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COOPERATIVE PHENOMENA AND SHOCK WAVES 

IN COLLISIONLESS PLASMAS 

R. Z. Sagdeev 

§ 1. Cooperative Phenomena in a Plasma 

It is well known that relaxati on processe s in a highly nonequilibrium 
collisionless plasma frequently involve cooperative plasma oscillations that 
result from various plasma instabilities. These oscillations can have an im­
portant effect on plasma transport phenomena and it is this aspect of the 
phenomenon which is of greatest interest from a practical point of view, an 
imm ediate example bein g the "anomalous• diff\lsion of hot plasma in mag­
netic-confin ement devices (l]. Various aspects of this complicated problem, 
which is related to the th eo ry of stab ility with respect to small perturbations, 
have been inv estigated extensively and in some cases th e foundations of a 
nonlin ear approach hav e already bee n laid. 

Another int e resting example of cooperative plasma phenomena is fur­
nished by shock waves. In ordinary gas dynamics the minimum thickness of a 
shocJ, front is usually at least of the order of the mean free path of the mole -
cules in the gas; on the other hand, as a result of cooperative phenomena 
there are plasma shock waves in which the thickness of the shock front is ap­
preciably smaller than the mean free path. This means that eve n a highly 
rarefied pla sma is more closely related to a gas-dynamic medium than to a 
Knudsen gas. 

It is the purpose of thi s review to present an integrated desc ription of 
the ba sic concepts and results of the theory of cooperative phenomena in col­
li sionl ess plasmas. Our primary objective i s to obtain a qualitative description 
of these phenomena and we shall be mainly concerned with the physical sig­
nificanc e of the various approximate models th at will be analyzed. 

1. Because of the long range of elect rical forces the interaction be -
tween part icl es in a plasma is not so much in th e nature of a coll ision as it is 
a reflection of the effect of the so-called self-consistent field. A plasma 
that can be regarded as an ideal gas (the criterion for the application of the 
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"gas" approximation is na3 » 1, where n is the particle number density and 
a is the Debye radius) can be analyzed by kinetic-theory meth ods; thi s means 
that the distribution function for the ions ( elec tron s) f i ,e ( v, r, t) satisfi es the 
Boltzm ann- Vlaso v equat ion 

of at ~- [H, fl = St (f), (1) 

where [H, f] is the Poisson brac ke t and St ( f) is the collision term . 

The self- consist ent field in Eq. ( 1) includ es term s containing the e lec -
tric and magnetic fie lds, which satis fy Maxwell 's equ ations. The charge den-

sity and the current density are written in the form Q = ~ ek S fk d V and 

j = ~ ek S vfkdv, where the summation is tak en over all particl e species in 

the plasma and collisions are introduc ed by mea ns of the collision int eg ral 
St (f), th e actual form of this integral be ing determined by th e composi tion of 
the plasma. Evidently the effe cts of "close"co lli sions and the effects due to 
the self-consistent field must be entir e ly diff erent as far as the pla sma dy­
namics probl em is concerned. Thus , collision s must provide a mechanism 
for rel axation processes (th e establishm ent of a local Maxwellian distr ibution, 
the exc hang e of ener gy and momentum between ions and e lectron s, and so on) 
each of which can be character i ze d by some charact eristic tim e T ( the col -
li sion tim e). On the oth er hand, the se lf-c onsistent fie ld i s evi dently res pon -
sible for the dispersion properti es of th e pla sma,i. e. , this fie ld determines the 
featur es of the characteristic oscillation s and wave properti es of the pla sma . 
In th e simplest case (no magnet ic fie ld) the basic dispersi on parameter in a 
plasma is th e elec tron Langmuir frequency Wo (w5= 4rrne 2 /m, e is the charge 
of e l ectron, m is it s mas s, and n the density) . In most cases of int erest the 
plasma oscillati on frequency is so high that c,_, T » 1, that i s to say, th e pla s­
ma exh ibit s two different tim e scal es T and T = 2rr / w (the oscillation period 
T << T). Hence , i f the oscillation proces ses are of primary int e rest then the 
close co lli sions ca n be neg lected and the co lli sion integra l in Eq. ( 1) can be 
omitted. This approac h to the problem , which is ca ll ed the "collisionl ess " 
plasma th eory, make s it possible to simplify a large nu mbe r of probl ems in 
plasma dynamics . This theory describes phenomena which occ ur in 
tim es mu ch sma ll e r than the mean free tim e T , the point of depart ure be ing 
the Vlasov equati on (self-con sist ent fiel ds and no colli sion int egral ): 

of 
aT + [H, fl = 0. ( 2) 
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Since entrop y is conserved in th e absence of colli sion s (this follows from th e 
H-t heo rem ), it would appear that the collisionless plasma th eory shoul d be 
capable of desc ribing i sentropic processes only, and that it should not be ap­
plicabl e to irrevers ibl e relaxation processes in a plasm a, i.e. , phenomena such 
as the estab li shme nt of thermal equ ilibriu m (r andomi zat ion), and so on. How­
ever, it is found exper iment all y that re laxati on proc esses do in fact occur in 
tim es much small er than T , that is to say, under condit ions for which the col­
lisionl ess theory should apply. These anoma lous dissipation properties of a 
collisionless plasma are reminiscent of th e situat ion in the ordina ry hydr o ­
dynamic th eory of tu rbulence . The characteristic time associated with ir­
revers ibl e diffus ion of velo city is of order 

(3) 

where R i s a charact eris tic dimension and 11 is the kinematic viscosity. In 
point of fac t, however, the actual rela xa tion time is found to be much small­
er : th e deve lopm ent o f instabiliti es l eads to turbul ence , i. e., reduction of the 

charact eris tic scale sizes, with th e att endant reduct ion in mixing time. Two 
factors pla y important roles here . First, there is the exis t ence of a very larg e 
number of degrees of free dom - the so -call ed fluct uation sca les in th e th eory 
of turbulence; these degrees of freedom imeract with each other by virtue of 
nonlin ea r mixin g effec ts and it is thi s interaction which is responsible for the 
time irrevers ibility that arises when one goes from the dyna mic description 
to the statistica l desc ription of the system, that i s to say, from the Navier­
Stokes equat ions to the equati ons that charac terize the average d motion of 
the fluid.• 

Secon d, as the energy associated with th e motion is fed int o sm all er 
and sma ll er sca le sizes the role of th e viscous effec ts becomes more im -
portant because of the higher spatial grad ients; the quantity R in Eq. (3) is 
th en rep lac ed by the characteristic sca le si ze t of the fluctuation l and when 
l << R the veloc ity diffusion tim e is red uced sharpl y. 

In developing the ana lo gy betwe en hydrodynamic turbulence and 
anoma lous di ssipat ive proces ses in a collisionl ess plasma one can distin guish 
two im porta nt cl asses of rel ate d effects. 

*For example , the system consi sting of the in fini te number of coupled equa ­
tions for the velocity mom ents. 

tHow ever , the fluctuation scale in hydrodynamics, l, is never sma ll er than 
the mea n free path ;\ . 
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1. The colli sionless th eory describes vari ous kinds of plasma oscilla -
tions and waves. Since a pla sma i s freque ntly unstable the amplitudes of th ese 
oscillati ons increase rapidl y and th e nonlin e ar interaction be tween various 
modes of oscill ati on corresponds to the int era ction between the fluctuation 
scales in hydrodyn am ics. The numb er of different modes in a plasma can be 
very large• and it is then appropriate to use a stati stical description rather 
than a dynamic descripti on. Thus , as in hydrodynamic turbule nce, irreve rsibl e 
proce sses are possible even in a collisionless plasma. 

2. Electric and mag net ic fi elds associ at ed with the plasma oscillat ions 
cause pronounced local chang es in the partic le velocity distributions. Thes e 
changes occur because any wave of th e form exp i( wt - kr) will int eract 
strongly with the so -ca ll ed "resona nce" part icl es ,i. e ., particl es whose velo­
citi es are approxim ately the same as the phase ve locity of th e wave v - w/k . 
This interaction result s in the formation of lar ge grad ients which are in velocity 
space, rather than in ordi nary physical space . Colli si<;Zns between cha rged 
particles co rrespond t o a colli sion term DA,f, where D is the di ffusion coef­
fic ient in veloci ty space ; this term is reminiscent of the viscosity term in the 
Navie r-St okes equat ion (but in veloc ity space). In the present case the pre­
dominant collis ions are characterized by small- angle deviations, i.e . , sma ll 
changes in velocity. Th us, althou gh ana logy can be established with hydro ­
dynamic turbulence, thi s analogy is more or less formal sinc e the viscosity in 
ordinar y physica l space (hydrodynamics)is the analog of a "viscosit y" in 
velocity space (plasma) . 

The th eory that describ es these anoma lous effects in a plasma is usually 
called th e theory of cooperative phenome na sinc e this designation emp hasizes 
the fact that the basic role in these phenomena i s played by plasma oscilla -
tions and waves, which are essent ia lly "cooperative " moti ons of the plasma 
part icles. Our ana logy with hydrodynamic turbulence provides an indica ti on 
of the natur e and sca le of the difficul ti es that ca n be expec ted in a theory of 
coopera ti ve phenomena in a plasma. Indeed , the analysis of cooperative 

• The quantity N, the number of degr ees of freedom of the Langmuir oscilla -
tions in a plasma, can be estimated as follows: in a unit volum e the numb er 
of modes is given by 

N krpax 
V"' J k

2
dk, 

where k is the wave number. 
It is well known that kmax - 1/ a for plasma oscill ations . Consequentl y 

N -v/ a.3, a number which , by definition, is much larger than unity . 
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phenomena in a plasma is com pli cate d still more by the fact that th e particl e 
velocit y distribution function does not depe nd on four variabl es (r, t) as in 
hydrodynamics, but on seven variables (r , v, t). 

Th e fundamental problem in the theory of coope rativ e phenom ena is 
that of formulating the kinetics of nonequilibrium proce sses, i.e. , the processes 
by which thermodynamic equilib rium is estab li shed in the plasma. If the 
initial state of the plasma is far from equilibrium the transition to equilibr ium 
is not monotonic, but is characterized by the strong excitat ion of plasma os­
cil lati ons as a consequence of instabiliti es.• 

A the ory of coope rativ e pla sma phenome na should be able to provid e 
the characteristic ti mes for these tra nsition phenomena. The strong random 
oscillations charac teristic of the se transiti on processes have an effect on 
transport phenom ena such as diffu sion , thermal conduc ti vity, etc. , and it is 
this aspect of the problem which is of greatest inter est as far as practical ap­
plication is conce rned. For examp le, invest igati ons of contr olled thermo­
nucl ea r fusion react ions are, for the most part, based on th e notion of th ermal 
isolation of the plasma by mag netic fields . However, equilibr ium plasma 
configurations in a magnetic field are frequently found to be unstable. The 
instabiliti es can ca use a marked deterioration in the magnetic therm al i sola -
tion and a signific ant incr ease in the flow ·of hea t and particle s to the walls, 
as a result of coope rati ve phenomena. A large quantity of expe rim ental data 
concerning these effects has been accum ul ated in the last few years . How­
e ver , it should be noted that the "anomalou s" loss of pla sma to the walls is 
frequentl y not due to coope rativ e plasma phenomena such as those desc rib ed 
here, but rather to ordinary magnetohydrodynamic instabiliti es. It is , in fact, 
difficult to draw a sharp line of dem arcati on between the coo perative 
plasma effects and turbulent effects of magn etohydrodynam ic origin ; the 
situati on is eve n more complicated because sometimes a colli sionless plasma 
(in which the mean free path is very long) can be described with good ac ­
curac y by equations that are reminiscent of the usual magnetohydrodynamic 
equa ti ons. 

2. An ex amination of the lit erature concerned with the dynami cs of 
coll isionl ess plasmas indicates that a number of comp letely differe nt math e ­
mati cal models ha ve been used to analy ze thi s problem. The most general 
approach has been to use the kinetic equation with self- consistent e lectr ic 
and magne tic fields . Howeve r, this approach is rather compli cated and the 

*Even a sma ll deviation from thermodynamic equilibrium is frequentl y suf ­
ficie nt to produce an instability. 
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"hydrodynamic" equations are frequently used to describe a plasma (separate 
equations for the electrons and ions, espe cial! y in the analysis of problems 
arising in connection with oscillations and stability). Although the concept of 
hydrodynamic s in the absence o f collisions is not eas ily justified, this approach 
has been found to yield results that are quite re asonable in many respects. 

As an example, l et us consider th e propagation of a wave in a pla sma in 
the absence of a fixed magnetic field. If the phase velocity satisfies the con­
dition w/k » ( T /M) 112 the thermal motion of the particle s is unimportant 
and it can be assumed th at all of the ion s and electrons at a given point in 
space mov e with the same velocity. In this case one simply uses the equa ­
tions of motion for each particl e species. In th e Eulerian coordinat e system 
this formulation of the problem is th e zero-temperature hydrodynamic ap ­
proximation. However, if one i s int e rested in corrections due to the small 
th erma l velocity spread the correct results (i .e ., result s that coincide with th e 
kinetic result s) are obtained by add ing terms in the hydrodynamic equations 
to tak e account of the pressure gr adients v'p (for the ions and electrons ); p is 
assumed to be governed by an adiabatic relation with specific-heat ratio'/ = 3. 
This choice is not unr easonabl e: If there are no collisions each degree of free ­
dom is independ ent of the others so that '/ = 3 as in the case of one -dim en -
sional motion. The simplifi ed hydrodynamic approach can also be improved 
in another particular case. Let us assume that the phase velocity w/k is ap ­
preciably greater than th e ion thermal velocity (Ti/M)1/ 2

, but much smaller 
than the electron thermal velocity (T e/ m)l/ 2

• As before,.the ions are described 
by an equation of motion in which the thermal velocity spread is negl ec ted. 
Howe ver , the picture is diff e rent as far as the electrons are concerned. 
Sinc e the e le ctrons move much more ra pidly than .the wave th ey see an el ec­
tric field that is essentially static. If the electron velocity distribution is 
Maxwellian , f ~ exp(-mv 2 / Zf ), at the point where the ele ctric potential cp is 
a maximum , the elect ron density at any other point will be described by th e 
Boltzmann relation n = n0eecp IT. For wavelengths apprec iably greater than the 
Debye radius a , the elect ric field ca n be eliminat ed from th e equations by 
in vok ing the neutra lit y condition: Di = ne = noee cp/T. The term containing 
th e el ectr ic field in the ion equati on of mot ion - eVcp isrep laced by(- T/ n)v'n. 
Thu s, the ion motion is described by the h ydrod ynamic equati ons with '/ = 1 
(th e isotherma l feat ure is provided bytheelectrons , which ca n eas ily equali ze 
th e temperature since they move mu ch faster than th e wave). However, the 
hydrodynamic approximat ion is not capable of describing certain particu-
lar fea tur es associated with the ex istence of th e thermal motion. For instance, 
effec ts due to resona nce par ticl es are lost in a hydrodynam ic analysis sinc e 
th ese resonan ce particles hav e veloci ti es close to th e propaga tion velocity of 
the wave. These parti cl es are responsible for the collisionless damping of os-
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cillation s. If w/k » ( T /m)112 , th e number of resonance particles is expone n­
tially small and the resonance dam ping is small [of order exp {-(m/T) X 
(w/k) 2

} ]. 

If the pla sma is locat ed in a magn et ic fie ld the situati on is entir e ly dif ­
ferent. Within certain limitations the kinetic descr iption can justifiably be 
reduced to a hydrod ynamic desc ription even in the absence of colli sions . Th e 
physical justification is the fact that the particl es ar e "tied " to the line s of 
force of the magn etic field so that the mean macroscopic velocity of the 
particles is determined by the "motion" of the lin es of force themselves. 
These approximate equations are obtain ed formally by expanding the kinetic 
equat ion in powers of the ratio of th e mea n Larmor radius to the characteristic 
scal e length R. The expa nsion in rH/R is remini scent of the usual hydrody­
namic approximation from kin etic theor y in which the expansi on parameter 
is i\./R (i\ is the mean free path). The expansion in the magneti c field case 
actually impli es a desc ription of the pla sma in t erms of an ensemble of 
quasi-particl es or "Larm or circl ets " (guiding ce nters). The hydrod ynam ic 
equation s obtained in this way then contain two pressures: a longitudinal pres ­
sure, and a transv erse pressure (with respect . to the dire ct ion of the magnetic 
field ). Under these conditi ons y = 2 since the tran sverse motion is two-dim en­
sional. 

In the present review, in addition to using th e kinetic equations we 
shall mak e use of the simplifi ed hydrodyn am ic equations whenever these 
equations can be justifi ed. The hydrodynamic equations facilitat e the analy­
sis of certain nonlinear problems, if onl y by providing a basis for forming 
analogi es with the nonlin ear motion of ordinary hyd.rodynami cs. 

3 . It is clear that stability plays an important part in the theo ry of 
coope rativ e phenome na . The sta bility of a giv en st ate of a syst em ca n gen -
e rally be inv est igat ed by perturbation theory. If an ini tial perturbation of the 
station ary stat e of.t he system grows with time th e stat e is unstable with respect 
to this parti cula r perturbation . In prac ti ce one alway s speaks of stability only 
with respect to sm all pert urbati ons, that is to say , depar tur es from the initial 
st a~e such th at th e desc ribing equations can be lin ea rize d; in thi s case the 
describing equations can be expanded in t erm s of th e pertu rbati on amplitude 
and all terms high er th an first order ca n be neglected, as in the th eory of 
small oscillations. The theory of sta bilit y of a colli sionless plasma is, in 
many respects, similar to the theory of mag netohydro dynam ic stabilit y. This 
similarity follow s from the fact tha t a collisio nless plasma can frequ ently be 
described with good accuracy by ·the magnetohydrodynamic equations, as we 
have noted above . On the other hand, a co lli sionless plasma is a lso subject 
to certain kind s of instabiliti es that can not be described within the framework 



30 R. Z. SAGDEEV 

of the magn etohydrody nami c equations. These instabilities and their growth 
rates ca n only be analyzed within the framework of a kinetic theory. Th e 
collision integral is generally neglected since it is assumed tha t the growth 
rates characteristic of the instab i lity are much faste r tha n the co lli sion fre -
quencies. In analyzing an instability associated with a local deviation from 
thermodynam ic equilibrium in a plasma it is often convenient to assume a 
"background" (stationary sta te of the plasma) which is uniform and of infinite 
extent. The investiga t ion of stability in cases of this kind reduces to the 
solution of the appropria te dispersion equation whi ch relates the charact eristic 
frequency w and the wave vector k. Frequently the determination of stab il ity 
with respect to various simple kinds of perturbations does not require complica­
ted calculations; simple physica l pictures are sufficient (2). It is also possible 
to examine the stability of a "weakly" inhomogeneous plasma in which the 
ratio A/R is small (A is the wavelength of the perturbation and R is the charac ­
teristic scale length of the inhomogeneity). 

Let us consider an instability with respect to a wave-like distortion of 
the lines of force of the magnetic fie ld. It is well known that in an equilibri -
um plasma these initial distortions of the force lines are propagated in the form 
of magne tohydrodynamic (Alfve n) waves which can be regarded as oscilla­
tions of elas t ic bands (the lines of force of the magnetic field). To inv esti ­
gate stability we consider the forces that arise when the lines of force are 
distorted (Fig. 1) . Since they are "tied " to the force lines , particles tha t move 
alon g the curved portion are subject to a centrifugal force 

mv
11 S 

2 

Fe = f-r dv, 
(4) 

which tends to increase the curvatur e . 

Fig. 1 
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Furth ermore, sinc e each "quasi - particl e • has a magnetic mom ent µ 
oriented against the magn etic field H, in the inhomogeneous magnetic fiel d 
these quasi -particl es are subj ect to a force associated with the magneti zation 
current 

j µ = c V X J µ f dv, 

fjµ X HJ 
F µ = c = [ rot J µ f dv x H] . 

This force and the tension in the magn etic force lines 

tend to restor e the lin es of force to the equilibrium position. 

(5) 

( 6) 

If Fe> Fµ + Ft the system moves away from the equilibrium configura ­
tion , that is to say, an instability arises. The instability criterion can be ob­
tained easily from Eqs. (4) - (6): 

where 

P11 = J nw~ifdv, PJ. = J µHfdv, 
mv2 

µ - J_ - 2if· 

( 7) 

The velocity with which the plasma moves away from the equilibrium con ­
figuration can be found by equat ing the sum of the forces F c- Fµ - Fr to 
the product of the mass of a unit volume of the plasma and the acceleration 
dv d E -
di = dt c H . It follows from Maxwell 's equations that E~ = H~ w/ ck , 

if the perturbation is written exp(wt - ikx). Thus , we find :~ = i co2 Zit . 
Substituting the values of the forces F, we have 

k2 ( H2 
CO2= - -- + p .l_ - p II) Q 4n · 

(8 ) 

This instability is associated with the cent rifugal force that ari ses in the mo -
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tion of the particles alon g the curved lin e of force and is som etimes called the 
"fire hose " instability by analogy with a rubber firehose which beco mes con -
tarted when water flows through it. 

Similarly, in th e other limiting case ( p 1. > p 11) we obta in an instabilit y 
criter ion of the form 

( 9) 

The conditions in ( 7) and ( 9) show that a plasma becom es unstabl e 
when the particle velo city distribution exhibits a suffici ently strong deviation 
from isotropy; as H becomes small er th e instabil ity can appear at a sma ll er 
anisotropy. However, at very sma ll H th e Larmor radii of the part i cles become 
very l arge and the notion of guidin g cente rs no longer holds. Nevertheless, an 
instabilit y due to anisotropy appears in the limit H ..... O. The · instabilities · 
being consider ed here are aperiodic, that is to say , the tim e dependence of 
these instabilities is of the form exp y T. Departur e ofth e plasm a from the state 
of thermodynamic equ ilibrium can also lead to the excitation of waves , i. e . , 
the appearance of instability in th e form of oscillations. Th e criterion for 
the exc itation of this kind ofinstability, i.e., the criterion for th e change of 
sign of Wi, the imaginary pa rt of the frequency w = Wr + i wi, can be det er ­
m ined by considering th e energy balance betwee n any pla sma wav e (that 
arises as a result of a fluctuation) and the plasm a partic l es. If Wi i s very 
sma ll( wi« wr), the wave charact e rized by the gi ven wa nd corr esponding 
wave vector is almost per iodic and ions (e lectrons) _oscill ati ng in the periodic 
wave field experie nce no change in energy on the aver age. The only excep­
tion ari ses for those particl es in the velocity distribution which are in reso ­
nance with the wave . In th e absence of a magnet ic field th e unperturb ed 
plasma can exhibit a resonanc e only for particles whose velocity is close to 
the velocity of the wave w/k (the resonance cond ition is w- kv = 0) . In the 
prese nce of a constant magnetic field, however , an effective in teractio n with 
th e wav e is possibl e for particl es which see a wave frequency w' = w- kv (i n 
th e ir own ch aracte ristic coordinate system ) wh ich is close to th e cyclotron 
freq uency Wtt = eH/m c (or one of its har mo nic s n wH, where n = ± 1, ± 2, . .. ); 
thi s frequency shift is a result of the Doppler effect. Particl es whose ve locity 
component along th e magnet i c field sat isfies thi s condit ion will be ac -
cele rat ed continuously ( or retard ed) by the wave fie ld much in the same way 
as ions are acc elera ted in a cyclotron . In the simplest case, in which there 
is no fixed mag net ic field , a uniform plasma can only support the propaga -
ti on of pure transv erse waves or pure longitudi nal waves . The transve rse waves 
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nee d not be considered since their character istic phase veloci ty is grea te r 
than the velocity of light ( e = l - wV w2). Howeve r, th e lower lim it on the 
phase ve locity of the longitudina l elec tron Langmuir waves is of th e order of 
the e lectron thermal veloc ity (with corresponding minimum wavele ngth of the 
orde r of the Debye radiu s) and increases with increasing wave length. Con­
sider a Langmu ir wave wi th freq uency w (and phase velocity w/k) in a co ­
ordinate system moving with respect to th e labo ratory with velocity w/k; in 
thi s coordinat e system we have an elec trost ati c potential desc ribed by a fixed 
sinusoid of amplitude cp 0: The e lectrons see al ternate potentia l we lls _and 
hills. Electrons with velocities apprecia bly di ffere nt from w/k will move 
freely in thi s periodic field, without expe ri encin g any ch ange in average 
energy. On the other hand , elect rons whose velocity v differs from w/ k by an 
amount smalle r than ./2e<fJo/m will be reflected from the potentia l hills. 
Th ese e lectrons can be .di viced int o two cla sses: the veloc iti es characteristic 
of the first class are gre at er than w/ k; the veloci ti es in the other class are 
sma ll er than w/k . Elec trons in the first cla ss are reflecte d on reac hin g po­
tenti al hills and give energy to th e wave; e lectrons in the second class are 
carried alon g by th e wave and acquir e ener gy from it. A simp le analy si s of 
the energy balance for reflection of elec trons from potential hills th en pro­
vides an in stab ilit y cri t erion , th e inst abilit y mec hanism b eing a kind of "in ­
verse " Land au damping. The wave amplitude incr eases if energy is fe d from 
the e lectron s into the wave; thi s is the case when th e numbe r of elect rons in 
the first class is greater than the numbe r in th e second, i.e., when 

df ( (J) ) dv V = T >O . (10) 

In order for this condition to be satisfied the electron velocity distribu -
tion function must ha ve at l eas t one "extra" peak in th e veloci ty region be ­
yond the th ermal velocit y. On the other hand, if df/dv < 0 everyw here th en 
Wi < 0 and the wave is damped (this is th e well-kn own Landau damp in g 
phenome non) [3J. 

By estimating the work done by the ekc t ric field in the wave we can 
also derive an instabi lit y criter ion for the cyclotron resonanc e w = Wtt - kv ; 
this crit e rion is important for tran sverse wave s propagat ing along a fixed mag ­
netic field . 

4. Th e mo st difficult probl em in the theory of cooperative plasma phenom -
ena is that of de term inin g the ult imate fat e of th e plasma when instabiliti es 
arise: th e expo nent iall y growin g perturbat ion must evidently sooner or later 
reach a magnitude at which th e lin ear analys is no longer hold s. In prin ciple 
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this problem can be solv ed in th e ca se of oscillat ory instabiliti es. In the oscil­
latory case the plasma with full y developed instabiliti es can be repre sented as 
a mixtur e of two ense mbles: particl es and waves . In partic ular, it is the int er ­
action between the particl es and th e waves that is responsible for the insta­
bility. The wave - wave int era ction, on the other hand, is strictl y a nonlin ear 
effect. If a wave exists for a tim e int erval appr ecia bly greate r than its own 
characteristic period (t » 2Ti / w) it is l eg itimat e to endow it with the proper­
ties of a "quasi-particl e ," in which ca se th e ensem ble of quasi-particl es can 
be described by an appropriate distribution functi on in "quasi -momentum" 
space (the space characterized by values of the wave vector k); thi s distribu ­
ti on function will satisfy an appropriate kinetic equation. Formally the situa­
tion is very much lik e that en count ered in the quantum theory of solids , where 
a mixture of two gases is also frequently considered : these gases are the elec ­
tron gas and the phonon gas. Howeve r, th e th eory of plasma stability is much 
more complica ted since the equation s are fundamentally nonlin ear becau se it 
i s only meaningfu l to consider stat es which are far from thermodynamic 
equilibrium. In order to writ e an appropriate kinetic equation for a turbulent 
plasma one must know the form of the appropriate collisi on terms, i.e., the 
wave -p article and wave-wave interaction terms. The first of these is found 
from the so-called "quasilin ea r" theory , which tak es acco unt of small non­
linear effects in only one sense , i.e., the distortion of th e distribution func­
tion due to th e feedback effect of the waves [4 -6]. 

In the quasilinear approximation the particle velocity distribution func­
tion is written as a sum of two parts: a slowly varying part fr/..v,t) (which is 
ca ll ed the "background") and a rapidl y oscillating part f ~ ( v, t). The slow 
chan ge of the bac kground due to the feedback effect of the oscillations on th e 
particles is due to the averaged quadratic effects of the low-amplitud e rapid 
oscillations; the si tuation is very similar to the fam ilia r van der Pol analys is 
in nonlin ea r mechanics. On the other hand, the desig nation quasilinear mea ns 
that the direct nonlin ear coup ling between di fferent modes is not taken int o 
account . Thus, the energy ba lance for the k -th mode is giv en in the same 
way as in the lin ear stabilit y analysis: 

(11) 

where u is the imaginary part of the frequency . 

Let us consider the derivation of the equation s for the quasilinear ap­
proximat ion for longitudin al electro n Langm uir oscilla tio ns in the one-dimen­
sional case: 
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aE !l._ ' V ~ + eE ~ - 0 
i}t I iJx m . au - ' - = 4nn e ax - ' n_ =ff _dv. (1 2) 

Th e distribution furtction is separated into slowl y and rapidly varying parts: 

f = ~ (f e'(kx-wkt) + ) - "-I k . c .c . ' 
E = ~ (Ek ei (kx- wt) + c,c. ). 

(13) 

The quantities fk and Ek are connected by th e usual relations of the linear 
theory 

fk = - i ...!!...., _ __ _ aafuo ·Ek. 
m rok-kv (14) 

The equation for the slowly varying part of the distributi on function fo 
is obtained by averag ing over the fast oscillati ons 

< f> = fo· (1 5) 

In order to take this average we require that the plasma must simul­
tan eously support many modes with diff erent wave vecto rs and a random dis­
tribution of phases. Th e wave packets mad e up of thes e waves must be 
broad enough so that it is valid to neglect particle trapping in the potential 
wells associated with th e individual modes in the packet . For example, in 
the case at hand (longitudinal Langmuir oscillations) the spread in phase 
veloc iti es in th e packet must be app recia bly greater than the velocity with 
which a trapped particl e would move in th e potenti al well e cp0: b,(w/k) » 
( e cpo /m) 1

/
2

• Takin g < E fo > = < E > fo, we obtain th e following equation for 
fo from Eqs. (1 2) - (14): 

(16) 

where D , the diffusion coefficient in velocity space , is proportional to the square 
of the elect ric field of the waves 

- e22 ~<(E k"ei (K'x- wk,t) -f- c .c . )(. Ek ei(kx -- wkt ) + 
m kk' i(rok- k u) 

+ c .c.) ) = - ,:: 2rc~ jEkj 2 Im(ffik - kvt 1
• 
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Equation ( 16) describes the fee dback effec t of the Langmuir oscillat ion s on the 
particle distribution function . The applicability of the quasili near equat ions 
is limit ed to cases in which the growth ( damping ) rates of the oscillations are 
much smaller than th e frequency ; if this condition is not satisfied the di stri -
bution function cannot be separated int o rapidly varying and slowly varyi ng 
parts. 

It is cl ear from Eq. (16) for the averag ed distribution function fo that 
the excitat ion of cooperative degrees of freedom (waves) gives rise to an ad­
ditional diffusion in velocit y spac e in addition to the usual collisio nal di f ­
fusion. In contrast with the original equat ion (12) we find that the present 
equat ion does not conserve entropy. This is not surprising since the averaging 
procedure used in going from Eq. (12) to Eq. (16) correspo nds to going from a 
dynamic al descr iption to a sta t istical description. Thi s same kind of ap­
proach , applied to th e description of waves , leads to a kinetic equat ion for the 
quasi-particles [7-10]. Our statisti ca l approach to the problem is essent iall y 
equiva lent to the correlation method used in the theory of hydrodynam ic tur­
bulence. For wave -like instabil iti es , which are characterized by vi w « 1 
(growth rate much small er than the frequency), the coupled chain of equat ions 
for the correlation functions can be expa nde d in the small parame ter v/ w [11]. 
However, instabiliti es o f a non-wave-like natur e , which are characterized by 
u :l: w,can not be considered thi s way since the prob lem does not cont ain a 
small parameter. In such cases cooperative phenomena ca n only be desc ribed 
by resorting to semi quantit ati ve methods. 

The present review is devo ted primarily to the application of the theory 
of cooperative phenom ena in the analysis of shock-wave thickness in a col­
lisionless plasma . 

By virtue of it s coll ective properties one finds that a collisi onless pla sma 
can exhibit shock waves in whic h the thickness of the shock front is much 
small er than th e mean free path. At first glance thi s result mig ht appea r 
paradoxical. Let us consider a shock front (Fig. 2) whose thickness t::. is much 
smaller than the mea n free path Z. It would seem that the faster parti cles 
(v > u) from the reg ion at the l eft (heated by the pla sma shock wave) could 
move free ly into the unperturbed plasma, thereby ca using the tran siti on re­
gio n to ex pand to a thickness Z (the mean free path). We now ask for mech­
anisms tha t ca n prevent this expansio n of the transition region. 

1. The simplest case is that in which there is a mag net ic fie ld parallel 
to the plane of the front. The magnetic field turns the ions and electrons 
around in distan ces of the order of the ir respective Larmor radii rH. Conse­
quentl y one might reasonably expec t t::. - rH. A sufficien tl y strong magnetic 
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field (H2 / 81r » nT) will hinder ex pansion eve n if it does not lie in the pla ne 
of the front . This is due to the fact tha t when H2/ 81r » nT the shock -wave 
velocity is appreciably grea ter than the thermal velocity of the parti cles so 
that the fraction of ions ( e lectron s) th at overtake the wave is exponentially 
sma ll . Howeve r, problems of this kind give rise to the following apparent 
paradox; The plasma states on the two sides of th e shock front are presum -
ably related by the appropriate conservation laws ( Hugoniot adia bat), accord ­
ing to which the tra nslati onal energy of the unperturbed plasma is tran sforme d 
into int ernal plasma energy aft er passage of the shock wave. The question 
now arises as to what mechanism can provide dissipation if t::. « l. The 
answer to this question is evid ent ly that most of the int ernal energy in the 
perturbed pla sma stat e behi nd the front resides in intense plasma oscil ­
lations. Howeve r, th ese nonlinear oscilla t ions do not necessa rily imply 
plasma instability. Thi s questio n is closely related to the specifi c dispers ion 
properti es of the plasma. The second section of the prese nt review is devo ted 
specifically to the theory of nonlin ea r ordered pla sma oscillations (th e result s 
are of interes t ind ependently of their relation to shock waves) . The trans ien t 
nonlinear motion of a pla sma is extremely complicated and can only be 
analyzed in certa in specifi c cases through the use of various sim pli fying as ­
sumptions . On the other hand, stea dy -state nonlinea r osci llati ons ca n be ana­
lyzed fai rl y comp lete ly. Here it is int eres ting to note the useful analogy 
be tween nonlinear plasma waves and surface waves of finit e amplitud e in a 
heavy fluid in a channel of finit e dept h. In the theo ry of nonlinear plasma 
waves one also encounters "solitary ~ waves whose veloc ity depends on ampli ­
tude . Nonlin ear waves in a pla sma can be broke n up as a consequenc e of va ­
rious plasma insta biliti es and ce rtain unstable nonlin ear waves are considered 



38 R. Z. SAGDEEV 

at the end of § 2. One possible instability is the two-stream instability which 
appears in nonlinear waves in a magnetic field, being related to the elec tric 
current in the wave. If the ordered velocity of the electrons with respect to 
the ions is greater than the mean electron thermal velocity the wave energy 
is converted into energy associa ted with longitudinal electrostatic oscillat ions 
of the plasma as a consequence of the two- stream instability . There are 
also other kinds of instabilities which are inherent in nonlinear periodic waves: 
these are the so-called "decay" instabilit ies in which ordered waves decay, 
giving rise to a spec trum of irregular waves. This instability is reminiscent 
of the decay of collective exci tati ons in the quantu m theory of ma ny-body 
systems. The combined effects of all of th ese mechanisms can be involved in 
the formation of the shock structure ( § 3). 

2. When the magnetic field is small , or when there is no mag neti c fiel d , 
the mechanism which inhibits the expansion of a shock front is of a diff erent 
nature. Let us assume that as a consequence of expansion some fast particles 
penetrat e the unperturbed pla sma in front of the shock ( cf . Fig. 2). In this 
case the state of the plasma in this region is characterized by the unperturbed 
equilibriu m distribution of the original partic les plus that of th e fast part icl es, 
that i s to say, it becomes a nonequilibrium state since the particle velocity 
distribution is no longer Maxwellian . This nonequilibrium plasma is now un -
stable against the exci tati on of var ious instabilities and the fluctuating elec -
tric and magnetic fields arising as a consequence of these instabilities cause 
scatt~ring of th e ions and electrons. The essential point is that in the presence 
of fluctuating fields of this kind it is necessary to reexam ine the notion of a 
mean free path. In a rarefied plasma the scattering on nonequilibrium ran­
dom fluctuations can be much more important than the usual two -body 
Coulomb sca ttering . 

§ 2. Nonlinear Plasma Oscillations 

1. Th e most important role of nonlinear effects is to cause steepening 
of the leading edge of a wave. Howeve r, in plasma dynamics it is frequently 
found that the dispersion effects become significant as the steepness of the 
front increases . These two effects are responsible for some of th e int eresting 
features of the asymptotic motions that finally develop-the spontaneous 
producti on of int ense oscillat ions as a consequence of the competi t ion be­
tween nonlinearity and dispers ion. The present section of thi s review is de­
voted to a systematic presentation of the theory of nonlinear undamped 
oscillations. We open our discussion with a general qualit ati ve descriptio n of 
any initial perturbation. 
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In the linear theory the oscillato ry motion of a plasma is described 
by a superposition of individual noninteracting modes [exp i (u.t-kr), where 
w is th e frequency and k is the wave vec tor] and, in gener al, a definit e relation 
obta ins between wand k: thi s is the dispersion relation w = w(k). Any non ­
linearity can evidently modify the pattern of motion described by the lin ear 
theory . It is instructive to consider the analogy with sound waves in ordinary 
gas dynamics . For example, sound waves, which are harmonic in the linear 
approximation, becom e distorted in the course of time because the wave 
amp litu de becomes finite. Thi s nonlinear deformatio n means, essentially, 
that portions of the wave profile characterized by high velocities tend to 
overtake portions characterized by low velocities so that a discontinui ty is 
ultimat ely formed (provided the sound wave is not first damped). 

Now let us trace the possible nonlin ear distortion of the profile of a 
harm onic wave in a collisionless plasma . The tendency toward increa sing 
steepness of the leading edge as a result of nonlinearity also operates in a 
coll isionless plasma . [Tran sverse waves, for exa mple, the mag netohydrody ­
namic Alfve n waves, are an exception. The equations describing the se waves 
do not contain a nonlinear term of the form ( v 'v')v J. Now, in gas dynamics 
dissipativ e effects ultimat ely set a limit on the steep ness of the front; in a 
collisionless plasma, however, the chief mechanism responsible for this func ­
tion is dispersion . The competition between nonlinearity, which tends to 
"overturn" the wave, and dispersion can be ill ustrated as follows: The in­
creasing steepness of the leading edge implies the generation of higher har ­
monics in the wave as a result of nonlinearity. In the first (linear) approxi ­
mation any wave can be regarded as being pure harmonic [exp i( wt- kr )]; in 
th e second approximation , however, the second harmonic must be included 
(as in the case of sound waves) . In an expansion in terms of the wave ampli ­
tude the correction equation that arises in the second approximation is 

..... ..... 2 
Lof 2 = l f1 exp i (2wt - 2kr ). 

(17) 

Here, f is the deviation of any field or plasma quantity from its equilibrium 
value (th e subscript s 1 and 2 denote the first andsecondapproximations ,r e­
spective ly); Lo is a linear operator which characterizes the linear oscillations 
of the plasma accor ding to some characteristic dispersion relation w = w(k). 

The form of Eq. (17) is really that of an oscillator driven by a forcing func ­
tion - fr It is clear that the second harmonic will be exci t ed if thi s forcing 
function resonates with the characteristic freque ncy of the oscillator, i. e . , if 
the original frequency multiplied by two corresponds ( according to the dis ­
persion relation) to a wave vector 2k. This resonance can be realized only if 
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the dispersion relation w = ck is linear, as is th e case for ordinary sound waves. 
If the dispersion relation is an arbitrary one there will be no transfer of energy 
from the fundamental to the second harmonic if the driving force is far off 
resonance. This qualitative picture indicates that it is possible for periodic 
plasma waves to propagate without nonlinear distortion in a frequency region 
in which th e dispersion exhibits an appreciable deviation from linearity. A 
knowledge of the dispersion relation w(k) obtained from the linear theory can 
then provide certain general properties of the nonlinear behavior. For example , 
let us consider magnetoacoustic waves propagating across a magnetic field. 
At frequencies below WHi• the ion Larmor frequency, the characteristic phase 
velocity of these waves is 

wk =( ~PQ )'/
2 = ( H5 -1-2.E!l.._)'/, 

u 4!1:Qo • Qo ' 
( 18) 

where H0 is the unperturbed magnetic field, Q0 is the density ,and Po is the 
pressure. As the frequency increases the phase velocity changes because of 
dispersion effec ts. In the general case the dispersion relation becomes very 
complicated even for these waves. Let us consider two limiting cases. 

Low-Pressure Plasma (p 0 « H~/ 8 rr). As the frequency w 
increases the phase velocity diminishes from th e value H0/~411'Qo at low fre­
quencies to ze ro at the frequency (wHiWHe>112 the so-called hybrid reso­
nance frequency,( e2H2 /mMc2) 112

; mM is the product of the electron and ion 
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masses. The dispersion curve for this wave is shown in Fig. 3. The corres­
ponding dispersion relation is 

2 H2 ,.,2
0
/ c2 4 2 w o __ =_ __ 2 nne 

k2 = 41tQo . k2 + w~ c2 ' wo = ---,;:i-. 

The deviation from lin earity in this dispersion relation becomes evident 
as k-> w0/c. The quantity c/w 0 then determines the characteristic spatial 
scale for steady-state nonlinear magnetoacoustic waves. All of these consider a -
tions hold for the "weak "-fi e ld case in which H2 /8rr « nmc 2• Under these 
conditions the plasma remains quasi-neutral as the magnetoacoustic wave 
propagates . On the oth er h<1-nd, in a very strong magnetic field 

the departure from neutrality becomes important at frequencies close to WHi• 
The dispersion relation for this case is(again neglecting thermal moti on) 

( !;"22 = 4nne
2
) o M • (19) 

The phase velocity now approaches zero at the ion Langmuir frequency w->Oo 
and the characteristic length at which the departure from . line arity becomes 
important is now H0M/41rQ0e . 

High-Pressur e Plasma (p 0 :s H 2 /8rr) . In this case dispersion 
effects becom e important when w-+ '"1-ir At frequencies above wHi the ion 
trajectory is only weakly distort ed by the magn eti c fie ld in one oscillation period. 
In other words, the ion motion becomes one-dimensional rather than two­
dimensional. Hence y, the ion adiabaticity index (which characte rizes the 
velocity of the magnetoacoustic wave) must be set equa l to 3 when w > WHi 
(rather than 2 as is the case when w < WHi). Consequently, th e phase velocity 
of the wave incr eases when w > WHi. This means that the phase velocity in­
creases with frequency ( rather than decreas ing) in a high -pressure plasma in 
this frequency range . The characteristic sca le of the nonlinear waves is also 
different in this case, being of the order of the ion Larmor radius. 
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Up to thi s point we have bee n speaki ng of waves tha t propagate at pre ­
cisely 90° with respect to the mag netic fie ld. However, the lin ea r small­
oscill at ion theory shows th at the dispersion rela ti ons change marke dl y eve n at 
small devia ti ons of the di recti on of propag at ion from the perpe ndicular direc ­
tion. The physical reaso n for the cha nge is the fact that obli que waves possess 
an elec tri c -fi eld compone nt along H0• Under the in flue nce of thi s electric 
field the elec trons ca n move along Ho much mor e rapidly than across H0, thus 
producing strong modificat ions of the charge and current distribut ions in the 
wave. Let us again consider a co ld plasma. At angles sat isfying the condit ion 
(m/M ) 112 « e « 1 , the dispersion rela ti on w = w ( k) acquires the part icu -
larly simple asympto tic form [neg lec ting ext rem ely short waves so that 
A» (C/ u.Jo) 1/ 0 ] 

w2 H~ ( k202 c2) 
-k2 ::::::: -4- l + - - 2- . 

ilQo Qo 

( 20) 

The depa rture from lin ea rity in w = w(k) bec omes important at wavele ngths of 
order ( c/n ) e. The phase veloci t y in creases with increasi ng frequency at these 
wavelengt hs and one expects a cha nge in the nature of the nonlin ear moti on. 

Let us now consider the case in which there is no magnetic fie ld. It is 
well known from the linear theory tha t ion- acous ti c oscilla ti ons can propa­
gate in a colli sionl ess plasma onl y if the elect ron pressure is apprec iably 
grea ter than the ion pressure Pe » Pi . Th is i s the case, for exa mple , in a 
two-t empe ratu re plasma in whi ch the elec t ron tempera ture i s much highe r 
than the ion tempe rature. If we simplify the analys is by assuming th at the 
ions are cold ( Ti = 0) the dispersion relati on is simil ar to (19): 

w2 Te x2 

l F = M . x,2 + k2 ' 

Q 2 M 
( 21) 

x2 __ o_ 
- Te . 

Th e characterist ic scal e length her e is the De bye radius lk . * 

*Electron oscil lation s in a ze ro -temperature plasma with no magnetic fie ld 
are character ized by the simple dispersion relati on w2 = w~. The re is no 
charac teristic scale length in th is case 'and steady- stat e nonli nea r waves with 
any spati al period are possib le . 
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All of th e case s that have been considered above ind ic ate th at disper­
sion effec ts become important at short wavelengths or small scale le ngths. In 
ordinar y hydrodynami cs dissipati ve effec ts also become important at small 
sca le lengths and te nd to li mit the incr easing steep ness of the lea ding edge. 
In contra st with ordinar y gas dyna mics , howeve r , in a coll isionless pla sma the 
limitin g fact or is dispers ion and the di fference between these two mec hanis ms 
i s reflecte d in the ma thema ti ca l structure of the orig inal equation s. Dissipa ­
tive effects (viscos ity , therma l conducti vit y, etc .) int roduce i rrevers ibilit y 
and incr ease the order of th e derivat ives by an odd number (for example , 
viscosit y i mplies the addit ion of a term cont ainin g a seco nd derivati ve in the 
Eule r equati on in gas dynamic s). Dispersion effec ts, on the other hand , do not 
aff ec t reve rsibili ty and increase the order of th e derivativ es in th e equations 
by an eve n number. For examp le , let us consider the equati ons th at desc ribe 
the propagatio n of ion- acoustic waves when Te» Ti · Under the assumpti ons 
made above one -dime nsional motio n is descri bed by the equation s: 

(22) 

Here M, v , and ni are , respectively, the ion mass , veloc ity , and density. The 
last equati on in ( 22) contain s the highest (secon d) derivati ve. For motion 
with a chara cteristic scal e size apprecia bly grea ter than the Debye radiu s 

(T /4rr ne2)112 it can be assum ed that the plasma is quasineucral , ni = 
n0 exp (e<,0/T), so th at the o2<,0/ox2 term in the last equa tionin (22) can be neg­
lected. Eli min ating the elec tric field from me remaining equa tions, we then 
the n have 

M (~ + v-ov) = _ I_ . an ) at ax It OX ' 

on 0 at+ iJx n v = 0. 

( 23) 

This system is of the same form as the equations for isotherm al mot ion 
( y = 1) in ordinary gas dynam ics. In general, the front associa ted wit h any 
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initi al perturbation will become steeper and steepe r in the course of tim e . 
This nonlin ear d:stortion of the profile of the perturbation can be illustrate d 
clearly in the particular case in which the initial velocity and density distri­
butions are relat ed functionally. In ordinary gas dynamics this case is am en­
able to the Riemann soluti on, which describe s a so-called "simpl e" wave of 
arbitrary amplitude. The dependence of the velocity on time and coordinate 
in this solution is described by the implicit function 

x = t [v ± c] -+ '.X (v) , (24) 

where c is th e velocity of sound and x (v) is a function that depends on the 
initi al conditions. Equation ( 24) shows that the flow profile evolves in such 
a way th at the soluti on must become triple-valu ed at some time. In ordinary 
gas dynamics (small mean free path) ther e is established under these condi ­
tions a steady -state flow characte rized by a discontinuity (shock wave) . On 
the basis of the described math ematical anal ogy one mi ght then expect to 
find a collisionless shock wave in a collisionless plasma . In the plasma case, 
however, as soon as the leading edge of the per turbati on becomes suffici ently 
steep the influ enc e of dispersion effec ts becomesfm portant [in Eq. ( 23), for 
example , these dispersion effec ts arise as a consequence of the departure from 
neutrality]. It i s interesting to note that an analogous nonlinea r wave is 
well known in the ordinary hydrodyna mics of incompr essible fluids; this is the 
nonlin ea r surface wave that propagates in a hea vy fluid in a channel. If the 
channel is shallow the equation of two-di mensional moti on reduces to an 
equation for one-dimensional motion (for the mean velocity of th e fluid vat 
a given cross section and depth h): 

( av av) oh 
7ft + V iJx = - g iJx ' 

oh a 
- +- (hv) -- 0 at iJx - ' 

j 
( 25) 

where g is the gravitat iona l constant. These are the so -c alled shallow -wave 
equati ons, which represent the zero th approximation for th e asymptoti c ex ­
pansion of the exact equati ons of hydrodynamics of an inc ompress ibl e fluid in 
a channe l of fini te depth in terms of the expans ion paramete r h0/L, where ho 
i s th e channel depth and L is the characteristic scale size ( for ex amp le, the 
wavelengt h). The shall ow-wave equation s are of the same form as the equa­
ti ons which describe the plane isentropic flow of a compress ible gas (with 
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adiabaticity index y = 2). For this reaso n, shallow water waves can be des­
cribed by the Riemann simpl e -wave solutions . It follows from these solu tions 
that an arbitrary initial profile of the fluid surfac e will eventually form a 
crest. We now note tha t the shallow -wave eq uation s are exa ctl y the same as 
the equation s of motion for a collisionless pla sma (nT « H2 /Brr) moving 
ac ross a magnetic fie ld , if the wavelength is appreciab ly greater than c/w 0 

(for example, if H2 « nmc½. The role of the channel depth his played by 
the field H in the plasma eq uation s. As the leading edge of the wave be­
comes stee per in the gas - dynamic case the dissip ative effects beco mes im­
porta nt; in contrast , in the collision less plasma case, when the characteristic 
scale sizes approach c/w 0 the dispersion effec ts become important. Disper­
sion effects also play a role in the theory of shallow waves when L approac hes 
ho~ Eq. ( 25) no longer holds. Howeve r, if ho/L is small , Eq. ( 25) can be im -
proved by adding the high er- order ter ms in the expansion in h0/L. These te rms 
have the form of high er derivativ es , correspondin g to dispersion effec ts; the 
dispersion rela tion for low-amplitud e waves then becomes 

w2 g 
k2 = k th (kh0) 

and at sma ll values of kho this relation can be written 

( 26) 

The nonlin ea r oscillations of th e surface of a heavy fluid hav e been in­
vestigat ed quit e thorough! y; this is especia lly true for the so -called sta tionar y 
waves, i.e., waves whose shap e does not change in the course of time. In ad­
dition to finding periodi c waves, characteri zed by wavelengths of order ho, 
one also finds so -c alled "soli tary " waves: these are essent iall y propaga tin g 
isolated humps in the fluid leve l in the channel . 

Th e ana logy point ed out abov e indicat es the possibili ty th at a collision ­
less plasma mig ht support similar periodic and soli tary waves. However , be ­
cause of the variety of dispers ion relatio ns that desc rib e the various kinds of 
plasma oscillation s one expects a greater variety of sta tionary waves. For 
instance, under certain conditions a plasma can support the propagat ion of 
soli tary rar efact ion waves (in the theory of surface waves in a fluid the se would 
correspond to solitar y depressions in the fluid level). 

I t will be shown in §3 that nonlin ear waves of thi s kind in a colli sion­
less plas ma are intima tely related with shock waves. Up to thi s point our dis­
cussion has been conce rned with finite waves of low amp litud e . Howeve r . the 
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situation becomes completely different at high amplitudes. At high ampli­
tudes the dispersion effects may not be sufficient to limit the increasing steep­
ness of the wave and the front can "break" at some critical amplitude, pro­
ducing a region of multivelocity flow (this obviously applies for a plasma that 
is initially cold). 

2. In gas dynamics the asymptotic form ( as t - oo) of any initial mo­
tion will, in general, be a shock wave. Let us now ascertain the nature of 
asymptotic motion in a collisionless plasma. It might be expected that a 
stationary wave pattern would be esta blished as t - oo, Assuming that such 
a stationary motion exists , in the one -dimensional case, at l east, we can 
analyze the problem without difficulty by solving the plasma dynamics equa­
tions directly. The standard procedure for obtaining the solutions is to choose 
a coordinate system that moves with the wave in the original equations. The 
time dependence disappears in this coordinate system and the problem re -
duces to the search for stationary flow, with the wave velocity u first being 
introduced into the problem as a free parameter. The solubility conditions 
then determine th e limits within which u can change and also estab li sh the 
relation between u and the wave amplitude. As far as the analysis of shock­
wave thickn ess is concerned, primary interest attaches to th e stationary non -
linear waves whose low-amplitude dispersion relation is linear at long wave­
lengths (sound) and in which dispersion effects appear at th e short wavelengths. 

We begin by considering waves propagating across a magnetic field. If 
the Larmor radius is small ( drift approximation) the hydrodynamic equations 
can be used to descr ibe the situation. The only stationary motion allowed 
by these equations is the trivial case of plane-parallel flow and in order to 
find the nontrivial stationary motion we must take account of the dispersion 
effects that appear at small scale lengths. These dispersion effects derive 
from the dep arture from neutr ality and from electron inertia, the introduction 
of either one of these factors being sufficient to obtain stat ionary motion 
which is not a plane-parallel flow. These mechanisms are to be associated 
with two characteristic sca le lengths . 

Let us now exami ne the way in which dispersion effects lead to the 
forma ti on of stat ionary waves in a cold plasma (nmc 2 » H2 

/81r » nT). We 
neglect thermal motion so that the set of equat ions that describes the ion 
motion, the electron motion, and the field profile in the stat ionary wave is as 
foll ows (mi= M, me = m; the wave propagates along the x-axis and the mag-
11cti c fie ld is along the z-axis; Fig . 4): 

111,,rv: IVx. - u) = ±eEx± ..!:_Vy, H, /, r \ ,,c c ,,e 
( 27) 
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(2 8) 

( 29) 

(30) 

The last equation, which expresses the neutrality condition, implies 
that the velocity components in the x-direction are the same for the electro ns 
and ions. Elimin at ing all variables except H from these equations we find (to 
accuracy of order m/M) 

mc2 d [dH ( H
2 

- H~ \) j ( H2 
- H~ ) 

- 4nn 0 e2 u dx dx 8nn 0 Mu - U 8nn 0 Mu - u 

( 
H

2
- H~ ) 

BnnoMu -u H + uHo. 
( 31) 
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This equation determines the profile of H in the stationary wave. Integrating 
once we have 

-Ur= 
a- = ( ·~ 

( H2 - H~) 2 
- 16rtn0 Mu 2 (H - H0)

2 

!6nn 0 M 

mc
2 

c
2 

) 
4nn 0 e2 = w~ • 

+ c 

(3 2) 

Different values of C, which is the constant of int egration, are to be associated 
with various kinds of solutions. It is instructive to trac e the var iation of the 
soluti on as C changes by plotting integral curves in the phase plane ( H, H'). 
Curves of this kind are shown in Fig. 5. 

The solutions of Eq. (3 2) must describe periodic waves of finite ampli­
tude, with one exception; this is the solution for a special choice of th e con -
Stant C: 

C = 0. 

This special choice gives dH/ dx = 0 for H = H0, in which case 

(H- H0) 

H2-H2 
0 ---- -u 

81t110 Mu 

· (16nn 0 M)- ½ · V I6nn 0Mu 2 
- (H + H0)

2
• 

(33) 

It is impossible to form a physically meaningful solution for H over the 
entire x-axis if a fixed sign is chosen in front of the radical in Eq. (33). How-

f1'max 

H 

Fig. 5 
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ever, th ere are solutions which are eve rywhere continuous (up to the second 
derivative inclusively) for which the derivative H' changes sign at a certain 
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x = x1• H reaches its maximum value Hmax at this point. The equation 
(dH/dx) (x 1) = 0 relates the peak magnetic field Hmax to the velocity of pro­
pagation of the wave and plays a role analogous to that of a dispersion rela­
tion 

Solving Eq. (34) for u, we find [12 -15] 

u2 = (Hmax + Ho)2 

16nn0 M 

(34) 

(35) 

In the limiting case of low amplitudes (Hmax-> H0) Eq. (35) gives the so­
called magnetic sound velocity and the propagation velocity increases with 
amplitude. Int egration of Eq. ( 33) gives the profile of H in this wave, ·which 
is found to be symmetric with respect to x = x1 , and represents a single pulse 
of magnetic field with width of order 

where 

( 
4nne2 )½ 

ffio= ~ 

Thus, the solution of Eq. ( 33) is evidently the collisionless-plasma 
analog to a solitary wave . The magnetic-field profile in the solitary wave 

II 

o-1? = 1 2>ok>l oft= 2 

A 
Fig. 6 
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at low amplitudes (Hmax - Ho< H0) is given by a simple expression: 

( /~: r-1 J- ( 36) 
V4:rtn0M 

The function H = H(x) is shown in Fig. 6 for various values of the Mach 

number ~ = H /~ . 
o 4:rtno 

Equation (17) does not have real solutions for arbitrarily large u and H. 
For example, solitary-wave solutions exist when Hmax ~ 3Hc [i.e., u< 
Z,(H0/.f41rn0M)]. As the wave amplitude approaches the critical value the ion 
(electron) density at the crest of the wave becomes infinite. This phenomenon 
can be described physically as follows: The solitary wave is essentially a hill 
in the electric potential cp and in the coordinate system that moves with .the 
wave the ion flux from x = 00 impinges on this potential barrier with a velo­
city u. If the amplitude is not too large, the initial kinetic energy of the ion 
Mu2 /2 is greater than the height of the potential barrier e cp max and the ions 
pass through the barrier, being retarded in the process. However, the solution 
shows that as the wave amplitude increases the potential barrier becomes so 
high that e 'Prnax > Mu2 /2. The situation e <Pmax s:::: Mu2 /2 corresponds to an 
amplitude Hmax = 3H0 (in other words, the critical Mach number is 2). Hav ­
ing lost velocity, the ions are trapped at the crest of the wave and the ion 
density increases without limit. At still higher amplitudes the ions are re­
flected from the barrier, but the motion corresponding to this case is not de­
scribed within the framework of our original system of equations ( 27)-( 30) 

since the reflection implies a multistreaming flow (interacting flows of inci­
dent and reflect ed ions). 

Thus it is evident that dispersion effects may not be sufficient to pre­
vent breaking of the wave in a cold plasma if th e amplitude is sufficiently 
large. 

On the other hand, if the thermal spread in the ion velocity i s taken in -
to account, some ions are refl ected from the barrier even at low amplitudes 
(these are the ions with sma ll relative velocitie s u -vx) . The ions with low 
relative velocities are those that were originally moving in the direction of 
propagation of the wave with a velocity approximately equal to u; these ions 
are essentially tra pped and extract energy, causing the wave to be damped. 
For the time being, however, we shall neglect damping, in which case it is an 
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easy matter to find a solution for the solitary wave in a more general form; 
the thermal spread is taken into account by introducing the ion velocity 
distribution function. 
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A closely related class of nonlinear oscillations can also be realized in 
a plasma in the absence of an external magnetic fi eld; these are the nonlinear 
ion-acoustic oscillations. Linear theory indicates that ion -acoustic oscilla ­
tions can only be excited when Te» Ti so that our analysis will be limited to 

this case. 

If it is assumed that all quantiti es depend on x and t only in the form 
x - ut, Eq. ( 22) can be reduced to a single second-order differential equation 
for the potential: 

qi" = 4nn 0 e, { u _ exp ( ei)) lf u2_2: (3 7) 

Integrating Eq. (37) once we have 

I ( ') 2 4 ( uM v 2 2eq> T eq>) C -- cp = nn 0 e - - u ----exp- + . 
2 e M e T (38) 

Various periodic waves can now be found depending on the choice of the inte­
gration constant C (see the integral curves on the phase plane in Fig . 7). A 
special case is represented by the value of C given by the condition rp' -+ 0 
when rp -+ 0, i.e., C = 4rrno(Mu2 + T). This case is treated specially in the 
phase plane and corresponds to a solitary wave (Fig. 8) which is a symmetric 
potential hill. 

The velocity of propagation of this wave u, as a function of 'Prnax the 
peak potential, is found from Eq. ( 38) by writing rp' = 0 when rp = <Pmax [4], 

---u 
II 

Fig. 7 Fig. 8 
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2 T [ exp ( e<p~ax) - Ir 
u =- - ·---=:-------'-----,---~---=-----

2M ex p ( e<p~·ax ) _ 1 _ e<pr,pax (39) 

In the limiting case of low amplitudes ( e <Pmax « T) , u approach es the 
velocity of isotherma l sound fT/M. At low amplitudes the profile potential in 
the solitary wave is given by 

cp::::::: ~_?.:_ (1 __ T_ ) sh2 { Yrtnoe Y 1 __ T_·x} 
2 e Mu 2 "VT Mu 2 • 

(40) 

Ion waves also exhibit an upper bound on amplitud e, beyo nd which pro­
_pagation is impossibl e . This is th e point at which the motion beco mes multi­
valued, beca use t he ions can no longer get across th e potential barri er. The 
critical amplitude of the soli ta ry wave is gi ve n by ecpmax = Mu2 /2. If the 
wave velocity u i s found from Eq. (39), the quantit y ecpmax Ri 1.3 T . Thi s 
value then represe nts th e critical am plitud e for the solitary wave and cor -

responds to a Mac h num ber - M = u ~ 1 6 
C//( 1 (-fr)'/, - • • 

In both of the ca ses considered above (magnetoacoustic waves and ion 
wa ves) we ha ve observed a sim ilar pattern for th e ste ad y-s tat e nonlinear mo ­
tion. The only essenti al difference is in the magnitude of the characteristic 
scale lengths. This result is hot surprisin g ina smuch as the corresponding 
linear dispersion relat ions are very much th e same for these cases [c f. Eqs. ( 19) 

and ( 21)] . Solitary waves are of great interest since they represent a specia l 
kind of stea dy -st ate nonlinear motion. Whereas period ic wav es a re com -

pat ible with an arbit rary dispersion relat ion ( so lon g as it is nonline ar), soli -
tary wav es req uir e a very specia l kind of di spersio n relation. This requirement 
follow s from the fact that the spectra l expansio n of the profile of a solitary 
wave is a co ntinuou s spect rum whereas the spectra l expansio n of a periodic 
wa ve co ntain s discre t e va lu es of wand k only. For the former the discussion 
given at the beginning of t hi s sec ti on does not hold. It is clear that the 
existe nc e of a stationar y soli ta ry _wave requires that th e hi gh -am plitud e parts 
of the profile must propagate with ve l ocities sma ll er than the velocity given 

by the lin ea r theory. When thi s situa tion obtains the strong effec t of nonlin -
earity in the h'igh-amplitude part ca n, roughl y speaking, be compensated by 
th e reduction in ii w/o k. This kind of pl asma dispersio n rela ti on ( decreas ing 
a w/ ak· with increas ing k) is characteristic of the magnetoacoustic wave and 
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II 

Fig. 9 

th e ion- acous ti c wav e when Te» Ti. It is also characteristic of th e disper­
sion relation for surfac e waves of a heavy fluid in a cha nnel of fin it e depth. 

Wav es cha rac t eri ze d by th e inverse kind of dispers ion relation, i.e., 
waves for which' aw/ak increas es with increasing k, must form solitary rar e ­
faction waves in the nonlinear case (Fi g . 9) , in contrast with · the comp ression 
wave desc rib ed abo ve. This kind of dispers ion relatio n is characteristic of the 
propagation of waves across a magnetic fi eld in a hi gh -t emperature plasma. 
It is not diffiGult to find the profi le for such wav es and the relation betwee n 
the phase ve locity and the peak magneti c fi e ld. However, we hav e alr eady 
exam ined th e physical features of undamped nonlin ea r waves and now wish to 
inves ti ga te possibl e dampin g mec hani sm. 

3. "Ordinar y" dam ping mechanisms are to be associated with th e con ­
version o f en~rgy of ordered motion into hea t as a result of particle co lli sions; 
in a rarefied plasma, however, there is another possibilit y - "collisionl ess 
damping." This phenomenon is related to the prese nce of trapped parti cl es, 
i. e., par ti cles whose velocities are approximately the same as the phase 
velocity. We.s hall illu str ate thi s e ffect using the sim ple examp l e of ele ctro n 
Langm uir osci ll ations, but the essential qualitati ve features of th e phenome­
non are the same for any kind of wave. It was shown by Landau [3] th at 
waves of ex treme l y low amp litud e are damped if the distribution function 
describ in g th e resonance particl es has a nega tiv e slop e, i.e ., if df/ dv< o .at 
v = w/k. This damping is due to the fact that the faster part icl es are retarded 
by the wa ve while the slow er particl es are accelerated. If th ere are fewer 
fast parti cles than slow particles at resonance the wave is damped. In actual 
fact the lin ear theor y becomes inapplicable very rapid l y because the form of 
/ v) is changed by the damping process it self. For instance, in the "quasi­
linear" th eory thedistortion of t he distribution function is described by th e 
equat ion 
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where D ..., E2 and is especially large for the resonance particles. 

(41) 

According to Eq, ( 41) the resonance particles are redistributed and a 
plateau df /dv-+ O is formed on the distribution function (Fig. 10) [Eq. ( 41) is 
analogous to the heat-conduction equation in an inhomogeneous medium]. 
When this happens a saturation point is reached and the damping process is 
terminated. However collisions, although rare, will still gradually "round off" 
the edge of the plateau and establish a quasistationary state in which df/dv 
is slight l y different from zero (df /dv < 0), In order to find the magnitude of 
this slope and the associated damping it is necessary to introduce a collision 
term in Eq. (41). Clearly, the larger the amplitude of the oscillations the 
stronger will be the feedback effect on the distribution function in the region 
v Rl w/k. Thus, it is reasonable to assume that the damping coefficient [(1/e) 
de/dt] ( e is the wave energy), which i s proportional to df/dv (v = w/k), will 
dimini sh as e increases . The stationary slope df/dv is found from the equa­
tion 

(42) 

where the expr ession for the quasilin ear diffu sion coefficient D can be simpli­
fied for the resonance particles (v Rl w/k) 

(43) 
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In the expre ssion for St(f) we retain the t erm containing the second -derivative 

St (f T d2 Uo - f) 
) ;c:::;; vcollm dv 2 ' 

where fo is the Maxwellian distribution function, This simplified form of the 
"colli sion integral" allows the reestablishment of the local equilibrium dis­
tribution. Integrating Eq. (42) once, we have 

df dfo 
du = cfv I + ez £ 2 

mcoTvcoll 

(44) 

It is cl ear from this expression that fo r a low- amplitud e wave e2E2/m w T v coll 
< 1 th e damping fa cto r 

V - l'tCilo • (~)
2 
!!.i_ ( V = ~) - :TtCOo • ( ~ )

2 !!:L ( V = ~) == Vo 
- 2 k dv k 2 k dv k 

approaches the Landau damping factor v0• Howeve r, th e linear theory does not 
apply at amplitudes such that e2£2/mwTVcoll> 1. As indicated by Eq. (44), 
the damping in this case must diminish as th e amplitude increases, varying 
as E -2

• 

The damping analysis given above applie s only for broad wave packets, 
since we have made use of the quasilinear theory. The relation in Eq. (44) 
would not hold for a monochromatic wave (with one wand k), which re quires 
special con sideration. We shall limit oursel ves here to a semiqu antitative 
estimate in order to establish the depend ence of th e damping on amplitude. 
Equation ( 44) can be interpr eted by writin g it in the form v = v0/( 1 + -ri/-riJ. 
Here, v0 is the dampin g found in the linear approximation (Landau dampin g); 
-r1 is the char ac teri stic tim e re quir ed to establi sh a local Maxwelli an distri -
bution ; -r2 is th e charact eristic tim e requir ed for distortion of the di stribution 
function by th e wave packet. If -r1 « -r2 ( in which case th e Maxwellian distri -
but ion function is establi shed by colli sions) then the usual Landau damping is 
obtain ed. As th e wave amplitud e inc rea ses the distorti on due to th e int erac­
tion with th e wave beco mes so lar ge that colli sion s can no lon ge r establi sh a 
Maxwellian distributi on function and the damping rat e is dimini sh ed . By ex ­
tendin g thi s ana lysis it is possible to estimate th e absorption for a monochro ­
matic wave if the value s of -r1 and Tz are cho sen properly . Let cp be th e 
potentia l in the wave; in thi s ca se particl es with velociti es (with respect to 
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thew ave) of order ±,/e cp/m will cause absorption. This means that the distri -
bution function will be affected primarily in a region t:,v with width of order 
±fe cp/ m. Small -angle Coulomb collisions establish local equilibrium in this 
same region in a time r 1 - ecp/VcollT. The tim e requir ed for th e nonlinear 
distortion due to the int e raction with the wave is of orderr 2 - ">../,/ecp/m, 
where">.. is the wavelength. Finally, we find [4] 

(45) 

This result m ea ns that the damping goes as E- 3/z for a monoc hromatic wave . 
A rigorous ana 1 ysis verifies this conclusion [ 16]. 

4. The results given above lead to th e conclusion that nonlinear wa ves in 
a collisionless plasma will be damped very slowl y if the distribution of par­
ticles respo nsibl e for th e damping is subject to a "relaxation" effect. This, 
however, does not guarantee that nonlinear steady-stat e waves can continue to 
exist once they are produced . I t is still nec essary to determine whether or not 
the waves are stable against va riou s kinds of random disturbances; if they are 
unstable the energy of the nonlinear wave motion goes into some other kind of 
plasma motion, possibly random turbulent motion, and this process is equiva -
lent to a damping process. It is clear that th e propagation of a strong pertur­
bation in a collisionless plasma implies a significant departure of the plasma 
from thermodynamic equilibrium; in turn this departur e impli es the possibility 
of instability. 

For example, let us consider a steady -stat e solitary wave propagating 
across th e magnetic field in a cold plasma (nT « Hz /8rr). We shall again be 
interested in the motion of the plasma ions and e lectrons in this wave. If 

Hz /8rr « nmcz, th e plasma is quasineutral. The ion s and electrons move with 
the same velocity in the direction of propagation of the wave. However, the 
electric curr ent in the dir ection perpendicular to the wave velocity and th e 
magn etic field is due to t he el ectrons alone. It is well known that the exis -
t ence of an appreciable relative motion between the ions and e l ectrons in a 
uniform plasma can result in the so-called two -stream instab ilit y. It is clear 
that an analogous effec t might be expected here. The problem is simplifi ed 
if we neglect terms that take account of the unperturbed motion of the pla sma 
in th e x -direction in analyzing sm all deviations from the stationary pattern of 
the solita ry wave. This procedure is valid if th e instability growth time is 
sig nificantly smaller than the time required for the solitary wave to move 
through a given region . This time is of order c5,/4rrnM/H, wher e c5 is the 
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"width" of the wave. The problem can be solved easily if the perturbed mo­
tion of the ions and elec trons is analyz ed in terms of th e two-fluid theory with 
adiabatic pressure variations. Th e effec t of the magnetic field on the per­
tu rbed motion is neglect ed since we limit ourselves to oscillation frequencies 
much greater than the electron Larmor frequency WHe· In this approximation 
the equations for the perturbed quantities ve ( electron velocity), Vi ( ion veloc -
ity), ne and Ili( electron and ion densities), and cp ( elec tric potential) are 

i (ro + kv 0) v = 9 ...!!.._ <p -'v- r-n, 
m mn0 

. V e 
iro = - 'v M <p; 

i (ro + kv 0) n, + ikn 0vy + :x (n0vx) = 0, 

iron;+ :x (n0 Vx) + ikn 0 Vy = 0, 

- k2<p + <p" = 4ne (ne - ni)-

(46) 

( 47) 

The equations in ( 46) are the electron and ion equations of motion; the equa -
tions in ( 4 7) are the electron and ion equations of continuity and Poisson' s 
equation. We have taken the perturbed quantities to be of the form 
rp( x) ei(wt + ky). The quantities v0 , T, and n0 app earing in the equations are 
the x-dependent unperturbed mean velocity of the electrons Cy-direction), 
th e electron temperatur e ( we assume that the ions are cold), and the plasma 
density. Under the assumption that the x-derivatives of the perturbed quan­
titi es are much greater than the x-deri vati ves of the unperturbed quantities 
( sem icla ssi cal approximation) this system of equat ions reduc es to a second­
order differential equation for ne: 

2 [ 

00

2 ] 
T d ne 2 T 2 o m dx2 + (ro + kvo) - m k - Qg ne = 0. 

l --2 · ro 

(48) 

The stability investi gation redu ces to the problem of finding the characteris­
tic values for Eq. (48). To satisfy the bounda ry conditions we choose solu ­
tions that fall off in both directions going away from the solitary wav e. 
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Let us investigate the behavior of th e function 

2 

F (x, ro, k) = (ro + k v0)2- .I_ k2- wa 
2 m Qo 

1--. w· 

In a uniform plasma this function would be independent of x and the disper­
sion relation relating w and k would be of the form 

F (w, k) = 0. (49) 

This equation yields unstable solutions when v~ > T /m, that is to say, when the 
mean relati ve velocity of th e ions and electrons is greater than the electron 
thermal velocity. If k is not too large [k2 « ( Wii / T)m] this equation can be 
written approximately as 

( T) W6 F(ro k)~k 2 v2 - - ------:,- = 0. 
' o m Q6 1-- wz 

Thus 

Q2k2 (.I_-v2) 
2 - o m o 

u> - T)' 2 2 2 Wo- k (vo-m 

and w becomes imaginary (instability) when Vii> T /m, Now, returning to the 
inhomog eneo us problem, l et us conside r the spatial behavior of the function 

(1)2 

F (x, w, k) = k2 
( v~ - : ) - ---, 0

~ ­
l - Q~/ w 

(in thi s approximation it is 

sufficient to consid er rea l w2). In Fig. 11 we show th e profi les of v0 and w~ in 
th e soli tary wave as a function of x. ne is descr ibed by an oscilla tory solu­
tion where v~ > T /m , i. e., where F(x, w, k) > 0. On th e other h and, far from 
th e solitary wave we have F(x, w, k) < 0, corresponding to exponentially 
damp ed solution s. These solutions are connected at the turning points, at 
which F( x, <,,\ k) = 0. Thus. lhe required localize d solutions alwa ys exis t and the 
instability appears if there is a regio n in which Vii> T /m insid e the solitary _ 
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wave. The growth rate for this instability is known to be of order Oo [in a 
"z ero -temperature" plasma the ma ximum growth rate is still higher, being 
Oo (M/m) 116J. Several simplifying assumptions hav e been mad e in obtaining 
these results. The probl em is somewhat mor e com plicat ed in th e general 
case: the equation corresponding to Eq. ( 48) is a fourth-order equation and the 
connecting points move into the complex plane of x. However, th e instability 
condition vt > T /m remains unchang ed . 

The peak value of v0 in the solitary wave increases as the Mach number 

( 
u V 41tn0M) . . .. clJt clJt = Ho · mcreases. There 1s a cnncal value of the Mach 

·(cl}t = clJt*) at which v0 exceeds the mean thermal velocity of the electrons 
so that the wave becomes unstable. Using the solution for the profile of the 
solitary wave given earlier. we can show easily that for a cold plasma 
(nT « ~ /8rr) 

cl}t * ~ 1 + : c1t:rr · · (50) 

Essentially this result mea ns that by taking some care in analyzing inhomo­
geneous probl ems we can use the same criterion for the two-stream instability 
as in a uniform plasma. Let us now verify th e original assumption that the 
growth tim e for the instability is appreciably smaller than the time for the 

solitary wave to move through the _plasma region ...!!_. ( Ho )-l ~ v- 1 
Wo Y 4nn 0M · 

Substituting v - Oo, we find H~ « 4rrn0mc 2
• 
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The development of the two -stream instability has an effect on the 
initial nonlinear wave by causing an effective damping; the energy associated 
with the ordered electron motion in the nonlinear wave is converted into the 
energy of random electron Langmuir oscillations. In thi s sense the net effect 
of the instability can be regarded as a kind of "colle ctive "frictional force 
betwee n the electrons and ion s [4, 17, 18]. 

Although we have been int eres ted in th e instability of a solitary steady­
state wave it is clear that similar considerations hold for other plasma waves 
in a magnetic field. The two-stream instability pe"rtains to only one particular 
class of problems. The so-ca lled "decay" instability, which can be observed 
in periodic nonlinear waves [19], i s of a more general natur e. 

We start our analysis of the "decay" mode with some general remarks. 
In investigating the stability of stationary nonlinear waves ( which for brevity 
will be called th e "background") it is convenient to transform to a coordinate 
system that moves with the wave . In this coordinate system the coefficients 
in the linearized equations that describe the small deviation from the back­
ground are independent of time and the tim e dependence of the solutions can 
be written in the form eiwt. The problem then reduces to that of solving a 
system of equations which can be written symbolically in the form 

~ 

L<p = 0, (51) 

I\ 
where L is a lin ear differential operator. The actual form of the operator de-
pends on the background and the characteristic frequency w, the determination 

A 

of which represents the essenc e of the stability investigation. The operator L 
can be written as a sum of terms 10 and 11; t 0 is a differential operator with 
constant coefficie nts while 11 is a differential operator that goes to zero to­
gether with the infinitesimally sma ll amplitude of the perturbation used to 
test the stability of the stat iona ry wave. For a wav e of fini te (but small) am­
plitude t 1 will be small and it is natural to use a perturbation -th eoret ic tr eat -
ment, In the zeroth approxima tion* the equat ion 

(02) 

I\ 

•If dissipat ion is negl ected in the hydrodynamic approximation Lo is a self-
adjoint operator and it s cha racteri stic functions must correspond to undamped 

waves. 
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describes th e oscillations of a uniform plasma with characteristic functions 
proportional to eikr and characteristic values of w that satisfy the dispersion 

" 
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equation w = c.,.(k). In th e first approximation in L1 we hav e diagonal matrix 

elements < (fJw• IL 1 I <Jlw > in which the spatial dependence of L1 is given 

by the factors e* ikor. It is clear that the matrix elements will vanish if 
each value of the frequency w corresponds to only one value of the modulus 
of the wave vector k; The first perturbation-theoretic approximation gives a 
nonvanishing contribution only when there are degenerate states for which one 
value of w corresponds to at least two wave vectors (k1 and k2). In this case 
the quantities k1 and k2 must satisfy the relation 

(53) 

and the fact that they correspond to the same frequency can be written in the 
form w1 = w2• If we now convert from the wave coordinate system to the 
laboratory coordinate system the frequencies w1 and w2 will be different. The 
following condition will be satisfied: 

(54) 

where Oo is the oscillation frequency of the background <no = kou) while o1 
and o2 are frequencies corresponding to Che wave vectors k1 and k2 (n 1 = 

w1 + k1 u, n2 = wt + k2u). The conditions in ( 53) and ( 54) can be re-
garded as conservation laws for the quasi -energy and quasi -momentum in the 
interaction (decay) of the quasi-particles that repr esent the waves. Herein­
after we shall call these the decay conditions, and the instability that arises 
will be ca ll ed th e decay of a wave with fr_quency o0 and wave vector k0 into 
waves with frequencies o1 and o2 and wave vec tor s k1 and k2 . The decay con­
ditions are not necessarily satisfied for arbitrary dispersion relations w(k), 

Curves corresponding to vario us kinds of spectra are shown in Fig. 12. 

It is evide nt that decay can occ ur only for the spectra denoted by 1 and 
4 . Waves characterized by spectra similar to 2 and 3 are stab l e against decay . 
However, if there are seve ral branches in a spect rum, waves charac teri zed by 
spect ra sim ilar to 2 can be unstable against decay into waves which belo ng to 
a different branch. To put the matter more precisely: deca y is possibl e when 
three points exist, corresponding to wa'{es n0 , n1 , and n2 (in general these 
three points can li e on different branches) , such that it is possible to draw a 
curve sim ila r either to curve 1 or to curve 3 (in certa in cases transitions be­
twee n different branc hes are "forbidden" by polarization conditions). The 
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J 

Fig. 12 

fact that the decay conditions are satisfied does not necessarily mean that an 
instability will exist. If the cor rection to the frequency is computed in the 
first perturbation-theoretic approximation it will be found that either the fre­
quence is imaginary, i.e., there actually is an instability, or that it is real,i.e., 
that the frequency is merely shifted. It is necessary to make a specific inv esti­
gation to determine what actually happens in a given case. The quantities A1 , 

which characterize the background, can be written in the form 

where k0 is the wave vector. In what follows we shall neglect the O(oAI) 
term, that is to say, we shall inv estigate the stability of the fundamental tak­
ing account of the interaction of the fundamental with small deviations from 
the background. For this purpos e we must first consider possible cases in which 
the decay conditions can be satisfied . 

Let us first consider the simplest case, a plasma with no magnetic field. 
In such a plasma there are two branches: longitudinal electron waves and ion­
acoustic wave s (T e» Ti) · The electron waves are characterized by a spec­
trum corresponding to curve '2 (cf. Fig. 12) while the ion waves are charac­
terized by a spectrum corresponding to curve 3; consequent l y th ese waves 
are stab le when not coupled . However, coupled decays of the following form 
are allowed: 

< electron wave 
electron wave 

ion wave 

< electron wave 
ion wave 

electron wave 

COOPERATIVE PHENOMENA IN COLLISIONLESS PLASMAS 63 

The decay of the longitudinal electron wave into a longitudinal electron 
wave and a longitudinal ion wave represents one of the simplest examples of 
a decay instability. The equations for small perturbations are of the form 

' 

( o o ) oui o { ~ ~ . < 55) a[+ u ox ni + n0 ~ = - 2 ox (niuvi + viuni) sm k0x}, 

( this system of equations describes th e ion wave). Here, v. and n- are the ion 
1 1,e 

velocit y and the ion ( elect ron) density. 

The hydrodynamic forms of the electron equations are 

( ! + u :x) (Pe - y ~: ne) = 2y (y - 1) P~t ( :t + u :x) ·x 

X (ne sin k 0x), 
oE 
Tx = - 4nene, 

where Ye is the electron ve lo city ; y is the adiabaticity index for the e lect rons , 
which can be set equal to 3 in the one -dim ensional case; Pe is the e lectron 
pressure; 6v and on are the amplitudes of the velocity and density of th e elec­
trons and ions in the original el ec tron wave whose stability is being in vesti -
gated. For reasons of simplicity we are treating a one-dimensional case, i.e., 
it has been assumed that quantities describing the small deviatio ns from the 
background depen d only on the time and the x-coordinate (ko is in the x-dir ec­
tion). 

In accordance with the stability scheme proposed abov e we now seek a 
perturbation in the form of a superposition Ciei <ro+k,x) + Ceei <00+k ,x) of 
ion and electron waves. These wave are independent in the ze roth approxima -
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tion; however, coupling is provided by the right sides of Eqs. (55) and (56). 
Using the conditions that must be satisfied in order to solv e the equations for 
Ci and Ce, after some simple but rather tedious calculations we obtain the 
following expression for the square of the imaginary part of the frequency: 

2....._, (0Ve)2 
k2u E.!.{A + ( _ 2) k !!:!_} 'V --..:. 4 r. ~G2 y 2V 7 ' 

U ••2 U 

(57) 

where VT = -lyp0/n 0m and n1 and Q2 are the ion and electron wave frequencie s 
in the laboratory coordinate system. 

Th e decay conditions are written in the following form: 

± I k1 I = ko ± I k2 I , 
± k1u, = V w5 + k~v} - V wg + k5v}, 

(58) 

where Ui = v.p0/n 0M. 

Using Eqs. (57) and (58) we can show that -:-'1J2 > 0 ,that is to say, the 
electron longitudinal waves are unstable against decay into an el ectron longi­
tudinal wave and an ion longitudinal wave. The most unstable waves are the 
short waves (k 0 :ex; 1/x is the Debye radius). In this case 

(59) 

All of the abov e calculations have been carried out in the hydrodynamic ap­
proximation, i.e., the electron thermal motion has been introduced only by 
including th e el ectron pre ssure. It is well known, however , that thermal mo­
tion can also cause wave damping. This damping of th e electron waves can 
be neglect ed if k « x• The damping is not, however, expon entially small for 
the ion waves and instability of th e background actually requires that the in -
equality v > Vi must be sati sfied, where Vi repr esent s the damping of the ion 
waves. It is well known( cf., for exampl e, [20]) that when Pi« Pe 

'Vi - Vi Ql Jl-i. (60) 

Com paring this ex pression with Eq. (59) we find that wav es whose amplitud es 
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satisfy the inequality ov /u > (m/M) 3/ 4 will be unstable . Further, we note 
from Eqs. (57) and (58) that decay leads to electron oscillations with fre­
quencies smaller than the frequency of the background. 

Carrying out a similar analysis for the second case of coupled decay we 
can show that th e ion waves are stable: the coupling between C1 and C 2 only 
leads to a frequency shift. Proce eding in th e same way as in the first cas e we 
can investigate the stability of various kinds of nonlinear periodic low­
amplitude plasma waves in a magn etic field. An investigation of this kind has 
been carried out for the case of Alfven waves [21J. It is well known in mag­
netohydrodynamics (not necessarily only for an incompressible fluid, but for 
a gas as well) that the Alfven waves are exact solutions for the nonlinear equa -
tions. Hence it might be thought that these waves could exist indefinitely 
without change of form. Analysis shows, however, that the Alfven wave de­
cays into two waves: an Alfven wave and a slow magnetoacoustic wave (or a 
fast magnetoacoustic wave and a slo.w ma gnetoacoustic wave). The growth 
rates for the decay instability are proportional to the first power of the ampli -
tude of the initial nonlinear wave; thus, a low-amplitude wave can persist for 
a long time without decaying. 

I\ I\ 
A more exact investigation of the equations Lo cp = 11 cp which arise in 

the analysis of the decay instability shows that the form of the dispersion rela -
tion provides a means of telling whether the correction to the frequency will 

be imaginary ( instability) or real ( frequ ency shift). If !no I> I Q1 I , IQ 2 I, and if 
the decay conditions (53) and (54) are satisfied the initial wave characteri zed 
by frequency Oo is unstable. It will be shown below that the decay instability 
plays an important role in th e theory of collisionless shock waves, a subject 
to which we now turn our attention. 

§3. Shoc k Waves in Collisionl es s Pla s ma s 

A survey of the voluminous lit eratur e on colli sionless shock waves that 
has appear ed in the last several years indicate s th e existenc e of complet e ly 
different, and even contradictory, opinions on this subje c t. As a first approxi­
mation we might divide th ese opinions into two classes, each class being 
characteri ze d by an opposit e point of view: 

1. Shock waves in which th e thickness of th e shock front is appr eciably 
smaller than the mean fre e path do, in fact, exist and all phenomen a 
that occur within the front can, in principle, be describ ed within the 
framework of th e laminar theory, i.e., order ed nonlinear oscillations; 

2. Th e anom alous-dissipation in a shock front is related to pla sma tur­
bulence. 
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In additi on, there is a third and negative point of view, i.e., that col­
lisionless shock waves do not exist at all. The arguments advanced by the 
proponents of the various theories contain many weak points so that it is dif­
ficult to make a choice between them. For example, in the turbulence ap­
proach th e instability mechanism responsible for the transition to the turbu -
lent state is not clearly indicated. On the other hand, th e laminar theory is not 
supported by unambiguous results; indeed, it appears that contradictory result s 
ha ve been obtained in many cases. One fee ls that a natural and reasonable 
approach to the theory of collisionless shock waves should start with a laminar 
theory, based on the notion of regular ·oscillations (this step makes use of the 
development in the preceding section). The stability of the solutions obtained 
in this way would then be examined. Finally, in th e unstable cases (and when 
no laminar solutions exist) the turbulence question would be exam ined. 

1. The laminar analysis can be formulated quite easily: it is sufficient 
to take account of the effect of damping on the steady-state nonlinear waves. 
In the absence of damping these waves imply reversible motion. Thus, the 
state of the plasma after th e passage of a solitary wave is found to be the 
same as it was before. It is clear that taking account of dissipation must vio­
late rever sibility so that th e plasma state after the passage of the shock wave 
must be different from what it was before. If the nonlin ear motion is described 
by the equations of ma ss, momentum, and energy conservation, in the steady­
state these equations must, by definition, connect states governed by the equa­
tions of the Hugoniot adiabat. If damping is neglect ed the plasma states 
before and after the passage of the solitary wave satisfy the H ugoniot conditions 
trivially. We now ask how the form of th e solitary wave chang es if dissipation 
is included. The state following th e passage of the solitary wave must be dif­
ferent from the original state, and this diff erence is obviou sly determined by 
the dissipati on mechani sm and the mag nitude of the dissipati ve eff ects. 

On the other hand , th e Hugoniot conditi ons do not depend on di ssipation. 

In the analy sis of th e thic kness of a shock front in ordinar y gas dynamics this 
apparent paradox is resol ved by saying that the shape of the tran sition lay er 
(thickness) depends on th e viscosity, thermal conductivity, and so on. In a 
collisionless plasma, howeve r, th e "thickn ess " o f a solitary wave ( for sma ll 
dissipa tion) i s specifi ed ind ependently of the Hugoniot adiabat, by the dis­
pers ion properties. The resolution of thi s apparent paradox li es in th e fact that 
the plasma is in a "perturb ed " state after the passage of the solitary wave: the 
plasma supports int ense oscillations whose contribution to the momentum and 
energy flux must be tak en into acco unt. This pictur e implies that regular os­
cillations of finit e amplitude must grow sponta neously within the shoc k front. 
It is well known that the thickn ess of a weak shock front in ordinary gases is 
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appreciably greater than th e mean free path. Bec ause of this circumstance it 
is possible to investigate the structure of the shock front using th e gas-dynamic 
equation s with dissipative effects included. 

We start our analysis with shock waves in a plasma in a magnetic field . 
In a collisionless plasma in a magnetic field in which th e mean free path is 
appreciably greater than the mean ion Larmer radius the formal gas-dynamic 
description applies (for motion across the lines of force) within spatial regions 
smaller than the mean free path. The only requirement is that all quantities 
must not vary significantly over distances of the order of the Larmer radius. In 
analy zing the structure of a shock front propagating across the magnetic field 
in a collisionless plasma we shall assume that th e Larmor radiu s is small com -
pared with any characteristic dimension in the front, noting that this condi­
tion imposes a limitation on the wave amplitud e. Consider a cold plasma 
(p « H2/81r). The first damping mechanism we shall examine is Joule heat­
ing due to collisions between ions and electrons ( as we shall see below, the 
actual magnitude of the damping is of purely academic interest in the 
present case). Our problem now is that of finding a set of differential equa­
tions for the quantities that characteri ze the plasma and the self -consistent 
electromagnetic fields within th e shock front and solving thi s set. We intro­
duce a coordinate system in which the wave front is at rest; the magnetic field 
is along the z -axis and the zy-plane is the plane of the front. The el ec tric 
current is carried by the electrons in the y-direction (Fig. 13) and the electron 
inertia will turn out to have an important effect on the structure of the front. 
For reasons of simplicity we assume that the neutrality condition is satisfied 

/1 
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Fig. 13 
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inside the front ni = ne, where ni,e is the number density of the ions (elec­
trons); this assumption is iri accordance with the analogous problem on un -
damped nonlin ear waves propagating across a magnetic fi eld that was con -
sidered in §2. 

The quantities that define the plasma and the fields are as follows: n; 
Hi v is the plasma velocity in th e direction of propagation of the wave; Vy is 
the velocity of the electrons carrying the current; Ey is the electric fi eld along 
the y-axis (the Ex component of the field does not appear in the equations be ­
cause of the neutrality condition). For these six unknown quantities we have 
six equations: a) the equation for the conservation of particle flux; b) the 
equation for the conservation of mom entum flux; c) the equation for the 
conservation of energy flux; d) the equation of motion for the electrons in the 
directi on in which electrical current is transported, the y-axis; e) and f) the 
Maxwell equations for the appropriate components of curl E and curl H. Th e 
original system of six equations can, after some simple tran sformations, be 
reduced to a second-order differential equation for one of th e variable s, say H. 
However , since the gas -dynamic approximation itself only holds for weak 
shock waves, the equations can be simplified at the outset. In a weak wave 
propagating in a cold plasma the plasma pressure differential will be negli -
gibly small compared with the magnetic pressuredifferentialp/H~« (H-H 0)/H 0• 

The equation for conservation of momentum flux can then be used to express 
the plasma velocity v directly in terms of Hand there is no subsequent need 
for using the energy-flux conservation equation since p does not appear in the 
rem aining equations (the initial set of equations has been separated). When 
these approximations are introduced the equations become 

d 
- nv = 0 dx ' 

d ( Mnv2 H2
) 

dx -2- +&t = O, 

dvy e -
mnv dx = - enEy + c nvH - vmnvy, 

dEy - O 
dx - ' 

dH 4nne 
dx = -e- Vy. 

(6 1) 

The last term on the right side of the electron equation of motion denot es the 
friction force exc ited on the elec trons by the ions (ii is th e mean electron -ion 
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c_o~ision frequency n < Vea > , where n is the ion number density, 0 is the col -
ll s10n cross section. and v e is the relative elect ron- ion velocity; "jj can be re -
garded as approximately constant within the front in a wea k shock); M and m 
are the ion and electron masses. 

Eliminating all variables except H we reduce the set in ( 61) to the fol­
lowing differential equation: 

Here , Ho i s the magnetic field in the plasma before passage of the shock 
(for x->- ..,,; no is the unperturbed ion number density (electron); u is the 
velocity of the shock wave with respec t to the unperturb ed plasma; 

2 mc2 c2 

a = 4rcne2 = -2 · 
Wo 

( 62) 

wave 

If the friction term is elim inated this equation is reminiscent of Eq. ( 31). The 
only differ ence is that the present equation is limited to low amp lit udes . Equa­
ti on ( 62) describes an anharmonic oscillator with friction; H plays the role of 
the generalized coordinate and x plays the role of the tim e. 

The shape of the potential well is given by 

V(H) =- I (H - H)2 [( H + Ho)2 - 1] 
2 ° I 6rcn0Mu2 

(63) 

V(II) 

Fig. 14 
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Figure 14 shows the form of V(H). When 

H V H~ H = H* = - -f + 8nn 0M u2 + 4 

V(H) reac hes a minimum. Usin g the analogy with the oscillat or case it is a 
simpl e matte r to estab li sh the profile of H insid e the shock front ; H oscill ates 
about the va lue H*, with an amplitud e that is damped until H = H* , which 
corresponds to the magnet ic fie ld behin d the shock front. If Ho is to correspond 
to the minimum magnetic field in th e wave, i. e . , in order for V(H) to have the 
form shown in Fig. 14, th e condition u2 > H~/41rn0M must be satisfi ed. When 
ii_. 0 the maximum amp litud e, reached at the end of the first half cycle, is 

H max = 4u -V nn 0 M - H 0 • 

Th e explicit form of H(x) cannot be found; however , if th e dam ping per 
period is sma ll it is possible to use a simpl e approximate method - the so-call ed 
met hod of slowly varyi ng amplitudes, in which averages are t aken over the 
fast oscillations. In the absence of friction th e mot ion of the "particle" in the 
potenti.j.l well is determined by th e single constant c , which represe nts the 
total energy of th e particle (cf. Fig. 14). Then, the inverse functional de ­
pendence of x on H reduc es to the qua drature 

5 
dH + _!__ 

V(H - Ho)2[1 - (H-I-Ho)2] - a 
!6:rtn

0
Mu 2 + C 

(64) 

Suppose that th e solut ion of th e frictionl ess problem is H = cI> ( x, C). Using th e 
method of slowly vary ing amplitud es we can seek a soluti on (taking acco unt 
of frict ion) in the form H = cI> (x, Cx), where C is now assumed to be slowl y 
dim ini shin g funct ion of x (as a consequ ence of the "di ssipation " of energy) . 
When averages are taken the dependence of C on x is giv en by the equat ion: 

de 
di= 

cJ>. vs v(<I> - H )2[1 - (<I>+ Hol2] -1-cd<I> 
u O 16:rtn Mu 2 

cJ>, 0 

(q> + Ho)2] + c)-1 d<I> 
16:rtn0Mu 2 

(65) 
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Here, cI>1 ,2 represe nts th e two positiv e roots of the equation 

( 66) 

which are la rger than H0• The problem is thu s reduced to solving Eqs. ( 64) 
and ( 65). When x....., co we hav e as a boundar y condition H-> Ho, dH/dx ->0, 
i. e ., C-> 0. Both equation s have simp le asymptotic solution s for small C. 
Thu s, cI>(x,0) is of the form 

<D(x,O)~H 0 [1 + 2( cJt 2 -l)sh 2 ~ -Vc4t2 - 1], 

which obviously coincides with th e profile of the low-amplitude soli tar y wave 

( 

4:rtMn 0u 2 )½ ( cf. §2) where cv% = H~ , the magnetic Mach number. When 

C -o , Eq. (65) becomes 

dC 4 v --~--- · 
dx 15 u 

whence we find 

His (a!lt - I )3 

v=c In ::---:--;:== = 
Ho V a!ft2- J 

C In v=c ~ - _i__ v 8H6 (<!lft - 1)3 x + const. 
Ho V a!ft2- I 15 u 

(67) 

(68) 

When C is lar ge , in which case the amplitude of the oscillations is reduced 
appr eciab ly compar ed with the initial oscillation, the soluti on is a damped 
sinuso id 

V 

H - H* ~ e" x sin ( V c4t - 1 ~ ) . 

The profile of H insid e th e shock front ca n be described as follows 
(Fig. 15). There first app ears in the unpert urbed plasma a solitary wave , at 
the cre st of which th e magnetic fie ld reaches its maximum value; as a re­
sult of irr eversi ble dissipation (friction) the sta te of the plasma after the pas­
sage of this wave is somewhat different from the initial stat e . At a dista nce 
of order 
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fl 

Fig. 15 

6 :=::::: a In _u V Q/J,t - I 
V o4t I va (69) 

behind the first wave there is a second wave, and so on. If one is not in­
terested in the exact structure of the oscillations in the shock front and con -
siders averag es over distanc es greater than o, the quantity o can be taken as 
the effective thickn ess of the shock_ front which conn ects the two plasma 
states; the unperturbed state (befor e the passage of the wave) and the perturbed 
state (modulated by intense oscillations); obviously the contribution of those 
oscillations must be ta ken into account in computing the conse rvat ion relations 
at the jump. In this sense the damping is rea lly academic since the expression 
for o ( 69) ( width of the shock front) contains the dam ping in the argum ent of 
the logar ithm [22]. 

The damping of the nonli near waves behind the shock front proceeds in 
the following way. The amplitude diminishes gradually in the sequence of 
solitary waves and the spacing between neig hborin g peaks in the magnetic 

a 
field is reduced to ~ • with the sequence of peaks and valleys becom -

o4t' - I 
ing a damped sinusoid. Th e total damping length is of order 6 

(70) 

This formula does not apply unl ess the Mach numbers are c lose to unity since 
v will be changed within the shock front. However, 6 ca n be estimated using 
the simp le expression u/< v >, where < V> is th e mean frequency of e lec tron-
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ion collisions. Expressing quantities in term s of the mean free path>-.;= ve/ii 
(Ve is the me an relative velocity of the electrons with respec t to the ions) we 
find 

y HZ m !),,_,...., -- ·-/1, 
BnnT M ' 

(71) 

whenc e it is evident that th e collisional damping length corresponding to the 
present approximation can be appreciably smaller than the mean free path (if 

8::r iZ; «: 1 ) . This result is a reasonabl e one because th e e lec tron tern -

perature is increased by the Joule heating and the electron relaxation time 
i s generally much smaller than the ion relaxation time beca use the electron 
velocit_y is high er . The ions and electron temperatures will be equali zed 

Fig. 17 
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when the oscillations inside the front are dam ped , at distanc es of order 
>..(M/m)112. 

There is anoth er limitat ion, in addition to th ose noted above , when high 
Mach numbers are consider ed. Although th e plasma may be cold in th e un -
perturbed stat e, it ultimately becomes so hot that the elec tron Larmor radius 
becomes comparable with the characteristic wave length c/w0• This situation 
arises when the elec tron pressure becomes comparable with the magnetic pres ­
sure nT - H2 /8rr. On th e other hand, th e behavior in the ini t ial stages will 
be of the sam e genera l nature as that desc ribed above for reasonably large 
Mach numb ers. The oscillatory solution for the pro file within th e shock front 
as seen in the phase plane (H', H) will exhibit th e patt ern shown in Fig. 16 
(this is to be compared with th e corresponding integral curves in th e absence 
of dam ping shown in Fig. 5). 

It is instructi ve to establi sh th e relation between the solution obtained 
above for a collisionless plasma and the familiar expression for the shock front 
obtained in plasma mag netoh ydrodyn am ics for th e analogous case of a wea k 
wave propagating across a magnetic fie ld 

ti,_, 11,n 
u (a4t - !) , ( 72) 

where 11m i s the so-called magnetic visc osity ( 11m = c2/4rro, a = ne2/ mv). 
The point H = H* is a singular point of the equation (62). Up to now, in 
trea ting collisionless plasmas we have beentac it ly a$suming that the damping 
[last term in Eq. ( 62)] is small and that the point H* is automatically a 
focus. However, in a dense plasma the singularit y at H* become s a node (Fig. 
17) when 

_c_ < c2nzv.J Hi • 
Wo 4nne2u · J'6 (H* - H0)

11
• • 

In contrast, in th e limiting case in which 

C c2nzv 
~ « 4nne2 

we obtain th e familiar hydrodynamic profile, determined by the mag netic 
viscos ity. The thickness of the shock front is then give n by Eq. (7 2). 

(7 3) 
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2 . What effects can be expected from the small "collisionless" damp­
ing due to those particles whose velocities are approximately the same as 
the velocity of propagation of the shock wave [14, 23]? The damping is es ­
sentiall y due to the acquisition of energy by the ions reflected from the poten -
tial barrier in the shock front (Fig. 18). The magneti c field is not important 
in such a reflection if the ion Larmor radius is appreciably greate r than the 

c I 
characteristic scal e size of the wave · 

Wo o4t- J • 

The greatest numb er of reflections occur at the first solitary wave (i f 
collisions and the "turning" effec t of th e magnetic fiel d are neglected, 
reflec tions occur only at the first solitary wave). It is difficult to treat the ef­
fect of ion reflections quantitativ ely and we shall not attempt to do so (this 
calculation is given below for the simp ler case of a wave in th e absence of a 
magne tic field). 

We wish to point out a curious acce lerati on mechan ism that operat es on 
certai n ion bunches in such a shock wave. Ions whose velociti es are very clo se 
to th e velocity of the shock wave will have small Larmor radii. Upon being 
refl ec ted from th e potential barrier they are imme dia tely "turne d" by the 
ma gneti c field and reflect ed again; this process occurs several tim es. After 
severa l reflection s (Fig. 19) these ions acq uire a very high velocity in the y­
directi on (in th e plane of the front and transv erse to H). However, thi s veloc ­
ity cannot become arbitrarily larg e beca use as Vy increases the Lorentz 
force (e/ c) vyH becom es impo rtant in the region of the barrier; ultimately 
thi s force beco mes greater than the "reflection" force -e 'il cp, and the ion passes 
through the barrie r. The maximum energy of such an ion is of order (M/m) • 
Mu2 /2, where Mu2 /2 is the mean energy of th e ordered mot ion exec ut ed by 
an ion in these oscill ations. 
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Another possible mechanism for collisionless damping is represented by 
any instability that tends to convert the energy of the ordered oscillations into 
energy of random motion. Here we shall make use of the results of the earlier 
sections. The most obvious instability candidate for a nonlinear wave 
in a magnetic field is the two-stream instability, which can arise when the 
mean ordered velocity of the electrons (with respect to the ions) is greater 
than the mean thermal velocity ( v0 > ,/T/m). This condition is satisfied for 
waves in which the Mach number is greater than 

c%*::::::: I + : ( sn;;t )'1. 

[cf. Eq. (50)]. Physically the instability means that electrons moving with 
respect to the ions are not only retarded by ordinary collisions [the last term 
in Eq. ( 6 2)], but are also retarded by a specialized frictional force of col -
lecti ve nature -the coherent emission of plasma oscillations as a consequence 
of the instability. A rough estimate of the magnitude of this effect can be:made 
on the basis of the following considerations: in the expression for the electrical 
conductivity o eff ,.., ne2 /mv the quantity v is now taken to mean the reci ~ 

~----

I 
I 

Fig. 19 
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procal time for the loss of electron energy by virtue of the instability. This 
can reasonably be of the order of the effective growth time for the instability, 
that is to say, 

ne2 

Oeff ,...,~· mo,0 
(74)* 

If the condition c% > <JIit* is satisfied the behavior at the leading 
edge of the shock is determined specifically by this damping effect. In the 
picture of the effective potential well V(H) the structure of the front will be 
qualitatively that shown in Fig. 20. The sharp retardation of the particle at 
the beginning is due to the effect of the instability. Then, as the amplitude 
of the fluctuation decreases ( as the temperature rises) the instability is sup­
pressed and further retardation is inhibited [17]. The main point here is that 
the damping of the oscillations in this region can be anomalous because of 
the decay instability. 

3. Up to this point we have been considering the structure of a wave 
propagating in a cold plasma at precisely right angles with respect to the mag­
netic field. The earlier analysis can now easily be generalized to the case in 
which propagation is not exactly perpendicular to H. Dispersion effects are 
extremely sensitive to the direction of propagation. If the wave does not pro­
pagate exactly perpendicularly the dispersion equation relating wand k is of 
the form given by Eq. ( 20) of § 2 and the characteristic dispersion length is 

If 

Fig. 20 

* This means that when the instability condition v0 > ,/T /mis satisfi ed we hav e 
an anomalous electrical · resistance leading . to anomalous dissipation. This ef­
fect has, in fact, been observed experimentally in high-amplitude waves in a 
plasma in a magnetic field [24]. 
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(C/o 0) 0 (when ./m/M « 0 « 1) . The electron inertia is not important in 
these waves, but it is now important to take account of the fact that the plasma 
is a gyrotropic medium . The starting equations for thi s ca se 

M !!:'!.__ = eE -+-~ V · H 
dt ' C ' 

!7 + divnV=0, 

E e H O on d. 0 -e + 7v x = , ar+ tvn v = , 

I iJH 
rot E = -cat ' 

4rcen rot H = -- (V - v) 
C 

can be reduced to th e form 

dV _ _ V H 2 + (HV ) H 
Q dt - 81t 41t ' 

~~ + div eV = o, 

iJH = rot V X H - Mc rot dV 
~ e ~ 

(75) 

The term(Mc/e)rot (dV/dt) is responsible for the deviation from linea r 
dispersion at large k. The stati onary soluti on of thi s set of equation s (in which 
we must in clude the Joule dissipation as in the ea rli er case ) describes the 

H -

Fig . 21 
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profil e of the shock wave. When ./m/M « 0 « 1, th e equation describing the 
magnetic field profile in the wave is [17, 25] 

(7 6) 

Here, both the dissipation length [c/ w0 i s replaced by (c/0 0)0} and the nat ure of 
the dispersion (w/k increases as k increases) are changed. Compariso n of 
Eq. ( 76) with Eq. ( 62) shows that the sign of the "effective mass" ha s been 
chang ed. If the damping term ex dH/dx is neglected Eq, (76) describes a non­
linear periodic ste ady- stat e wave . The solitary wave (Fig. 21) is a particular 
solution, but in this case this solitary wave is a rarefac tion wave. The profil e 
of the shock front will be of the general form shown in Fig. 22. It is curious 
to note that the magn etic field insid e the shoc k now approaches a minimum 
value which i s small er than the magnetic field in the unperturbed plasma. 

The damping length due to the usual frictional force is of order 

11 ,..._, 1i,8 (__!!:_) 'I, . 
81tnT 

(77) 

The principl e difference from the preceding case is the fact that the leading 
edge of the oscillation front is not sharp . For thi s reason it might appear that 
we are not dealing with a collisionl ess shock because Eq. (77), which giv es 
t. (the damping length),contains X., the mean free path . However, the disper­
sion relation for these oscillati ons w(k) is precise ly of the class in which the 
nonlin ear periodic waves are unstabl e against decay [26] (cf. §2) . As a con­
sequence of the decay instability the nonlin ear orde red oscill ations are 
damped much more rapidly than is indicat ed by Eq. ( 77) since their ene rgy is 
convert ed into th e energy associated with a broad noise spectrum . The damp­
ing length t. obtai ned in this way can be identifi ed with the thicknes s of the 
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shock front . To find l::,. we must be able to determine the noise level that 
arises as a result of the decay instability and the feedback effect of this noise 
on the background. This problem, which i s obviously a very complicated one, 
has not yet been solved (an attempt to estimate l::,. has been reported in [8]) . 
It is reasonable to assume that l::,. is of the order of several oscillation lengths 
(the problem has no other charact eristic sq.le length other than the wavelength 
of the oscillations) . 

Thus, the analysis of the laminar structure of nonlinear oscillations in -
side a shock front reduces to two different cases (Fig. 23): l)The case in which 
the dispersion curve w(k) is of the form denoted by 1 (waves perpendicular to 
H in a cold plasma); in this case the leading edge of the front is sharp ( all 
phenomena start with solitary waves)and one can speak of a collisionless shock 
wave even in the laminar theory; 2) the case in which the short waves have a 
higher propagation velocity than the long waves (th e curve denoted by 2). In 
this case the leading edge of the wave front becomes smeared out because the 
short waves outrun the front. Anomalous damping is required in order for a 
collisionless shock to exist in this case. The origin of this damping can be the 
decay instability (which is inherent in a spectrum of the type denoted by 2). 
The plasma becomes turbulent as a result of the development of this instabil­
ity. The evaluation of the shock thickness is simple in the first case; in the 
second case, however, a quantitative analysis is extremely complicated. 
Nevertheless the mechanisms which are important in this case are already 
qualitatively clea r. 

There are other examples which can be related to one or the other of 
the two cases that have been analyzed. For instance , a shock wave propagat ­
ing across a magnetic fie ld in a high- pressure plasma (p ;); H2 

/ 81r) is to be as-

z 
I 
I 
I 
I 

' ----! -

Fig . 23 
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sociated with the second case noted above since the corresponding dispersion 
relation ( cf. § 2) can be classified as a type 2 relation. The ion -acoustic 
wave in a two -temperature plasma (Te» Ti) is characterized by a type 1 
spectrum so that the question of a collisionless shock wave can be resolved 
within the laminar formulation. 

4. In order to establish the profile of the shock front in the ion -acoustic 
case we proceed by analogy with the preceding analys is . In the absence of a 
magnetic fi eld nonlinear steady-state oscillation can be excit ed when Te» Ti· 
If damping is neglected th e equation that describes the potential profile of cp 
in this wave [cf. Eq. (37)] is 

) 
= _ dV (<p) 

d<p ' (78) 

where V( cp) is the effective potential energy. We shall asume that th e usual 
dissipation due to the ion-i on collisions is absent but shall take account of 
the reflection of ions from the leading edge of the front; this process plays 
the role of a collisionless dissipation mechani sm . 

The structure of th e collisionless shock wave that arises under these 
conditions can be described by the following simplified pic ture. In the ab ­
sence of any dissipation we hav e a solitary wave, which is represented by a 
symmetric potential barri er. However , there always are ions that are reflected 
from the moving potential barrier ( even if the number of such ions is arbi -
trarily small) causi ng an asymmetry to arise; beyond the barrier there are 
periodic oscillations . The net result is a peculiar kind of shock wave which 
connects two different plasma states: the unperturb ed state (i n front of the 
shock) and a stat e with intens e ordered oscillations (behind th e front). A cor­
rect ttshock adiaba t " must tak e account of the additional contributions to the 
energy and momentum flux es associated with these ordered oscillations be­
hind the front. It should be noted, however, that the distribution of energy 
bet ween the therma l motion and th e oscillations depends on the actual col­
lisionl ess dissipation mechanism . The shock profile can be determined if th e 
numb er of reflected particles is small . The potential profile in the wave is 
shown in Fig . 24. In the absence of dissipation <'Pl= C/J2 and ;\. = co and we have 
the symmetric solitary wave . 

If ion reflec tions are tak en into account the potential in region I ( cf . 
Fig. 24) is described by an equation which differs from Eq. ( 78) by the pres­
ence of additional terms on the right side: 
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-,===u=-=- + 2-4rrn 0ef (cp). -v u2
- 2: 

The first term corresponds to subtraction of the reflected ions from the total 
number of ions n0; the second term represents the contribution of th e refle cted 
ions. The quantity n0f(cp) is the total density of the reflect ed ions at a point 
characterized by the potential <P(the actual form off can be found easily if 
the unperturbed ion velocity distribution is known). 

The potential jump <Pl is associated with ions that are reflected from 
the potential barrier and escape to infinity; in the case being considered here, 
in which the number of reflected particles is small ( f « 1), the potential jump 
rp1 is proportional to f. However, q,2 will be proportional to the square root of 
the number of refl ected particles so that q,1 « q,2• The plasma state behind 
the front (region II) is characterized by the quantities <Pmax and <Pz which deter­
mine the amplitude of the oscillations and their wavelength A; Eq. (78) holds 
in this region. 

By solving the potential equation in regions I and II taking account of 
the continuity requirements on rp and d q,/dx we can find the potential profile. 
If the analogy with the motion of a particle in a potential well V(rp) is again 
invoked it can be shown that the effect of the reflected ions is essentially to 
make the total energy C negative. This leads to periodic motion (a periodic 
structure behind the shock front). 

The reduction energy C is proportional to the number of reflected ions 

J[ I 

Fig. 24. 
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<Pmax 

- C ,_, J f (cp) dcp. 

Since the potential energy V( cp) varies quadratically at small rp th e turning 
point cpz is proportional to the square root of the energy -c 

and the oscillation period increa ses logarithmically as the energy is reduced 
l 

A,_,ln _ C' 

Thus, the minimum value of the potential behind the front rp2 is 
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(79) 
<p~ = -=-y-;=w1t=2~=='(=1 ( ~ T'/( <p) d<p r ( o11· - fl 

The value of "'max is very close to the corresponding value in a solitary wave 
with the same Mach number. 

The wavelength at the front is [27] 

A-- A ( - -=-y,:;~=r=-=2= =1 (80) 

where A - 1. 

5. We have not yet encountered cases in which a laminar analysis 
of the shock front is not applicable. This situation arises in the examples that 
ha ve already been conside red if th e amplitud es becom e so high that steady-state 
nonlinear waves cannot be sustained. We first consider the case in which the 
shock wave propagates across a strong magnetic field in a cold plasma . At low 
values of the Mach number we know that ordered oscillations are susta ined 
within the shock front. The ordere d oscillatory struc ture is destroy ed when 
the magnetic field in the wave becomes twice as large as the initial magnetic 
field. Indeed , it follows from § 2 that a solitary wave is not formed at these 
amplitudes (which correspond to Mach number s grea ter than 2); furthermore 
it is impossible to formulate a steady- state nonlinear flow with a unique 
velocity, that is to say, a flow in which th e ion velocity has a single value at 
a given point in space. Physically this means that the wave breaks as soon as 
the amplitude reac hes a cricital value (Hmax = 3H0) . There is then a point 
in space at which the fast ions overtake the slow ions (Fig. 25) , and the velocity · 
profile becomes triple-valued at this point. 



84 R. Z. SAGDEEV 

tr 

Fig. 25 

It is interesting to note that th e analogous effect has been studi ed quite 
throughly in th e theory of finite-amplitude waves on the surfac e of a heavy 
liquid in a channel of finite depth. The latt er case also give s rise to nonlin ear 
stead y- stat e solitary waves and periodic waves and the se waves also break at 
high amplitudes. It i s cleat that any rigorous mathema tical analysis of the 
breaking phenomenon would be ext reme ly difficult. We shall content our­
selves with a qualitativ e analysis of some of the im portant feature s which are 
analogou s to those in waves in a li quid. 

The basic problem is to ascertain whether brea king means tha t the 
plasma moti on enter s a stea dy- stat e regime or whether the transition region 
(shown cross-hatched in Fig. 25) continues to spread without limi t , as is the 
case in an ordinary colli sionless gas. In th e ca se of surface waves in water, 
breaking is follow ed by a stea dy- stat e fl ow called a water surge or •bor e : 
characterized by a tran sition reg ion of finite thi ckness; this is usually re­
placed by an idealiz ed mathematical surface which divides th e two plan e 
parallel flows. The appropria te conservation laws must be satisfied across this 
surfa ce . In some sense the bore is the anal og of the shock wave. The sta -
tionarit y of the width of th e tra nsit ion laye r arises physic all y because th ose 
parts of the profile which move ahead in brea king ultimat ely describe an arc 
and fall under the effec t of gravity, becoming "mix ed" with the portions that 
are at rest . In the plasma the role of gravity is played by the magn etic field, 
which forces the ion to gyrate . As long as the ion velocit y distribution is far 
from Maxwellia n the pla sma states on both sides of the transition region can be 
connect ed by the conservation laws for mass , momentum, and energ y; by 
the energy of th e thermal motio n we are to understand (M/2 ) (v-v) 2 (th e bar 
mea ns an average over th e veloc ity distribution). The width of the tr ansition 
regio n can be estim ated as the radiu s of curvature of the ions after breaki ng oc -
curs in the ma gnetic field [22). Inasmu ch as the peak velocit y v '> H/t41rQ, 
in a wave charac terized by a Mach number greater than 2 the width of the 
transition la yer (th e width of the collis ionl ess shock wave) i s of order 
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( 
r.2 _ 4.rt,'le2 

) ~,o - M . (81) 

The multiv elocity flow with velociti es perpendicular to the magnetic 
field, which arises after breaki ng, is nec essarily unstable, For simpli city let 
us consider a double-hum ped ion distribution with a velocity difference be­
twe en the humps greater than ,/T/M; thi s distribution results in an instability 
with excitation of waves characte rize d by wave vec tors almost parallel to the 
beam velocity. A bore also exhibit s an instability of simil ar natur e ( opposed 
flows); this i s sim ply the instability due to th e tang ential discontinuity 
betwe en th e incid ent jet and th e surfac e of a liquid at rest. 

If th e characteristic dim ensions of the regions of multi velocit y motion 
are appreciably greater than the wavelengths of the instabilities that ari se it 
is valid to mak e use of the sta bility analyses for a uniform plasma. For ex­
ample, in the case of two opposed ion flows moving acr oss a magneti c field 
with velocities v0 and -v 0 the dispersion equation is°[28] 

2 
- (w - kv 0) 2 + (w + kv0)2 • 

( 82) 

Th e maximum growth rat e is of order ( CL/Hi WH:e)112. When v0 t: H/./41rnM the 
characteristic wavelength of the instability is of order c/w 0 • Thus multi velo­
city motion across a magnetic field is unstable. 

On the other hand, if the plasma is hot it is nec essary to take account of 
th e velocity spread and the dispersion equation given in ( 82) no longer holds. 
When vn "' H/~ the max imum growth rate for the instability is of orde r 
Wtti and th e corresponding wavelength is of order c/n 0 • These quantiti es 
then characterize the thickn ess of a shock front in a strong magnet ic field.• 

• A numer ical ca lcula t ion for one-dimensional, high-am plit ude pla sma mo­
tion across a magnetic fie ld in which the flow becomes multivalued ( and un -
stable) appears in [29J. In part icul ar, when o4'f= 5.8 the effect ive "mi xing 
length" ( the thi ckness of the front) is found to be 3 .4 ri. 

Kantrowit z and Petschek [7] have formul ated a phenom enological th eory 
for the turbul ent structur e of a shock front propagati ng across a mag netic fie ld. 
These authors assume that some unknown plasma instability gives rise to a 
broad spec trum of waves at the very beginning and that the int eractio n between 
th e variou s modes is responsibl e for the transport of ene rgy and mom entum. 
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6. In the foregoing we have considered the question of collisionless tur­
bulent shock waves in a plasma with propagation occuring across a strong mag­
netic field. A magnetic field parallel to the plane of the shock front confines 
the hotter particles and inhibits the expansion of the transition layer between 
the unperturbed cold plasma ( in front of the shock wave) and the heated 
plasma behind the wave. A number of authors have also discussed the pos­
sibility of collisionless shock waves in a plasma with no magnetic field. It is 
proposed that the mechanism responsible for inhibiting the expansion of the 
transition region in this case is the two-stream instability [30]. This approach, 
however, does not take account of the thermal spread within each of the beams. 
A more rigorous analysis, which includes the thermal motion, does not give 
an instability for Mach numbers ranging from unity up to approximately 
(M/ mf 2 if the electron temperature is comparable to or smaller than the ion 
temperature (Mis the ion mass and mis the electron mass; cf., for exa mple, 

[31]). 

This problem does not arise in a two-temperature plasma (Te» Ti) 
since it is possible to formulate a laminar analysis . However, another a p­
proach is needed when clft > 1.6, because of the breaking phenomenon. One 
possible method is based on the familiar velocity anisotropy instability. 
When the faster ions from the region behind the front enter the unperturbed 
plasma in front of the shock the ion velocity distribution in this region becomes 
anisotropic. This plasma state is known to be unstable and random flue -
tuations of the electric and magnetic fields arise . The thickness of the shock 
front in this case is then a quantity of the order of the mean free path of the 
ions with respect to scattering on these nonequilibrium fluctuations. To the 
degree that "rigor" can be achieved in the theory of turbulence, it can be said 
that this problem has been resolved in [27]. However, here we shall be con -
tent with some very qualitative physical estimates. 

Assume that H = 0 in the unperturbed plasma. Let ~snow try to under­
stand the physical meaning of the anisotropic instability in thi s case. We 
consider a plasma in which the mean particle energi es are different in the x 
and y directions [ex ,y == M (v - v)2, with e y > e xJ and introduce a perturba -
tion in the form of an arbitrarily small fluctuation of the magnetic field, as­
suming that th e field i s in the z direction (Fig. 26) . The anisotropy in the 
distribution can cause this perturbation to grow. Consider particles moving 
along the y-axis close to the point x0, where the magnetic field changes sign. 
Th ~se particl es _are subject to a Lorentz force F~ = (e/c) Hvy- Particles for 
which Vy> 0 will be pushed toward x0 and particles for which vy < O will be 
pushed away from x0• Thus, a concentration of particles with vy > 0 tends to 
build up near x0• This implies the appearance of an electric current jy- The 
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direction of this current flow is such as to increase the original fluctuation in 
the magnetic field and the ultimate result is an instability. However, we have 
not taken account of the stabilizing effect of the thermal motion along the 
x-axis, which tend s to inhibit the concentration of particles with the same 
sign of vy. In general, there is no instability if e == e . However, when 
: y > ex thi s inhibiting effect cannot quench the i~stabflity if the wavelength 
is long enough. The critical wavelengths for these perturbations can be es­
timated easily. We need only consider two forces: the Lorentz force, which 
ten_ds to move the system away from equilibrium, and the counteracting force 
which, for_ esti~a-tio~ purposes, can be taken to be th e pressure gradient along 
x. If the mstab1hty 1s to occur the following condition must be satisfied: 

(83) 

where oH and on are the fluctuations in magnetic field and density. On the 
other hand, oH and on are related by the Maxwell equation 

(84) 

I ' 

z 

Fig. 26 
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Writing oH and on in a form -eikx and using (84) we can write (83) as 

Q~ 2 2 
7 vu > kvx, 

whence, assuming that v~ and vy are of the same order, we find the charac­

teristic wave number k 

(85) 

where n~-= 4·rrne2 /M. The entire effect is obviously associated with the ions, 

that is to say, the ions carry the basic energy. 

Assume that a perturbation arises in some region of a collisionless 
plasma. In the absence of any confinement mechanism the perturbation will 
spread in the course of time because of the gradual loss of the faster particles. 
However, when these particles arrive in new regions an anisotropy is produced 
in the velocity distribution and this leads to an instability; the disordered mag­
netic field that results obviously scatters particles in much the same way as 
collisions and there is a possibility of propagation of a nonspreadingperturba­
tion which is. of the same nature as a shock wave, as in ordinary gas dynam­

ics. 

Now let us estimate the fluctuation oH in the nonlinear regime of the 
growing instability. It might be expected that the magnetic-field fluctuation 
would increase up to the point at which almost all of the surplus ion energy 
n6e: (due to the anisotropy) is converted into magnetic field energy(oH 2)/ 8rr 
(we assume for simplicity that ~e; - e: - T). Howeve r th e electrons, which 
hav e not been taken into account as yet, are found to have a quenching ef ­
fec t which holds (oH)2 to a rather low level. As soon as the mean e lect ron 
Larmor radius becomes of order :\ - 1/k , the wavelength of the pert urbation 
which characterizes the spatial magnetic inhomog enei ty, the electrons are 
frozen in the magnetic field . Any further increase in magnetic field requires 
an enormo us increas e in elec tron energy beca use of the conservation of the 
adiabatic invariant µ = mv1_/2H. Thus, it is reasonable to estimate cSH from 

the condition rHe - 1/k , thereby obtaining 

(86) 
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The ion scattering in this magnetic field is of a diffusional nature. The 
diffusion coefficient (in velocity space) can be estimated easily: 

e2 (6H) 2 -

D ,...._, M2 c2 • -k- V;. 
(87) 

Thus, we find the ion "scattering" time r - vffD and the corresponding mean 

l M c 
free path ,.._, r· vi,.._,-·~- These quantities then determine the order 

m ••o 
of magnitude of the shock thickness 

(88) 

The "rigorous"theory leads to the following results: 

C M i 
11,....., Ro· m · (al{- J)2 for M-1 < I; ( 89) 

in this theory the dependence on wave amplitude is also taken into account. 

A. similar analysis can be carried out for a plasma in which there is 
initially a weak magnetic field (H2 /81r « nT). Starting at H - oH , the shock 
front is compressed with increasing H [27, 32]. 

7. It thus appears that the general methods of shock-wave analysis can 
be applied far beyond the bounds of ordinary gas-dynamic theory, which is 
based on the notion of a mean free path with respect to two-particle collisions; 
in a rarefied plasma the primary feature is the existence of cooperative phe­
nomena-plasma oscillations. At the present time there does not exist a uni -
fied theory for plasma shock waves from which the results for particular cases 
can be obtained automatically. The varj.ety of effec ts associated with col -
lecti ve phenomena is fartoo l arge . In this review we have only summarized 
various limiting cases and approaches with which it possible to und erstand 
some of these new ideas and to compare them with ordinary gas dynamics: 
some of the se important features are the dispersion effects, the microscopic in -
stabilities, collisionless- damping.etc. Correspondingly, various limiting cases 
giv e rise to "scal e " lengths which charact e rize th e thickn ess of the shock 
front[the Debye radius, Larmor radius{C/n 0 ) M/m, and so on]. 

Unfortunately, at the present time almost no systematic laborat ory ex -
periments on shock waves in co llisionl ess plasmas hav e been reported. How­
ever , individual effects which constitute the basic ingr edients of the theory of 

collisionless shock waves hav e been experimentally verified in rece nt years. 



90 R. Z. SAGDEEV 

One indirect verification of the theory is furnished by the rapid initial 
phase of geomagn etic storms . As far back as 1955 Wilde conc luded that the 
rapid rise of th e earth's mag netic field (several minutes) in th e first phase of a 
magnetic storm could only be explained by assuming that solar flar es generat e 
shock waves in the interplanetary gas . Assuming that the ion density in the 
int erplanetary plasma n - 102 cm -3 and using Eq. ( 88) we obtain a shock front 
thickne ss of order 109 - 1010 cm which, for a velocity 108 cm/sec, yields a 
characte ri sti c time of one minut e. 
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