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1 Biography
Lev Davidovich Landau was born on January 9th, 1908, in Baku, which was
part of the Russian Empire at that time [1]. He received his bachelor’s degree
from Leningrad Polytechnical University (now St. Petersburg) from 1924-1927,
only a few years after the Russian Revolution. Due to political turmoil, he did
not receive a doctorate until 1934. In 1929, Landau was granted permission to
go abroad to Germany, where he met with many prominent physicists of the
time, such as Pauli and Peierls [2]. It was during that time, at the age of 22,
that he wrote his paper on diamagnetism. His later work focused on developing
a theoretical background for phase transitions, superfluidity of liquid helium,
and superconductivity. Besides his contribution to theoretical physics, his most
notable achievement was his famously difficult textbooks. Together with one of
his students, Evegeny M. Lifshitz, he co-authored this series of physics texts,
designed for graduate students. His life came to a tragic end after a car crash
in 1962; he survived but never recovered completely and died while undergoing
surgery in 1968.

2 Theory of magnetism up to 1930

2.1 Magnetism due to orbiting electrons
By 1929, the contributions to the magnetic properties of metals were believed
to be due to several effects: the contribution from the core electrons, and the
contribution from the conduction electrons of the atoms. In the following sections,
the quantum theory will be applied to conduction electrons. By 1929, people
had a good understanding of the contribution of the core electrons to the
magnetic properties of metals. If an atom (ion) had filled shells, its core electrons
exhibited a diamagnetism proportional to the sum of orbital radii. This result
was obtained by Langevin in 1905, who treated the electron classically. He
considered an electron as a point particle moving in a circular orbit. Electrons
moving in a circular orbit can be thought of as a point current; using the
definition m =

∮
IdA gives a result proportional to electronic charge and radius

squared. His result was improved on in 1920 by Pauli [3], who obtained, using
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his paper’s notation, χclassical = − η
6cLΘ2. Pauli’s values were η = e

mc , L =

NA = 6.022 × 1028,Θ =
∑
eR2, Z is the atomic number and R is the distance

of electron orbitals from the center of mass. This result is now better known
as χ = −ZiNA e2

6mc2 〈r
2〉, under the name of Langevin or Larmor diamagnetism.

For ions with filled shells, such as the halide ions and the noble gases, this
result gave fairly accurate predictions. On the other hand, if an atom had only
a partially filled shell, then a paramagnetism was observed. A theory explaining
this effect was developed in 1928 by van Vleck [4]. Using quantum mechanics
and perturbation theory, he predicted a contribution to paramagnetism from
the alignment of orbital and spin angular momenta with the external field.
This contribution was on the order of χ = 10−3, meaning atoms with partially
filled shells, where one of L,S is nonzero. This paramagnetism followed Curie’s
law by an elementary argument from statistical mechanics. Finally, conduction
electrons were believed to have no impact on the magnetic properties of a metal,
since, from a classical point of view, the energy of (almost) free conduction
electrons in metals depended only on their velocities squared, which meant that
∂F
∂H = 0, and the contribution to magnetism vanished [5].

2.2 Pauli paramagnetism
Pauli’s development of paramagnetism in 1927 and Heisenberg’s model of ferromagnetism
in 1928 were the first successful applications of quantum mechanics to the
contribution of conduction electrons to magnetism in metals. Although crude
approximations, they laid the basis for improved theories in the future [2]. Pauli
found his famous paramagnetism by considering the contribution of spin to the
energy of an electron in a magnetic field [6]. The crucial point was the application
of Fermi-Dirac statistics to the electron gas; the classical approximation was
inaccurate, since the gas was highly degenerate, and only electrons at the Fermi
level contributed to the properties of the metal. The usage of FD statistics
meant that the treatment of the problem was purely quantum mechanical, and
the effect was also purely quantum mechanical. The magnetization of electrons
in a magnetic field due to spin is given by equation 35, reproduced below

M = N
1

3

µ2H

kT

−F ′(α)

F (α)
(1)

Pauli uses µ =
√

3 eh̄
2mec

, (for spin 1
2 ) and defines F ′(α) = 2√

π

∫∞
0

√
xdx

ex+α+1 . Later
on in the same paper, it is shown that α = ω

kT , where ω is the chemical potential.
The susceptibility is then obtained by χ = ∂M

∂H . The values are on the order
of 10−6. This result, although completely ignoring lattice effects and electron-
electron interaction, was nevertheless an important result for identifying a paramagnetic
contribution from conduction electrons. As a result of the aforementioned assumptions,
Pauli’s results held fairly well for some the alkali metals; however, for Rb and Cs,
a diamagnetism on the order of the Pauli paramagnetism was not completely
ruled out. For Na and K, on the other hand, the measured paramagnetism
was greater than what was predicted [2]. At that time, it was not immediately
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obvious if this was a result of the oversimplified model or of a fundamentally
different phenomenon, but the results were fairly consistent, at least for alkali
metals. An interesting feature of this result was the temperature independence
of the paramagnetism; Curie’s law predicted the dependence of susceptibility
on the inverse temperature, which was not observed in metals. However, this
expression, although it explicitly depends on T, the ratio of integrals contains
the Fermi function, which results in a characteristic temperature TF , instead of
T. Another well-known form for Pauli paramagnetism is χ = µ2

Bg(Ef ), where
this relationship is more obvious. The equivalence of the two will be shown to
be equivalent later in this paper.

2.3 Open questions at that time
After the work of Pauli and Heisenberg, there were relatively few unanswered
questions, and there was no published work on fluctuations of electric and
magnetic susceptibility yet. However, one of them was the large observed diamagnetism
of certain elements. Bismuth, for instance, was observed to have a diamagnetism
on the order of 10−4, and there was no good explanation as to why that might be.
Experimentalists were not certain where the diamagnetism came from, because
it could be coming from either the free or from the bound electrons (that is, the
core), in the case of metals [7]. However, as mentioned previously, people believed
that the contribution of conduction electrons (considered as a free electron gas)
to the diamagnetism must vanish, and the core contribution did not completely
explain the strong diamagnetism of bismuth, for instance. There were arguments
trying to explain this anomaly using either the Langevin diamagnetism or effects
of the crystal lattice, but there was no treatment of it using the formalism
of quantum mechanics [8]. In summary, by 1929, the magnetic properties of
metals were still poorly understood in the context of quantum mechanics, and
experiments were only just beginning to reveal more about the electrical and
magnetic properties of metals.

3 Landau’s paper
Landau had arrived in Germany in 1929, at age 21, where Paul Ehrenfest
suggested the problem of diamagnetism to him. There was almost nothing
suggesting there was a diamagnetism missing besides the case of bismuth or
antimony. However, the understanding of magnetism was, except in the case
of Pauli and Heisenberg, was based on a classical treatment of the problem.
As mentioned previously, the assumption that there was no contribution to
susceptibility from conduction electrons was not even semi-classical, which led
Ehrenfest, among others, to continue working on diamagnetism [8]. Landau
published his paper before de Haas, Shubnikov, and van Alphen published the
results of their experiments [2], which will be discussed after the presentation of
Landau’s paper. This means that, curiously enough, oscillations in susceptibility
were predicted before they were observed, which is certainly uncommon. The
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paper was eventually published in 1930, although Peierls later recalled that
Landau had solved the problem nearly a year earlier. However, he first wanted
to discuss his result with Petr Kapitsa, who was much more familiar with
experiments and the limitations on, for instance, the magnetic fields realizable
in the labs of the time [9].

3.1 Short summary of the paper
The paper begins with a remark on the assumption of zero contribution from
conduction electrons; the author notes that the classical argument neglects the
quantum aspect of the problem, since there will be some discreteness in the
eigenvalues of an electron constrained to move in a plane [10]. He then defines
P,Q from the velocities of the initial Hamiltonian for an electron in a magnetic
field along the z axis.

v1 =
P√
m

v2 =
eH

cm
√
m
Q

It can be shown that [P,Q] = h̄
i , which means that eH

mc can be identified
with the frequency of a harmonic oscillator ω, meaning the problem reduces
to that of a harmonic oscillator in the xy plane. Note that due to symmetry,
the wave function separates into the xy component, which was shown to be
mathematically identical to the oscillator, and into the z component, of which
the last is identical to the wave function of a free particle moving in the z
direction. Making substitution in the wave function, ψ = e

−ieHxy
2h̄mc χ, it can be

verified that the Schrödinger equation will be independent of x as well, giving
an equation for χ as the product of e

iσ
h̄ , and another function φ(y), which is

only dependent on y. This last satisfies equation 13 in the text, which is given
below along with the full wave function ψ for clarity.

d2φ

dy2
+

2m

h̄2 [E − m

2

(
eH

mc

)2

(y − c

eH
σ)2]φ = 0

ψ = e
i
h̄ (pzz+σx− eH2c xy)φn

[√
eH

mc

(
y − c

eH
σ
)]

The first equation above makes it clear that φn is the nth Hermite polynomial,
satisfying the equation for an oscillator with ω = eH

mc , with the origin shifted by
c
eH σ. The next step is to find the density of states; this is trivial in the x and
z directions. Then, the crucial step is noting that the density of states in x is
proportional to dσ. Next, the author observes that since ψ is rapidly damped
in the y direction, we must have the wave function decay to 0 outside once we
are a distance c

eH σ away from the wall in the y direction, provided that we are
dealing with a very large container of volume V, as is the case with density
of states calculations. In this case, "far"means the argument of φn is far from
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0. This adds a constraint relating σ and the volume, and gives the number of
states per level n between p, p+ dp:

Rdp,n =
eH

4π2h̄2c
V dp

Once the density of state is determined, Landau proceeds to use the machinery of
statistical mechanics to obtain an expression for the free energy. As with Pauli’s
treatment, the usage of Fermi-Dirac statistics accounts for the degeneracy of the
electron gas. This results in an integral over the continuous pz variable and a
sum over the discrete n, resulting from the energies of the "oscillator". To make
progress, the summation is rid of using the Euler-Maclaurin formula for slowly
converging sums, which imposes the condition µH � kT , introducing µ =
2µB = eh̄

mc . The author also notes that even in high fields and low temperatures,
it is still possible for this approximation to be valid. It would require an inhomogeneous
field that varies more than the change between successive arguments near the
point where ω = nµH, since this is an argument of a decaying exponential
in the integral defining the free energy. In that case, even though the field is
large, the variation in field is larger and successive terms remain small. If these
conditions are not fulfilled, however, the problem would not be reducible to the
case of a linear relation between M and H, meaning that the magnetic moment
would be some complicated function of the field. Specifically, if µH � kT ,
to find the susceptibility, it would be necessary to take two derivatives of the
free energy with respect to the magnetic field; without the approximation, the
relation between the field and the magnetization would not in general be linear
in the field. To find the susceptibility in the strong field limit, one goes back to
equation 27 in Landau’s paper, which contains the full expression for the free
energy:

Ω = −kT
∞∑
n=0

∫
ln

[
1 + e

ω−(n+ 1
2

)µH

kT − p2

2mkT

]
eH

2π2h̄2c
V dp (2)

The full mathematical analysis of this expression is rather involved; in the end,
it reveals [11, pp. 207-210] that the free energy is periodic in H for strong fields.
However, in the weak field limit, the free energy becomes:

Ω = Ω0 −
µ2H2

24

∂2Ω0

∂ω2

From this equation, recalling thatM = − ∂Ω
∂H , and also thatN = −∂Ω

∂ω , we finally
have the result for the diamagnetism of conduction electrons, given below. It
must be noted that Landau uses µ = 2µB .

MLandau = − µ2H

12 ∂ω∂N
= −µ

2
BH

3 ∂ω∂N
(3)

Pauli, in his paper, defines α = ω
kT [6], and equation (1) in section 2.2 contains

the term −NF ′(α)
kTF (α) . Noting that F (α) ∝ N and adding in a factor of kT from
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the derivative with respect to α gives

MPauli =
µ2
BH
∂ω
∂N

(4)

To recast this result in the familiar form χPauli = µ2
Bg(EF ), it is only necessary

to recall the definition of the Fermi energy as the chemical potential at low
temperature. Then, it follows immediately that dN(E)

dE |E=EF = g(EF ), which
is the desired result. So it is seen that the contribution to the susceptibility of
electrons moving in a plane perpendicular to an applied magnetic field is − 1

3 of
the result that comes from the contribution of spins. This value is, in general,
different from the zero that a classical treatment of the problem gives. Landau
then goes on to mention that his analysis applies to free electrons and this same
analysis will change when considering electrons in a periodic potential, which
may change the ratio of diamagnetism and paramagnetism in some materials,
following Ehrenfest [8]. The paper concludes with a remark that these results
imply that, for strong fields, there should be periodic oscillations in the magnetic
moment as a function of the field, as noted above. The ratio of diamagnetism to
paramagnetism was also predicted to go as

(
m
m∗

)2, which turned out to be the
case for Bi, as shown in a later paper by Jones [2]. He also attempts to relate
his results to Kapitsa’s experiment as a final remark.

3.2 Follow-up experiments
It must first be noted that Landau’s result was much more important for a
theoretical understanding of quantum mechanics, rather than for experimental
physics. Overall, conduction electrons were still paramagnetic, and experiments
at that time did not separate the contributions from the core and conduction
electrons. Landau’s work also dealt with a free electron gas, whereas lattice
effects were known to have significant impact on the properties of materials.
Landau’s predictions were therefore considered to be imperfect, since it was
unknown what effect the lattice structure would have on his model. It was clear,
however, that lattice effects implied that conduction electrons were involved in
the diamagnetism. The predicted periodicity of the susceptibility in a strong
field, was supposed to be unobservable. The best known experiment that showed
precisely that periodicity was one by de Haas and van Alphen in 1930. They
were conducting a series of experiments that showed that the susceptibility
of bismuth was in fact a periodic function of the field, which is exactly what
Landau’s paper predicted. An inquiry into the variation of susceptibility with
the field was a consequence of earlier work done by Shubnikov and de Haas,
which showed that there were oscillations in the resistance of bismuth due to an
applied magnetic field. De Haas then investigated the susceptibility of bismuth
under a strong field, and obtained the result mentioned above. Their results were
published only a few months later [7]. It is remarkable that even though they
acknowledged and cited Landau’s work, they did not apply his theory to their
result, since their field rather inhomogeneous. Landau claimed that to observe

6



oscillations in magnetic moment, the field must have been homogeneous to a
degree not achieved in their experiment; if that were not satisfied, then the
oscillations should average out. In any case, this effect, along with the similar
Shubnikov-de Haas effect, did not fit into the classical model of magnetism, since
the periodicity in the field could not be explained using the current model at all.
The unusually high diamagnetism also did not fit into the framework of classical
theory. The authors themselves suggest the possibility of the contribution of
valence electrons in their paper. A more complete explanation of this effect was
given in 1933 by Rudolf Peierls.

3.3 Follow-up theory
The model of the free electron gas, treated quantum mechanically gave a new
result not only accounted for quantum effects, but also gave a result on the order
of Pauli’s, although originating from a completely different physical mechanism.
Whereas Pauli’s result arose from considering electron spins in a magnetic
field, Landau’s result came about from the motion of electrons in a plane, only
considering spin as adding a factor of two to the degeneracy. The quantization of
cyclotron orbits turned out to have very important consequences later on, but,
for the moment, the result was interesting as revealing more about the properties
of metals as a result of the fully quantum mechanical treatment. The discovery
that movement of electrons in a plane contributed to diamagnetic response
also provided a way for crystal effects to affect the magnetic properties of a
metal, since lattice effects would change the motion of electrons and therefore
its magnetic properties. If the diamagnetism only came from the core electrons,
crystal effects would not be important in determining magnetic response, since
they affected the conduction electrons. However, the treatment of the problem
was not satisfactory in several aspects; first of all, Landau’s remark that the
oscillatory effect would not be observable was discouraging, and it offered no
insight into why the dHvA or SdH effects were still observed. His prediction
of a weak diamagnetism was also hard to measure at the time, since it would
have to be somehow separated from the van Vleck and Langevin contribution.
The effects of the lattice were also not included, and only a qualitative analysis
of the oscillations and the lattice effects were included [10]. Perhaps, due to
these issues, de Haas and van Alphen did not use Landau’s theory to explain
their results. Many theorists of the time, notably Peierls, initially glossed over
the effect as impossible to realize in the laboratory and promptly forgot about
the predictions, but that did not prevent them from recognizing the superiority
of the argument compared to the classical result. Some, such as Pauli, tried
to extend Landau’s argument to strong fields and classical gases [2]. The next
important step in this question of the diamagnetism of bismuth came in 1933,
when Peierls published his papers on the diamagnetism of conduction electrons.
He published three papers, each of which dealt with diamagnetism of free
electrons. The second paper dealt with the oscillations in susceptibility, and
it basically repeated Landau’s argument to derive the density free energy, with
more focus on the strong-field regime and oscillations. Its argument revolved
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around the filling of bands at different field strengths. For instance, in two
dimensions, the jumps would happen at H = const

m , where m is an integer
and the constant depends on the material [12]. This can be seen from the
following argument: suppose H is so strong that all electrons are in the n=0
level. Then, if H is decreased, some electrons move into the n=1 level, which
increases the energy. Decreasing H decreases the energy, until n=1 is full, etc.
Clearly, that would mean jumps happen at values of H where bands were full.
This argument is more complicated in 3D, where the energy depends not only
on n, but also on pz, but the results are similar. The important conclusion was
that the period of susceptibility oscillations were proportional to the inverse of
the field strength. Peierls also argued that the lattice effects would prevent
the averaging, which Landau feared would wash out the oscillations. These
results were consistent with the observations of de Haas and van Alphen, and
also included a description of diamagnetism from conduction electrons without
ignoring the band structure. In the end, pieces of Landau’s model, such as the
expression for the free energy, remained correct, as noted by Peierls in his paper.
The periodicity also remained. However, the lattice effects made the calculation
of the exact eigenvalues and eigenstates impractical, but added more interesting
physics to the problem and helped explain many anomalies that could not be
explained before. The remaining step was to identify the Fermi surface as a
physically relevant concept, which was done in the 1940’s.

3.4 Further development in the field
Before making a jump of several decades, it is important to understand why
that jump exists in the first place. In the late 1920s and the early 1930s, when
quantum mechanics was just being developed and applied to solve problems
having to do with properties of materials, solid state physics was flourishing.
However, by 1935, there was nothing "exciting" left to solve in the new theory,
at least according to Peierls and Pauli [9]. Many moved on to other fields,
most notably Heisenberg and Pauli. It was also becoming clear that Europe was
very politically unstable at the time, given the situations in both the USSR
and Germany, causing many notable physicists to emigrate to the USA and
to leave solid state physics for, say, atomic physics. That being said, it is not
at all the case that work on solid state physics came to a halt. One notable
achievement was the discovery of the dHvA and the SdH effect in many metals
other than Bi. Another achievement that is relevant to the 1930 paper was
Landau’s calculation, in 1939, of the magnetization of the free electron gas in
the high field limit [11]. By 1950, the concept and the importance of the Fermi
surface were generally understood.

4 Relevance up to today
Landau’s discovery of the quantization of cyclotron orbitals in an external
magnetic field in his paper led to the nomenclature "Landau levels"and "Landau
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quantization". The consequences of this quantization of orbitals are still an
active field of research; the two papers mentioned below are both investigating
unusual properties of various materials in magnetic fields.

4.1 Quantum Hall Effect
When Landau levels are brought up, many people think of the Quantum Hall
effect and the quantization of resistance in an magnetic field. This phenomenon
occurs in two-dimensional materials in a strong magnetic field and the resistance
takes values of RK = h

νe2 , the von Klitzing constant divided by a dimensionless
filling factorν. On a basic level, this result can be understood by thinking about
the consequences of the quantization of kinetic energy on the conductivity of
a material. This quantization only allows certain values of current, leading to
certain allowed resistance values, as written above. Returning to the equation,
the filling factor is given as a function of the field by ν = hcρ

eH , and it is found by
repeating Landau’s analysis to find the density of states, but this time in two
dimensions. The resulting expression involves area instead of volume, which in
turn gives the result above by multiplying this ratio of degeneracy per area by
the density of electrons in two dimensions, giving a number of electrons per state
or filled Landau levels, hence the name "filling factor"[13]. The filling factor, at
weaker fields, is restricted to integers (IQHE); however, as the field is increased,
electron-electron interactions become significant, and certain fractional filling
factors also become possible, giving rise to the fractional quantum Hall effect
(FQHE). People are still carrying out further research into these and other
related effects, usually with some adjective followed by "Hall effect". They
all deal with a phenomenon which, at its core, deals with the quantization of
electron orbitals in a plane due to a transverse magnetic field. One somewhat
recent paper on the quantum Hall effect exploits the exact quantization of
the kinetic energy of electrons to define a standard for resistance. A graphene
sample was used over other materials due to the large spacing between Landau
levels, which allowed for higher precision. The use of graphene confirmed the
quantization of resistance to three parts per billion[14], suggesting a standard
for resistance in terms of fundamental constants, given by RK = h

e2 .

4.2 Oscillations in a strong field
After a very brief introduction to the quantum Hall effect and Landau levels, one
can also continue an inquiry into the effect of magnetic properties of materials
and, specifically, their behavior in strong fields. Although interest in the de Haas-
van Alphen effect, and, more generally, magnetic oscillations, stemmed from an
inquiry into unusual properties of bismuth, it turned out to have a very useful
application for collecting information about the Fermi surface of a sample. Both
Peierls and Landau looked to connect this effect to the Fermi surface of the
metal[9], but it was not until 1952 that Lars Onsager arrived at the well-known
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result: [2]:

∆

(
1

H

)
=

2πe

h̄c

1

Ac

Ac is the cross sectional area of the Fermi surface normal to the applied field and
∆
(

1
H

)
is the change in 1

H over one period of the oscillation of susceptibility. This
result was also obtained by Ilya M. Lifshitz (brother of Evgeny M. Lifshitz) and
Arnold M. Kosevich in 1955 [15], who pick up Landau’s expression for the free
energy given by equation (2), and, adding in spin, obtain an expression for the
magnetization. The crucial difference from Landau’s work is the incorporation of
a more general dispersion relation as opposed to the parabolic relation assumed
for free electrons; however, there is an oscillatory term regardless in the high-field
limit. The authors obtain the same result as Onsager in their equation (3.11)
and also proceed to show that one can obtain the shape of the Fermi surface by
using the de Haas-van Alphen effect. They derive the free energy in terms of the
maximal and minimal values of the Fermi surface and its derivatives, and then
proceed to show that the largest non-negligible term is a periodic function in
1
H with period 2πe

h̄Ac
, with Ac the area of the Fermi surface perpendicular to the

applied magnetic field. The complete argument is given in their paper. Their
result is only one application of quantum oscillations; the study of quantum
oscillations is far from over. In 1930, Landau’s paper focused on a non-interacting
gas of free electrons in three dimensions; in 1933, Peierls considered electrons in
a lattice, and in 1955, Lifshitz extended the analysis to deduce the magnetization
of electrons with a more general dispersion relation E = E (px, py, pz). The study
of quantum oscillations in two-dimensional electron gases is much more recent
and contemporary with studies of the quantum Hall effect; even more recent is
the treatment of magnetic oscillations in topological insulators [16]. Topological
insulators require a somewhat different treatment since, by definition, they rely
heavily on spin orbit coupling, an effect ignored in previous models, the model
must be further modified. The results for the surface states of the TI Bi2Se3 are
very different from the usual model of the two-dimensional electron gas (2DEG).
In general, the Hamiltonian can be written as follows:

H(k) =
h̄2

2m∗
k2 + h̄vF (kxσy − kyσx)

Here, the first term is the standard parabolic dispersion relation, and the second
term, containing the Fermi velocity and the Pauli spin matrices, contains the
spin-orbit coupling terms. Considering this Hamiltonian in the presence of a
magnetic field in the z-direction, after some algebra, shows that the second term
dominates. The energy of the nth state(recall that the energies are still indexed
by the quantum number n from the oscillator) is also found, and from it, the
free energy and the magnetization follow. A remarkable feature of this energy is
that instead of going as (n + 1

2 )B, as for the 2DEG, it goes as
√
nB, since the

spin-orbit coupling term is now dominant, as opposed to the parabolic term.
Further calculations reveal several more differences between the two cases. The
chemical potential of the electrons in the TI exhibits the dHvA oscillations, but
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if the zeroth level is filled, the mean value decays with applied field; if it is empty,
it grows with applied field, and if half-filled, it stays constant. In the case of the
2DEG, the chemical potential stays constant. In the case of magnetization, the
difference is even more pronounced; the magnetization is positive and constant
if the 0th level is not empty, and it is the same constant, but negative, if the level
is empty. In the 2DEG case, the magnetization oscillates about zero in all three
cases. It is also shown that the Hall conductance and the susceptibility also split
into three cases based on the filling of the 0th Landau level. In summary, the
filling of the 0th level determines some of the electrical and magnetic properties
of the material. The paper concludes with a remark that there may be significant
contribution from the mixing of bulk bands and surface bands which has not
been accounted for.

4.3 Conclusion
The study of magnetic properties of materials is therefore seen to be far from
over; although the mystery of paramagnetism and diamagnetism has been more
or less solved by Pauli, Landau and Peierls, the study of magnetic properties
of materials is not over. At the outset of quantum mechanics, people were
trying to understand the properties of simpler materials such as metals and
insulators from a quantum-mechanical standpoint. Now, people have moved
onto more exotic materials, such as two-dimensional, one-dimensional, or even
zero-dimensional materials. Although the quantization of kinetic energy still
takes place, there are now more effects that must be accounted for. Landau’s
model must now incorporate the periodic crystal lattice, a more or less arbitrary
dispersion, electron-electron interaction, and spin-orbit coupling, to name a few.
However, the application of quantum theory to properties of materials is still at
the heart of these inquiries.
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