm and Burrell, 1995; Itoh and Itoh,
1996; Terry, 2000). Combined with the theory of electric field bifurcation (Itoh
and Itoh, 1988), this turbulence suppression mechanism plays a central role in
understanding the phenomenon of confinement improvement (such as the H-mode
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128 Nonlinear wave–particle interaction

(Wagner et al., 1982)). Extension to meso scale radial electric field (zonal flows)
has also been performed (Diamond et al., 2005b). These issues are explained in
Volume 2.

4.2.3 Influence of resonance broadening on mean evolution

The appearance of resonance broadening by orbit scattering has several interest-
ing implications for diffusion and the structure of the mean field theory for 〈f 〉
evolution. The mean field velocity flux is given by,

�v =
∑
k,ω

q

m
E k−ω

fk
ω

= −D∂ 〈f 〉
∂v

, (4.13a)

where by substitution of Eq.(4.7e) for fk
ω

into Eq.(4.13a), we find,

D = q2

m2

∑
k,ω

∣∣∣∣Ek
ω

∣∣∣∣2 1/τck

(ω − kv)2 + 1/τ 2
ck

. (4.13b)

Noting that 1/τck = (
k2D/6

)1/3
, we see that D is, in principle, defined as a func-

tion of itself in Eq.(4.13). Of course, τck constitutes the individual coherence time
of distribution perturbations measured relative to a test wave k. We also see that
τck enters the resonance width, and acts to broaden the wave–particle resonance to
a finite width.

�vT = 1

kτc
, (4.14a)

so the resonance function now has the broadened form,

1/τck

(ω − kv)2 + 1/τ 2
ck

→ �vT/k

(ω/k − v)2 + (1/kτck)
2 . (4.14b)

Given that the main effect of orbit decorrelation is to broaden the linear, singular
resonance function ∼ δ (ω − kv) to one of finite width, one might naturally ask,
“How does D really charge,” and “is the finite width of the wave–particle reso-
nance at all significant, in the event that the width of the fluctuation spectrum is
larger?” As in Chapter 3, we proceed by an ansatz, a simple form of the fluctu-
ation spectrum which facilitates performing the spectrum integrations in order to
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4.2 Resonance broadening theory 129

identify the basic time scales. Assuming D is driven by a Lorentzian spectrum of
modes, we have,

D = Re
∫

dk
q2

m2

∣∣∣Ẽ0

∣∣∣2[
1 +

(
k−k0
�k

)2
] i

ω − kv + i
τc

∼ Re

{
q2

m2

∣∣∣Ẽ0

∣∣∣2 i/[
ωk0 − k0v + i |�k|

∣∣∣∣dω

dk
− v

∣∣∣∣ + i

τck

]}
. (4.15a)

Thus we immediately see that if,

∣∣∣�k (
vgr − ω

k

)∣∣∣ > 1

τc
, (4.15b)

so that the spectral auto-correlation time τac <τc, the resonance broadening
is irrelevant and D→DQL. Combining Eqs.(4.15a) and (4.7c), Eq.(4.15b) is
rewritten as, (

�k

k

)2∣∣∣∣vgvp − 1

∣∣∣∣2 > eφ

mv2
p

.

This condition is equivalent to the validity condition for the quasi-linear theory,
Eq.(3.11) and Fig. 3.11.

Note that broad spectral width, alone, is not sufficient to ensure that D is quasi-
linear. Dispersion must be sufficient to ensure that the fluctuation pattern seen by
a resonant particle (one with v = ω/k) is short lived in comparison with the
correlation time. In this limit of D → DQL, the particle–wave decorrelation rate
scales as,

1

τck
∼

(
k2

〈
ã2

〉
τac

)1/3
(4.16a)

and the resonance width scales as

1

kτck
∼

(〈
ã2

〉 τac

k

)1/3
. (4.16b)

Here
〈
ã2

〉
is the acceleration fluctuation spectrum and τac is the spectral auto-

correlation time.
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130 Nonlinear wave–particle interaction

Given the discussion above, the opposite limit of short correlation time naturally
arouses one’s curiosity. In this limit, for resonant particles i/(ω−kv+i/τck) ∼ τck.
Hence, ignoring the k-dependence of τc, we have,

1

τ 3
c

= k2D

6
= k2

6

∑
k

q2

m2
|Ek|2 τc, (4.17a)

so

1

τ 4
c

∼ q2

m2
k4

〈
φ̃2

〉
, (4.17b)

and

1

τc
∼ k

(
q2

m2

〈
φ̃2

〉)1/4

, (4.17c)

and

�vT ∼
(
q2

m2

〈
φ̃2

〉)1/4

∼
(
q

m

〈
φ̃2

〉1/2
)1/2

. (4.17d)

Not surprisingly, the results for the short-τc limit resemble those for a particle
interaction with a single wave.

4.3 Renormalization in Vlasov turbulence I: Vlasov response function

4.3.1 Issues in renormalization in Vlasov turbulence

While intuitively appealing in many respects, resonance broadening theory is
inherently unsatisfactory, for several reasons. These include, but are not lim-
ited to:

1. the theory is intrinsically one of the ‘test wave’ genre, yet treats Ek as fixed while fk
evolves nonlinearly in response to it – i.e. fk and Ek are treated asymmetrically. This is
especially dubious since the Vlasov nonlinearity consists of the product E ∂f

∂v
;

2. the resonance broadening theory does not conserve energy, and indeed does not address
the issue of energetics. We will elaborate on this point further below, in our discussion
of renormalization for drift wave turbulence;

3. resonance broadening theory treats the evolution of f as a Markov process, and neglects
memory effects;

4. resonance broadening theory asserts Gaussian statistics a priori for particle orbit
scattering statistics.
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4.3 Renormalization in Vlasov turbulence I 131

In view of these limitations, it is natural to explore other, more systematic,
approaches to the problem of renormalization. The reader is forewarned, however,
that all renormalization procedures involve some degree of uncertainty in the accu-
racy of the approximations they employ. None can be fully justified on a rigorous
function. None can predict their own errors.

The aim here is to determine the response function relating fk,ω to the electric
field perturbation Ek,ω. In formal terms, if one assigns each Ek,ω, a multiplicative
phase factor αk,ω = eiθk,ω , where θk,ω is the phase of the fluctuation at k, ω, then
the Vlasov response function is simply δfk,ω/δαk,ω. In other words, the aim here
is to extract the portion of the Vlasov equation nonlinearity which is phase coher-
ent with αk,ω. Note that the phase-coherent portion can and will contain pieces
proportional to both fk,ω and Ek,ω.

4.3.2 One-dimensional electron plasmas

Proceeding, consider a simple 1D electron plasma with ions responding via a given
susceptibility χi (k, ω). Then the Vlasov–Poisson system is just,

−i (ω − kv) fk,ω + ∂

∂v

∑
k′,ω′

q

m
E−k′

−ω′
fk+k′
ω+ω′

= − q

m
Ek
ω

∂ 〈f 〉
∂v

, (4.18a)

and

ikEk
ω

= 4πn0q

∫
dv fk

ω
− 4πn0qχi (k, ω)

q

T
φk,ω. (4.18b)

To obtain the response function for mode k, ω, i.e. δfk,ω/δφk,ω, we seek to isolate
the part of the nonlinearity (q/m)E ∂f/∂v which is phase coherent with Ek,ω.
Here, ‘phase coherent’ means having the same phase as does φk,ω. Note that the
philosophy here presumes the utility of a test wave approach, which ‘tags’ each
mode by a phase αk,ω, and assumes that one may examine the phase-coherent
response of a given mode in the (dynamic) background of all modes, without alter-
ing the statistics and dynamics of the ensemble. Thus, the aim of this procedure is
to systematically approximate the nonlinearity,

Nk,ω = ∂

∂v

∑
k′,ω′

q

m
E−k′

ω′
fk+k′
ω+ω′

(4.19a)

by a function of the form,

Nk,ω = C f
k,ω

fk,ω + C E
k,ω

q

m
Ek
ω
, (4.19b)
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132 Nonlinear wave–particle interaction

where C f
k,ω

and C E
k,ω

are phase independent operator function of the fluctuation

spectrum, and the response function itself. Note that the form of the renormal-
ized Nk,ω in Eq.(4.19b) suggests that C f

k,ω

should reduce to the familiar diffusion

operator from resonance broadening theory in certain limits.

4.3.2.1 Renormalization procedure

To answer the obvious question of how one obtains Cf , CE , we proceed by a
perturbative approach. To this end, it is useful to write the Vlasov equation as,

−i (ω − kv) fk
ω

+ ∂

∂v

∑
k′,ω′

(
q

m
E−k′

−ω′
f
(2)
k+k′
ω+ω′

+ f
(2)
−k′
−ω′

q

m
Ek+k′
ω+ω′

)
= − q

m
Ek
ω

∂ 〈f 〉
∂v

.

(4.20a)

Here, the superscript (2) signifies that the quantity so labelled is driven by the
direct beating of two modes or fluctuations. Thus,

f
(2)
k+k′
ω+ω′

∼ E
(1)
k′
ω′
f
(1)
k
ω

∝ exp i
[
θk′,ω′ + θk,ω

]
, (4.20b)

and similarly for E(2)
k+k′
ω+ω′

(here θ is a phase of the mode.) This ensures that the

resulting Nk,ω is phase coherent with φk,ω. The remaining step of relating f
(2)
k+k′
ω+ω′

,

E
(2)
k+k′
ω+ω′

to the amplitudes of primary modes is done by perturbation theory, i.e.

for f (2)
k+k′
ω+ω′

we write,

[
−i (ω + ω′ − (

k + k′) v) + Cfk+k′
ω+ω′

]
f
(2)
k+k′
ω+ω′

= − q

m

∂f
(1)
k′
ω′

∂v
E
(1)
k
ω

, (4.21a)

so

f
(2)
k+k′
ω+ω′

= Lk+k′
ω+ω′

{( q
m

)2
E
(1)
k′
ω′

∂

∂v
Lk
ω

∂〈f 〉
∂v

E
(1)
k
ω

}
, (4.21b)

where the propagator is,

L−1
k+k′
ω+ω′

= −i
[
ω + ω′ − (

k + k′) v + iC k+k′
ω+ω′

]
. (4.21c)
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4.3 Renormalization in Vlasov turbulence I 133

Here we have dropped E(2) contributions since we are concerned with nonlin-
ear wave–particle interaction and the response function for f . Terms from E(2)

involve only moments of f , and so are not directly relevant to wave–particle inter-
action. Given this simplification, the subscript ‘f ’ on Cf has also been dropped.
Then, substituting Eqs.(4.21b), (4.21c) into Eq.(4.20a) gives the renormalized
nonlinearity,

Nk,ω = − ∂

∂v

∑
k′,ω′

q2

m2

∣∣∣∣Ek′
ω′

∣∣∣∣2 Lk′′
ω′′

∂

∂v
fk
ω

− ∂

∂v

∑
k′,ω′

E−k′
ω′

∂fk
ω

∂v
Lk′′
ω′′

q

m
Ek
ω
, (4.22a)

and the renormalized Vlasov equation thus follows as,

−i (ω − kv) fk,ω − ∂

∂v
Dk,ω

∂

∂v
fk,ω = − q

m
Ek,ω

(
∂ 〈f 〉
∂v

+ ∂

∂v
f̄k,ω

)
, (4.22b)

where by correspondence with Nk,ω,

Dk,ω =
∑
k′,ω′

q2

m2

∣∣Ek′,ω′
∣∣2 Lk′′

ω′′
(4.22c)

f̄k
ω

=
∑
k′,ω′

q

m
E−k′

−ω′

∂fk′
ω′

∂v
Lk′′,ω′′ . (4.22d)

Cleary, the operator −∂/∂v Dk,ω ∂/∂v constitutes a propagator dressing or “self-
energy” correlation to the bare Vlasov propagatorLk,ω = i/(ω−kv). We term this
a ‘self-energy’ because it reflects the effect of interactions between the test mode
and the ambient spectrum of background waves, just as the self-energy renormal-
ization of the electron propagated in quantum electrodynamics accounts for the
interaction of a bare electron with ambient photons induced by vacuum polariza-
tion. In a similar vein, f̄k,ω corresponds to a renormalization of the background
or ambient distribution function, and so bears a resemblence to wave function
renormalization, familiar from quantum electrodynamics.

4.3.2.2 Non-Markovian property

Although the propagator renormalization derived above has the structure of a dif-
fusion operator, here the diffusion coefficient Dk,ω depends explicitly upon the
wave number and frequency of the fluctuation. This important feature reflects the
fundamentally non-Markovian character of the nonlinear interactions. Recall that
a Markovian process, which may be described by a Fokker–Planck equation with
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134 Nonlinear wave–particle interaction

a space-time-independent diffusion coefficient, is one with no memory. Thus a
Markovian model for f evolution is one with the form,

f (t + τ, v) = f (t, v) +
∫

d (�v) T (v,�v, τ ) f (v − �v, t) . (4.23)

Here, T (v,�v, τ ) is the transition probability for a step v − �v → v in time
interval τ . Making a standard Fokker–Planck expansion for small �v, and taking
τ ∼ τac and �v ∼ �vT recovers the resonance broadening theory result, with
D = DQL. Application of this model to the evolution of fk,ω is sensible only
if ∂fk,ω/∂t � fk,ω/τac, and

∣∣k′∣∣ � |k|, |ω|′ � |ω|, so that the spectrum of
ambient modes appears as a stochastic bath to the test mode in question. Of course,
examination of Dk,ω in the τac < τc limit (so Lk′′,ω′′ may be taken to be bare)
reveals that the k, ω dependence of Dk,ω, f̄k,ω is present previously because the
test mode at (k, ω) has spatio-temporal scales comparable to, not slower than, the
other modes. Indeed, since,

Dk,ω =
∑
k′,ω′

q2

m2

∣∣∣∣Ek′
ω′

∣∣∣∣2 Re

{
i

ω + ω′ − (k + k′) v

}
, (4.24)

we see that Dk,ω → D if k � k′, ω � ω′, which corresponds to the Markovian
limit where the random ‘kicking’ by other modes is so fast that it appears as a
sequence of random kicks. Hence, it is apparent that the non-Markovian structure
of the theory is a consequence of the fact that the test mode scales are comparable
to other scales in the spectrum. However, it should be noted that regardless of the
ratio of test wave space-time scales to background scales, the Markovian approx-
imation is always valid for resonant particles, for which ω = kv, since in this
case,

D
(v)
k,ω =

∑
k′,ω′

q2

m2

∣∣∣∣Ek′
ω′

∣∣∣∣2 Re

{
i

ω′ − k′v

}
→ DQL. (4.25)

Thus, the resonant particle response is amenable to treatment by a Markovian
theory.

4.3.2.3 Background distribution renormalization

The other new feature in the theory is the background distribution renormalization
f̄k,ω. The function f̄k,ω accounts for the renormalization or “dressing” of the back-
ground distribution function which is necessary for the renormalized response of
fk,ω to reduce to the weak turbulence theory expansion result for fk,ω in the limit
of kv � ω and small fluctuation levels. More generally, f̄k,ω preserves certain
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4.4 Renormalization in Vlasov turbulence II 135

structural properties of Nk,ω which are crucial to energetics and its treatment by
the renormalized theory. These features are most readily illustrated in the context
of the drift wave dynamics, so it is to this problem we now turn.

4.4 Renormalization in Vlasov turbulence II: drift wave turbulence

4.4.1 Kinetic description of drift wave fluctuations

Recall from Chapter 3 that a simple model for low frequency plasma dynamics in
a strongly magnetized plasma is the drift-kinetic equation,

∂f

∂t
+ vz

∂f

∂z
− c

B0
∇φ × z · ∇f + q

m
Ez

∂f

∂vz
= 0. (4.26a)

The geometry of the plasma is illustrated in Figure 3.14. Indeed, the simplest
possible model of drift wave dynamics consists of drift-kinetic ion dynamics, as
described by Eq.(4.26a) and a ‘nearly Boltzmann’ electron response, along with
quasi-neutrality, so,

n
ik
ω

n0
=

∫
dv fk

ω
(v) =

n
ek
ω

n0
=

(
1 − iδk

ω

) |e|φk,ω

T
, (4.26b)

where φ is the electrostatic potential, so that the electric field in the direction of the
main magnetic field, Ez, is given by −∂φ/∂z. This simple model can be reduced
even further by ignoring the (qEz/m) ∂f/∂vz nonlinearity, since kz � k⊥. In that
case, the drift-kinetic equation for f simplifies to,

∂f

∂t
+ vz

∂f

∂z
− cE

B0
∇f = c

B0

∂φ

∂y

∂ 〈f 〉
∂r

− q

m
Fz

∂ 〈f 〉
∂vz

. (4.26c)

Equation (4.26c) has the generic structure explained below,

∂f

∂t
+ vz

∂

∂z
f

➀

+ v⊥ · ∇⊥f
➁

= δS

δφ
φ 〈f 〉
➂

, (4.27a)

where, in Eq.(4.27a), the meaning of the terms is as follows: ➀: parallel streaming
along B0z, ➁: advection by fluid with ∇ · v = 0 → spatial scattering, ➂: source-
potential perturbation 〈f 〉 = 〈f (r, vz)〉. Many variations on this generic form are
possible obviously, one is to take v⊥ → 0 (i.e. B0 → ∞), which recovers the
structure of the linearized equation.

A second is to take kz → 0 and integrate over v, thus recovering,

∂n

∂t
+ v⊥ · ∇⊥n = δS′

δφ
φ, (4.27b)
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136 Nonlinear wave–particle interaction

which is similar to the equation for the evolution of a 2D fluid, i.e.

∂ρ

∂t
+ ∇φ × z · ∇ρ − ν∇2ρ = 0, (4.27c)

where

ρ = ∇2φ. (4.27d)

This type of structure appears in the descriptions of 2D fluids, guiding centre
plasmas, non-neutral plasmas, etc.

A third variation is found by retaining finite Larmor radius effects, so

fk,ω = J0 (kρ) f
gc
k,ω

. (4.27e)

Here, f gc
k,ω refers to the guiding centre distribution function and ρ = v⊥/ωc. The

guiding centre distribution obeys the gyrokinetic equation,

∂

∂t
f gc + vz

∂f gc

∂z
+ 〈v⊥〉θ · ∇⊥f gc =

〈
∂S

∂φ

〉
θ

φ 〈f 〉 . (4.27f)

Here, the averages 〈 〉θ refer to gyro-angle averages. It should be apparent, then,
that the structure of Eq.(4.26c) is indeed of general interest and relevant to a wide
range of problems.

4.4.2 Coherent nonlinear effect via resonance broadening theory

The simplest approach to the task of obtaining a renormalized response of fk,ω to
φk,ω in Eq.(4.26c) is to employ resonance broadening theory, i.e.

fk
ω

= eikzze−ik⊥·r⊥
∫ ∞

0
dτ eiωτ 〈u (−τ )〉∗ eikzzeik⊥·r⊥ δSk,ω

δφ

(
−|e|φk,ω

Ti

)
〈f 〉

=
∫ ∞

0
dτ ei(ω−kzvz)τ

〈
eik⊥·δr⊥(−τ)

〉∗ δSk,ω
δφ

(
−|e|φk,ω

Ti

)
〈f 〉 . (4.28)

Here δr is the excursion in r induced by random E × B scattering. Taking the
statistical distribution of δr to be Gaussian, one then finds,

〈
eik⊥·δr(−τ)〉 ∼=

〈
1 + ik⊥ · δr − (k⊥δr)2

2

〉

= exp [− (k⊥ · D · k⊥) τ ]

= exp
[
−k2⊥Dτ

]
(4.29)

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511780875.005
Downloaded from https://www.cambridge.org/core. Access paid by the UC San Diego Library, on 06 Dec 2018 at 16:50:52, subject to the Cambridge Core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511780875.005
https://www.cambridge.org/core


4.4 Renormalization in Vlasov turbulence II 137

for isotropic turbulence. Contrary to Eq.(4.7a), a simple exponential decay is
recovered. Note that the diffusion is spatial here. The precise form of the diffu-
sion tensor D⊥ may be straightforwardly obtained by a quasi-linear calculation on
the underlying drift-kinetic equation (i.e. Eq.(4.26c)), yielding,

k⊥ · D · k⊥ =
∑
k′

c2

B2
0

(
k⊥ · k′⊥z

)2 ∣∣φk′
∣∣2 πδ (ω − kzvz) . (4.30)

Thus, for turbulence which is isotropic in k we find the familiar ‘classic’ form of
the renormalized response, as given by resonance broadening theory,

fk,ω =
∫ ∞

0
dτ ei

(
ω−kzvz+ik2⊥D

)
τ δSk,ω

δφk,ω

(
−|e|
Ti
φk,ω

)
〈f 〉 . (4.31)

So, for drift-kinetic turbulence, we see that the decorrelation rate for turbulent
scattering of a test particle from its unperturbed trajectory scattering is given by,

1

τck
= k2D⊥. (4.32)

This result is, in turn, the underpinning of the classic mixing length theory estimate
for the saturated transport associated with drift wave instabilities, namely,

D⊥ = γk

/
k2⊥ . (4.33)

Note that the idea here is simply that the instability saturates when the rate at
which a particle is scattered one perpendicular wave length (i.e. 1

/
τc k ) equals the

growth rate γk. Of course, coupling to magnetic or flow velocity shear can increase
the decorrelation rate, as discussed earlier in this chapter.

4.4.3 Conservation revisited

Note, too, that the essence of resonance broadening theory is simply to replace the
nonlinearity of the drift-kinetic equation (i.e. Eq.(4.26c)) by a diffusion operator,
so (RHS = right-hand side):

∂f

∂t
+ vz

∂f

∂z
− c

B
∇φ × z · ∇f = RHS (4.34a)

becomes

∂f

∂t
+ vz

∂f

∂z
− ∇⊥ · D · ∇⊥f = RHS. (4.34b)
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138 Nonlinear wave–particle interaction

Thus, we see that in this application, the result of resonance broadening theory
resembles that of a simple ‘eddy viscosity’ model as used in modelling in fluid
turbulence. The apparent direct correspondence between resonance broadening
theory and simple eddy viscosity methods then begs the question, “Is application
of resonance broadening theory to the drift-kinetic equation in the vein discussed
above correct?”. Two simple observations are quite pertinent to answering this
question. One is that since the E × B nonlinearity is independent of velocity
(except for the velocity dependence of f ), we can integrate Eq.(4.9c) over velocity
(
∫

d3v) to obtain,

∂n

∂t
+ ∂vz

∂z
− c

B0
∇φ × z · ∇n =

∫
d3v RHS, (4.35a)

which may then be straightforwardly re-written in the form,

∂n

∂t
+ ∂vz

∂z
+ ∇⊥ · J⊥ =

∫
d3v RHS, (4.35b)

where

J⊥ = vE×B n (4.35c)

is the perpendicular current carried by E × B advection of particles. Of course,
such a current can not couple to the perpendicular electric field, because J⊥ in
Eq.(4.35c) is perpendicular to E⊥ (either to do work or have work done upon it),
so we require, 〈

E∗⊥ · J⊥
〉 = 0, (4.36)

where the brackets signify a space-time average. In drift kinetics, the only heat-
ing possible is parallel heating, so 〈E · J 〉 = 〈

E‖J‖
〉
, as in the discussion of the

energetics of quasi-linear theory for drift wave turbulence which was presented in
Chapter 3. This is seen trivially in real space or in k-space, since〈

E∗⊥ · J⊥
〉 =

∑
k,ω

∑
k′,ω′

c

B0

(
k · k′, ω′ × z

)
φ−k−ω

φ−k′
−ω′

nk+k′
ω+ω′

, (4.37)

so that the interchange (k, ω) ↔ (
k′, ω′) leaves all in Eq.(4.37) invariant, except

for the coupling coefficient k · k′ × z, which is anti-symmetry, i.e. k · k′ × z →
−k · k′ × z so

〈
E∗ · J⊥

〉 = − 〈
E∗ · J⊥

〉 = 0. The condition that
〈
E∗ · J⊥

〉 = 0
can be re-written as a condition on the nonlinear term Nk,ω since,〈

E∗⊥ · J⊥
〉 =

∑
k,ω

φ−k−ω
Nk
ω

= 0. (4.38)
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4.4 Renormalization in Vlasov turbulence II 139

Any renormalization of the nonlinearity Nk,ω must satisfy the condition expressed
by Eq.(4.38). From this discussion, we also see that the problem of renormaliza-
tion in turbulence theory is one of ‘representation’, i.e. the aim of renormalization
theory is to ‘represent’ the ‘bare’ nonlinearity by a simpler, more tractable operator
which maintains its essential physical properties.

A second, somewhat related property of N is that it annihilates the adiabatic or
Boltzmann response, to the lowest order in 1

/
k⊥L⊥ , where L⊥ is the perpendic-

ular scale length of 〈f 〉 variation. In calculations related to drift wave turbulence,
it is often useful to write the total fluctuating distribution function as the sum of
the Boltzmann response (fB) plus a non-Boltzmann correction. Thus for ions, we
often write,

fk,ω = −|e|
Ti
φk,ω 〈f 〉 + gk,ω. (4.39)

Now it is obvious that vE×B · ∇fB → 0 to the lowest order, since E × B ·
∇φ = 0. Hence any representation of Nk,ω must preserve the property that
limf→fB Nk,ω → 0, to the lowest order.

It is painfully clear that resonance broadening theory satisfies neither of
the constraints discussed above. In particular, in resonance broadening theory,
Nk,ω = k2⊥Dfk,ω, and rather obviously,

∑
k,ω

φ−k−ω
N−k−ω

→
∑
k,ω

φ−k−ω
k2⊥Dfk

ω
�= 0, (4.40a)

so that
〈
E∗⊥ · J⊥

〉 �= 0, as it should be. Also, in resonance broadening theory,

lim
f→fB

Nk
ω

= k2D

(
−|e|
T
φk
ω

〈f 〉
)

�= 0, (4.40b)

so the Boltzmann response is not annihilated, either. Hence, resonance broad-
ening theory fails both ‘tests’ of a successful renormalization. The reason for
these shortcomings is the neglect of background renormalization, i.e. f̄k,ω, by the
resonance broadening approach.

4.4.4 Conservative formulations

This shortcoming can be rectified by the perturbative renormalization procedure
presented above in the context of the 1D Vlasov plasma. We now turn to the
application of this methodology to drift wave turbulence.
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140 Nonlinear wave–particle interaction

The primitive drift-kinetic equation is, in k, ω-space,

−iω (ω − kzvz) fk
ω

+ c

B0

∑
k′

(
k · k′ × z

)
f−k′

−ω′
fk+k′
ω+ω′

= δS

δφ

(
−|e|
Ti
φk,ω

)
〈f 〉 ,

(4.41a)

so that the portion of the nonlinearity which is phase coherent with αk,ω, where
αk,ω = exp iθkω and θ is a phase, may be written as,

Nk
ω

∼= c

B0

∑
k′,ω

(
k · k′ × z

) (
φ
(1)
−k′
−ω′

f
(2)
k+k′
ω+ω′

− f
(1)
−k′
−ω′

φ
(2)
k+k′
ω+ω′

)
. (4.41b)

As before, here we are interested in nonlinear wave–particle interaction, so we
ignore φ(2)

k+k′
ω+ω′

hereafter. The quantity f (2)
k+k′
ω+ω′

is given by,

−i
{(
ω + ω′) − (

kz + k′
z

)}
f
(2)
k+k′
ω+ω′

+ Ck+k′
ω+ω′

f
(2)
k+k′
ω+ω′

= c

B0

(
k · k′ × z

) (
φk′
ω′
fk
ω

− fk′
ω′
φk
ω

)
, (4.42a)

so

f
(2)
k+k′
ω+ω′

= Lk+k′
ω+ω′

c

B0

(
k · k′ × z

) (
φk′
ω′
fk
ω

− fk′
ω′
φk
ω

)
, (4.42b)

where

L−1
k+k′
ω+ω′

= −i
{(
ω + ω′) − (

kz + k′
z

)
vz + iCk+k′

ω+ω′

}
(4.42c)

is the beat wave propagator. Thus, we see that the renormalized nonlinearity has
the form,

Nk,ω = dk,ωfk,ω − f̄k,ωφk,ω, (4.43a)

where

dk,ω =
∑
k′,ω′

c2

B2
0

(
k · k′ × z

)2
∣∣∣∣φk′

ω′

∣∣∣∣2 Lk+k′
ω+ω′

∼= k2⊥Dk,ω (4.43b)
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for isotropic turbulence, and

f̄k,ω = c2

B2
0

∑
k′,ω′

(
k · k′ × z

)2
φ−k′

−ω′
φ k′k+k′
ω′ω+ω′

. (4.43c)

Here, dk,ω is the rate of test particle scattering and f̄k,ω is the background
distribution renormalization. The term dk,ω is referred to as the ‘test particle
scattering rate’, since it is different from the actual particle flux, which is neces-
sarily regulated to the non-adiabatic electron response δk,ω|e|φk,ω

/
Te . Retaining

dk,ω, f̄k,ω, we thus see that the renormalized distribution response satisfies the
equation

−i (ω − kzvz) fk
ω

+ dk
ω
fk
ω

=
(

dS

dφ
〈f 〉 + f̄k

ω

)
φ k
ω.

(4.44)

As in 1D, both resonance broadening and background distribution renormal-
ization are non-Markovian. Finally, note that yet another way to argue for the
existence of f̄k,ω is that both test particles and background particles (some-
what akin to field particles in collision theory) are scattered by the ensemble of
fluctuations.

Given the motivation, we first check that the renormalized Nk,ω as given
by Eq.(4.43a), satisfies the two properties. First, using Eq.(4.43) we can easily
show that,

∑
k,ω

φ−k−ω
Nk
ω

=
∑
k,ω

∑
k′,ω′

c2

B2
0

(
k · k′ × z

)2

{∣∣∣∣φk′
ω′

∣∣∣∣2
(
φ−k−ω

fk
ω

)
−

∣∣∣∣φk
ω

∣∣∣∣2
(
φ−k′

−ω′
fk′
ω′

)}
= 0,

(4.45)

by anti-symmetry under k, ω ↔ k′, ω′. Thus, we see that the renormalization
is consistent with

〈
E∗⊥ · J⊥

〉 = 0. Second, it is straightforward to show that
limf→fB Nk,ω → 0, so the renormalized nonlinearity vanishes in the limit of the
Boltzmann response. Hence, we see that the perturbative renormalization proce-
dure respects both properties of Nk,ω, as it should. The presence of the background
renormalization f̄k,ω is essential to this outcome! For the sensitive and subtle
case of drift-kinetic turbulence, the perturbative renormalization approach, derived
from the idea of extracting the piece of Nk,ω phase coherent with αk,ω, clearly is
more successful than is resonance broadening theory.
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142 Nonlinear wave–particle interaction

4.4.5 Physics content and predictions

Having addressed some of the questions concerning the formal structure of the
renormalized theory of drift wave turbulence, we now turn to more interesting
issues of physics content and predictions. Of course, the principal goals of any
renormalized theory of plasma turbulence, in general, or of drift wave turbulence,
in particular, are:

1. to identify and understand nonlinear space-time scales;
2. to identify the relevant nonlinear saturation mechanisms and calculate the correspond-

ing nonlinear damping rates;
3. to identify and predict possible bifurcations in the saturated state.

In the context of the specific example of drift-kinetic turbulence, goals (1) and (2)
may be refined further to focus on the specific questions:

1. What is the physical meaning of the decorrelation rate and propagator renormalization
dk,ω, and how is it related to mixing, transport and heating?

2. What is the rate of nonlinear ion heating? Note that ion heating is required for saturation
of drift wave turbulence in order to balance energy input from electron relaxation.

Answering and illuminating these two questions is the task to which we now turn.

4.4.5.1 Propagator renormalization and mixing

The propagator renormalization dk,ω is a measure of the rate at which the response
fk,ω to a test wave fluctuation Ek,ω is mixed or scrambled by the ensemble of
turbulent fluctuations. The term dk,ω is defined recursively, i.e.

dk,ω =
∑
k′,ω′

c2

B2
0

∣∣φk′,ω′
∣∣2 (

k · k′ × z
)2 i

(ω + ω′)− (
kz + k′

z

)
vz + idk+k′,ω+ω′

,

(4.46)
since dk,ω results from the beat interactions of the test wave with background
modes which themselves undergo turbulent decorrelation. (A method based on
the recursion is explained in Chapter 6, where the closure model is discussed.)
For simplicity, we further specialize to the isotropic turbulence, long wavelength,
low frequency limit where,

dk,ω → k2D =
∑
k,ω

c2

B2
0

∣∣φk′,ω′
∣∣2 (

k · k′ × z
)2 i

ω′ − k′
zvz + idk′,ω′

. (4.47)

This decorrelation rate corresponds to ‘resonance broadened’ quasi-linear theory.
Function dk,ω behaves rather differently in the weak and strong turbulence
regimes, i.e. if |(dω/dk⊥)�k⊥| + ∣∣(vgr‖ − ω/k‖

)
�k‖

∣∣ > dk′,ω′ or < dk′,ω′ ,
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respectively. In the first case, which corresponds to weak turbulence theory and
resembles the simple quasi-linear prediction,

Re dk,ω =
∑
k′,ω′

c2

B2
0

∣∣φk′,ω′
∣∣2 (

k · k′ × z
)2

πδ
(
ω′ − k′

zvz
)

= k2
〈
ṽ2

〉
τac. (4.48)

Here, the irreversibility inherent to quasi-linear diffusion results from wave–
particle resonance and the auto-correlation time τac is just (|(dω/dk⊥)�k⊥|
+ ∣∣(vgr‖ − ω/k‖

)
�k‖

∣∣)−1
, which is determined by the spectrum and the wave

dispersion properties. As is usual for such cases, D ∼ 〈
ṽ2

〉
, and the physical mean-

ing of dk,ω is simply decorrelation due to resonant diffusion in space. However, on
drift wave turbulence kz is often quite small, so as to avoid the strongly stabiliz-
ing effects of ion Landau damping. With this in mind, it is interesting to examine
the opposite limit, where k′

zvz is negligible but propagator broadening is retained.
Assuming spectral isotropy, assuming a spectrum of eigenmodes where ω = ω (k)

and ignoring the k′, ω′ dependence of dk′,ω′ then gives,

k2D ∼=
∑
k′

c2

B2
0

∣∣∣φ̃k′
∣∣∣2 k2k′2 k′2D

ω′2 + (
k′2D

)2
, (4.49a)

which reduces to,

1 ∼=
∑
k′

c2

B2
0

∣∣∣φ̃k′
∣∣∣2 k′4

ω′2 + (
k′2D

)2
, (4.49b)

with understanding a simple scaling as the goal in mind, we throw caution to the
winds and boldly pull the right-hand side denominator of Eq.(4.49b) outside the
mode summation to obtain,(

k2D
)2 + ω2 ∼= k2

〈
ṽ2
E×B

〉
, (4.49c)

or equivalently,

(
k2D

)2 ∼= k2
〈
ṽ2
E×B

〉
− ω2. (4.49d)

Equation (4.49d) finally reveals the physical meaning of D in the limit where

dk,ω > |kzvz|, since it relates the mean squared decorrelation rate
(
k2D

)2
to the

difference of the mean squared E × B Doppler shift
(
k2

〈
ṽ2
E×B

〉)
and the mean
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squared wave frequency
〈
ω2

〉
. Of course, since the electric field is turbulent, the

E × B Doppler shift is stochastic, and we tacitly presume the second moment〈
ṽ2
E×B

〉
is well defined. Thus, Eq.(4.49d) states that there is a critical level of fluc-

tuating ṽE×B needed to scatter a test particle into resonance, and so render D �= 0.
That level is (ṽE×B)rms ∼ ω/k⊥, i.e. a stochastic perpendicular velocity which
is comparable to the perpendicular phase velocity of the drift wave. The parti-
cle in question is called a ‘test particle’, since nowhere is the field forced to be
self-consistent by the imposition of quasi-neutrality.

Given that (ṽE×B)rms ∼ ω/k⊥ defines the threshold for stochastization or
mixing of a test particle, it is natural to discuss the relationship of this crit-
erion to the familiar “mixing length estimate” for turbulence saturation levels.
Note that for drift waves, the stochastic Doppler resonance criterion becomes
ṽE×B ∼ ω/k⊥ ∼ Vde. Since ṽE×B ∼ k⊥ρscs (|e|φ/T ) and Vde = ρscs/Ln,
ṽE×B ∼ Vde occurs for fluctuation levels of eφ̃/T ∼ 1/k⊥Ln, which, noting that
ñ/n ∼ eφ̃/T for electron drift waves, is precisely the traditional mixing length
estimate of the saturation level. This occurrence is not entirely coincidental, as we
now discuss.

Basically, all of the standard drift wave type plasma instabilities are gradient
driven, and (in the absence of external drive) tend to radially mix or transport
the driving gradient, and so relax or flatten the gradient thus turning off the gradient
drive. Thus, electron drift waves tend to mix density n or electron temperature Te

and so to relax ∇n and ∇Te, ion temperature gradient driven modes tend to mix
Ti and relax ∇Ti , etc. The essence of the mixing length estimate is that the growth
of an instability driven by a local gradient will cease when the ‘mixing term’ or
nonlinearity grows to a size which is comparable to the gradient drive. Thus, if one
considers advection of density in the context of a drift wave, the density fluctuation
would satisfy an equation with the generic structure,

∂n

∂t
+ ṽE×B · ∇n + · · · = −vE×B,r

∂ 〈n〉
∂r

. (4.50a)

A concrete example of such a balance would be that between the linear term
(ṽr ∂ 〈n〉 /∂r) and the nonlinear term (ṽr ∂ñ/∂r) of Eq.(4.50a), which yields,

ñ

〈n〉 ∼ l⊥
Ln

, (4.50b)

which is the conventional mixing length ‘estimate’ of the saturation level. Note
that Eq.(4.50b) relates the density fluctuation level ñ/n to the ratio of two length
scales, namely l⊥, the “mixing length” and Ln, the density gradient scale length.
This then begs the question of just what precisely is the mixing length l⊥. Intu-
itively speaking, it is the length over which a fluid or plasma element is scattered
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by instability-induced fluctuations. The mixing length, l⊥ is often thought to cor-
respond to the width of a typical convection cell, and motivated by concerns of
calculation, is frequently estimated by the radial wavelength of the underlying lin-
ear instability. We emphasize that this is purely an approximation of convenience,
and that there is absolutely no reason why l⊥ for a state of fully developed turbu-
lence should be tied to the scale of the original linear instability. In general, l⊥ is
unknown, and the accuracy to which it can be calculated varies closely with the
depth of one’s understanding of the fundamental nonlinear dynamics. For exam-
ple, in the core of Prandtl mixing length theory discussed in Chapter 2, the choice
of the distance to the wall as the mixing length most likely was motivated by an
appreciation of the importance of self-similarity of the mean velocity gradient and
the need to fit empirically determined flow profiles. Thus, mixing length theory
should be considered only as a guideline for estimation, and practitioners of mix-
ing length theory should keep in mind the old adage that “mixing length theory
is always correct, if one knows the mixing length”. Finally, we should add that
local mixing length estimation, of the form described above, is also based upon
the tacit presumption that l⊥ � Ln, so there are many cells within a gradient scale
length. In this sense, the system is taken to be more like a sandpile than Rayleigh–
Benard convection in a box, which is dominated by a single big convection cell, so
l⊥ ∼ Ln. Non-local mixing length models have been developed, and resemble in
structure those of flux-limited transport, where lmfp ∼ Ln. However, applications
of such models has been limited in scope. (The multiple-scale problem is discussed
in Chapter 7 and in Volume 2. The interested reader should also see the discussion
in Frisch (1995).)

4.4.5.2 Nonlinear heating and saturation mechanism

We now turn to the second physics issue, namely that of nonlinear heating and
the saturation mechanism. In this regard, it is useful to recall the key points of the
previous discussion, which were:

(a) while turbulent test particle scattering and decorrelation occur at a rate given by
k2⊥D, where for kz → 0, D �= 0 requires that a threshold in intensity be exceeded,
i.e. k2

〈
ṽ2

E×B

〉
�

〈
ω2

〉
;

(b) actual heating occurs only via parallel E ·J work, i.e.
〈
E‖J‖

〉
, since the energy density

satisfies the conservation equation (compare Eq.(3.62a)),

∂E

∂t
+ ∂Q

∂x
+ 〈EzJz〉 = 0,

this is a consequence of the fact that 〈E⊥ · J⊥〉 = 0 for drift kinetics.
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146 Nonlinear wave–particle interaction

Thus, any nonlinear heating which leads to saturation must be in proportion to a
power of kz, since 〈EzJz〉 → 0 for kz → 0. Equivalently, any ‘action’ from the
nonlinearity to saturate the turbulence occurs via kz.

4.4.5.3 Description by moments of the drift-kinetic equation

Given this important observation, and the fact that kzvTi/ω < 1 for drift wave
turbulence, it is useful to work from moments of the drift-kinetic equation,
i.e. Eq.(4.26c). Assuming a Maxwellian 〈f 〉, the drift-kinetic equation may be
written as,

∂f

∂t
+ vz

∂f

∂z
− c

B0
∇φ × z · ∇f = −i (kzvz − ω∗i )

|e|φ
Ti

〈f 〉 . (4.51)

Then the relevant moments are:

n =
∫

d3v f : density (4.52a)

J = |e|
∫

d3v vzf : parallel current (4.52b)

p = m

∫
d3v v2f : energy (4.52c)

and satisfy the fluid equations,

∂n

∂t
+ 1

|e|
∂J

∂z
− c

B0
∇φ × z · ∇n = c

B0
∇φ × z · ∇n0 (4.53a)

∂J

∂t
+ ∂ |e|

∂z

p

m
+ e2

m
n
∂φ

∂z
− c

B0
∇φ × z · ∇J = 0 (4.53b)

∂p

∂t
+ ∂

∂z
nmvzv2 − EzJz − c

B0
∇φ × z · ∇p = 0. (4.53c)

Equations (4.53a)–(4.53c) may be further simplified by noting that,

ñ

n
� |e|φ

Te
, (4.54a)

p = m
v2

Ti

2
n, (4.54b)

so

− c

B0
∇φ × z · ∇n → 0 (4.54c)

− c

B0
∇φ × z · ∇p → 0. (4.54d)
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In this limit, the density equation is strictly linear, so the system of fluid equations
reduces to

(ω − ω∗e)
|e|φk

T
= kz

n0 |e|Jz k,ω (4.55a)

and

J
z k
ω

= kzv
2
Ti

ω

n0 |e|2
T

φk,ω + −i
ω

∑
k′,ω′

c

B0

(
k · k′ × z

)
φ−k′−ω′Jk+k′

ω+ω′
. (4.55b)

Linear theory tells us that the waves here are drift-accoustic modes, with

ω = ω∗e + k2
z v

2
Ti

ω
. (4.56)

This structure, and the fact that ion heating requires finite kz, together, strongly
suggest that shear viscosity of the parallel flow will provide the requisite damping.
Since turbulent shear viscosity results from E × B advection of J , we now focus
on the renormalization of the current equation.

In k, ω space, the equation for parallel flow or current is,

−iωJk
ω

+ c

B0

∑
k′,ω′

(
k · k′ × z

){
φ−k′

−ω′
J
(2)
k+k′
ω+ω′

− φ
(2)
k+k′
ω+ω′

J−k′
−ω′

}
= −i kz

ω
v2

Tin0
|e|2
T

φk
ω
.

(4.57)
As before, since we are concerned with heating, we focus on nonlinear wave–
particle interaction, and so neglect the φ(2)

k+k′
ω+ω′

contribution. For J (2)
k+k′
ω+ω′

we can then

immediately write,(
−i (ω + ω′) + dk′′

ω′′

)
J
(2)
k+k′
ω+ω′

= c

B0

(
k · k′ × z

) (
φk′
ω′
Jk
ω

− Jk′
ω′
φk
ω

)
, (4.58a)

so

J
(2)
k+k′
ω+ω′

= Lk+k′
ω+ω′

c

B0

(
k · k′ × z

) (
φk′
ω′
Jk
ω

− Jk′
ω′
φk
ω

)
, (4.58b)

where

L−1
k+k′
ω+ω′

= −i (ω + ω′) + dk+k′
ω+ω′

(4.58c)
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is the propagator. Substitution of Eq.(4.58b) into Eq.(4.57) then gives the renor-
malized parallel flow or current equations as,

(−iω + dk,ω

)
Jk
ω

= i
kz

ω
v2

Tin0
|e|2
T

φk,ω + βk,ωφk,ω (4.59a)

dk,ω =
∑
k′,ω′

(
k · k′ × z

)2 c2

B2
0

∣∣∣∣φk′
ω′

∣∣∣∣2 Lk+k′
ω+ω′

(4.59b)

βk,ω =
∑
k′,ω′

(
k · k′ × z

)2 c2

B2
0

φ−k′
−ω′

Jk′
ω′
Lk+k′
ω+ω′

. (4.59c)

Furthermore, since both linear response theory and more general considerations of
energetics suggest that Jz k ∼ kzφk, we have,

βk,ω ≈
∑
k′,ω′

(
k′ · k′ × z

)2 c2

B2
0

∣∣φk′,ω′
∣∣2 kzLk+k′′

ω+ω′′

→ 0,

(4.60)

since the integrand is odd in kz. Thus, we see that Eq.(4.59a) simplifies to,

(−iω + dk,ω

)
Jk,ω = −ikzv2

Tin0
|e|2
T

φk,ω. (4.61)

Note this simply states that in a system of drift wave turbulence, the response of the
parallel flow is renormalized by a shear viscosity, and that this is the leading-order
nonlinear effect. Combining Eq.(4.61) and Eq.(4.55a) then gives,

ω − ω∗e = k2
z v

2
Ti

ω + dk,ω

, (4.62a)

so for low or moderate fluctuation levels we find,

ω ∼= ω∗e + k2
z

ω
v2

Tidk,ω, (4.62b)

which says that turbulent dissipation is set by the product of the shear viscous
mixing rate and the hydrodynamic factor k2

z v
2
Ti/ω

2. Note that nonlinear damping
enters in proportion to the non-resonance factor k2

z v
2
Ti/ω

2, since the only heating
which can occur is parallel heating, ∼ 〈EzJz〉. Also note that since k2

z v
2
Ti/ω

2 < 1,
the size nonlinear damping rate γ NL

k is
∣∣γ NL

k

∣∣ < dk,ω. Thus, the nonlinear damping
rate is reduced relative to naive expectations by the factor k2

zv
2
Ti/ω

2. Finally for
kz → 0, γ NL

k
→ 0, as it must.
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This simple case of weakly resonant drift-kinetic turbulence is a good example
of the subtleties of renormalized turbulence theory, energetics, symmetry, etc.
Further application of related techniques to other propagator renormalization
problems may be found in (Kim and Dubrulle, 2001; Diamond and Malkov, 2007).
The moral of this story is clearly one that physical insight and careful consid-
eration of dynamical constraints are essential elements of the application of any
renormalized theory, no matter how formally appealing it may be.
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