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Introduction to Kronig: 

Ralph de Laer Kronig has had a long standing relationship with the field of quantum 
mechanics and material sciences. Receiving his Ph.D in 1925 from Columbia University in New 
York, he was beginning his career as a physicist in the era of extreme expanse in the 
knowledge of the quantum realm. He was often writing with many other professionals of the time 
such as Heisenberg, Pauli, Bohr, and Kramers. Kronig was in collaboration with Heisenberg as 
the latter was coining the basis for quantum mechanics. In developing major findings in 
quantum and solid state physics such as the Kronig-Penny model, the initial idea of particle 
spin, and his theory of X-ray dispersion, Ralph Kronig has cemented himself in history as a 
juggernaut in the  physicist world.  
 
Kronig Paper:   

In one of his earliest, and most cited, papers [2] Kronig discusses how quantum 
dispersion theory can be applied to the x-ray region of electromagnetic radiation and x-ray 
refraction on a bulk material. Kronig first discusses general dispersion theory and how external 
radiation can affect a bulk material using classical electrodynamics. He assumes that atoms 
contain electric charges elastically and are isotropically bound to equilibrium positions with 
damping terms proportional to velocity. Externally incident radiation causes oscillations at what 
he calls the impressed frequency, which is the frequency of the electromagnetic radiation. 
These atomic oscillations then emit spherical wavelets with an electric (dipole)  moment parallel 
to and almost in phase with the incident electric field when the impressed frequency, , isν  
sufficiently different from any natural frequency of the atomic resonators. These spherical 
wavelets are the scattered radiation. For  which is the natural frequency of the ν ≃ ωi thi′  
resonator, the amplitude of the oscillations becomes larger and considerably out of phase from 
the incident field. The scattering thus increases and due to the phase shift the wavelets produce 
a decrease in the amplitude of the original incident wave which is also known as material 
absorption. If the incident electric field is sinusoidal, then Kronig states that the induced electric 
moment is 
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f
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for an atom containing charges  with masses  and having resonant, , ..ee1 e2 . f , , ..mm1 m2 . f  
frequencies  and    The amount of energy absorbed on average by one of, , ..ωω1 ω2 . f = .ν / ωi  
these resonators during a time  from the incident radiation field whose density, , does nottd (ν)ρ  
vary much about the resonant frequency is given as  
                                                            α cρ(ω )dt ρ(ω )dt                                                  Eqn(2)      i i = mi

πei2
i  

where  is the total atomic absorption coefficient of resonator . The induced electric momentαi i  
can then be described by the absorption coefficient:  



                                                            M (t)                                                       Eqn(3)       = E ∑
f

i=1
4π (ω −ν )3

i
2 2

cα cos(2πνt)i

 
Kronig explains that wave theory is the only theory that describes the connection between 
absorption and dispersion well enough and therefore he applies this classical electrodynamics 
relation to every single atom in the material in order to make a quantum theory of dispersion.  

Kramers had been working on a similar feat just the year before (1924) and had advised 
Kronig on completing this portion of the paper [3]. Kramers wrote a paper [4] describing the 
perturbations that come forth when a periodic system (a crystalline solid) experiences an 
incident sinusoidal electric field. Kramers found the induced scattering moment of the atoms by 
introducing quantum analogues to the quantities of the periodic system resulting in the quantum 
average scattering moment per atom of  

                                                    M (t) (t)                                                     Eqn(4) = E ∑
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where  and  are the mass and charge of an electron and  where  is Planck’sm e f i = πe2
mhω bi i h  

constant and is defined by bi  
                                                           P dt ρ(ω )dt                                                            Eqn(5) i = bi i  

This is the probability of an atom being excited from the ground state to the state  in a time i td  
by an electromagnetic field with energy density between the frequencies of  and .ωi ωωi + d  
Kronig relates this parameter that Kramers uses to the absorption coefficient of a material by bi  
stating that  is the energy absorbed on average per atom in a time  and is thushω ρ(ω )dtbi i i td  
equal to . This means that the parameter simplifies tocρ(ω )dtαi i  f i   

                                                              f                                                                       Eqn(6) i = πe2
mα ci  

When this form of  is plugged into Kramers’ function for the average scatteringf i  
moment per atom it simplifies to Kronig’s derived version of the scattering moment of the atom. 
This parameter  was named the ‘number of dispersion electrons’ by Drude; however, Paulif i  
and even now it is called the ‘oscillator strength’. It describes how strong or probable a transition 
between two energy levels of a system is. This is a very important parameter when designing 
laser or light emitting materials as one wants a material with a very strong oscillator strength to 
improve efficiency of the device.  
 
Ladenburg Paper:   

Although Kramers and Kronig have both now shown the relationship between the 
quantum scattering moment and the classical electrodynamic scattering moment, this was first 
proclaimed by Rudolph Ladenburg in 1921 [5]. Ladenburg published a paper in 1921 titled “The 
Quantum-theoretical interpretation of the number of dispersion electrons”. In this he sought to 
determine a quantum mechanical version of the number of dispersion electrons per unit volume, 
which he called , and is related to the absorption of isolated spectral lines. That is, it is relatedR  
to the absorption and emission spectra that is unique to every element in the periodic table. 
Ladenburg begins similarly as Kronig did by using classical electrodynamics, but to derive the 
energy radiated by  molecules that have  oscillatory electrons per second.N R   



,                                              J El = τ
URˉ τ                                                            Eqn(7)    = 3mc3

8π e ν2 2
0
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where  is the decay time of the electron oscillation which is assumed to be damped only byτ  
emission and  is the mean energy. Ladenburg assumes that the molecules are in thermalŪ  
equilibrium and that the electrons have three degrees of freedom, thus yielding the mean 
energy to be , where  is the radiation density. Thus the classical derivation for theuŪ = 3c3

8πν0
2 0 u0  

radiated energy per second of this oscillating electron system is 
                                                              J Ru                                                               Eqn(8)      El = m

πe2

0   
Ladenburg then uses the quantum mechanical theories set forth by Bohr and Einstein to 
determine a quantum mechanical version of the radiated energy per second of this system. By 
this time it is understood that the emission of radiation from atoms could come from either 
spontaneous transitions from a state  to a state , or from interactions from a radiation fieldk i  
present in the system under question. He gives probability constants to these two types of 
emission: the first having  and the second having  and he assumes these are bothak−>i bk−>i  
temperature independent.  If each transition is related to an energy of emission then theν  h ik  
total energy emitted per second is given by  

                                                        J ν N (a u )                                        Eqn(9)      Q = h ik k k−>i + bk−>i ik  
where  is the number of oscillators in the state  and is related to the number of oscillators inN k k  
state  via Boltzmann relations (which is an approximation made by Ladenburg).i  
                                                                                                                      Eqn(10)   N i

N k = g [exp(−E /kT )]i i

g [exp(−E /kT )]k k

 
Here the terms  are degeneracy terms which Ladenburg calls a statistical weight. Fromgi,k  
Einstein’s theory of spontaneous emission, the transition probabilities  are related and bak−>i k−>i  
via  

                                                    a ki = bki c3
8πhν ik3

 and b b                                    Eqn(11)   gi ik = gk ki  
Through these equations, the quantized energy emitted or absorbed can be written as  
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To determine the relation between this quantum version of the energy emitted by quantum 
oscillators and the classical electrodynamic version of the energy radiated, simply set them 
equal to each other: 

Ru a uJEl = m
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m

πe2 = N i gi

gk
ki

mc3

8π e ν2 2
ik

 2 ik  

Again  is the number of dispersion electrons per volume which is now shown to beR  
proportional to the spontaneous emission rate and the frequency of the oscillator. Therefore 
Ladenburg had derived the quantum mechanical equivalent of the number of dispersion 
electrons per unit volume. Comparing to the oscillator strength that Kramers and Kronig use 

, it is easy to see that .f )( i = πe2
mhω bi i fR = N i i   

In electron theory the number of dispersion electrons per unit volume, , is related toR  
not only the spectral lines of absorption, but also describes anomalous dispersion and magnetic 



rotation. Therefore if using quantum mechanics can relate to the transition probabilities of R  
spontaneous emission and absorption, then there must be a quantum equivalent for anomalous 
dispersion as well. However, at the time of Ladenburg’s 1921 paper there was no quantum 
theory of anomalous dispersion. So to accommodate the lack of detailed theory, Ladenburg 
describes that if molecules observe a change in their electric dipole moment from an incident 
wave or radiation will cause modified states to occur. Transitions between these closely spaced 
levels are related via the spontaneous emission and absorption frequencies of the material. In 
addition to these effects, the velocity of the radiation will change and this change is more 
pronounced the closer the radiation frequency is closer to the natural frequency of the material 
and thus describes an anomalous dispersion effect. As such, the scattering of the incident 
radiation by the material is constrained by radiation damping. In this case the damping is the 
inverse of the spontaneous emission rate, .ak  

Ladenburg  finally uses experimental means to calculate the number of dispersion 
electrons,  from magnetic rotation measurements from alkali metals such as sodium and is,R  
related to the equation of  that he had determined.R   
 
Refractive Index: 

The refractive index of a material is the ratio of how fast a lightwave propagates in the 
material compared to the speed of light in vacuum. Kronig uses the scattering moment he 
derived (with the help of Kramers and Ladenburg) to determine the refractive index of a 
material. He describes a system of which a slab of material is perpendicular to the propagation 
axis and is thin compared to the wavelength of incident light such that  where  is az λd = q q  
small. He then attempts to calculate the electric field emanating from the atoms in the slab at a 
point  a distance  away from the slab. Using spherical and cylindrical coordinates, the slabP l  
can be divided into cylinders of radius  about the z (optical) axis. He then assumes that theρ  
phase of the spherical waves must match when they are arising from the inner and outer 
boundaries of the material:  where  is distance from  to the edges of the cylinder. Inr λd = q r P  
order to calculate the field at the point  a finite number of atoms must reside within the,P  
cylindrical volume of the material ( ), thus a constraint is placed on theπρ drdz π l q λ2 = 2 2 2  
distance l :  

π l q λ N2 2 2 = n  
where  is the total number of atoms in the cylindrical volume and  is the number of atomsn N  
per unit volume. Finally, Kronig states that if all of these radiation fields are integrated then at 
distances larger than  the scattered wave from the material “irons out” by interference andl  
becomes a plane wave. Thus, if a refractive medium is made of these types of slabs and the 
polarization of the medium produced by the incident electric field is small compared to the 
incident field then the refractive index ( ) is obtained from the scattering moment  and theμ M  
constraint on  asl   

.                                                      μ                                                  Eqn(14) − 1 = δ = ∑
 

i

Ne f2
i

2πm(ω −ν )i
2 2  

This again assumes that  and that all of the atoms are of the same kind.<μ − 1 < 1  



Kronig performs further analysis on the refractive index of a material by enforcing that 
the wavelength of light incident on the material in question is in the X-ray range 

It is important to keep in mind that the separation of atoms in a solid are alsoλ  Angstrom). ( ~ 1  
on the order of Angstroms and thus the wavelength of incident radiation and the atomic spacing 
are comparable. This means if one draws out a cube with sides equal to the incident wavelength 
within the solid, then there will only be a few atoms that can fit within this wavelength cube. 
Ordinarily in the field of Optics and in dispersion theory it is necessary that there is a large 
number of atoms within a wavelength cube in order for the formulas of the polarization of a 
sphere in a uniform electric field to be applied to the system (making the problems simplify 
vastly). This is of course if the material polarization (i.e the sum of electric dipole moments of the 
atoms in the material) is comparable to the incident electric field. If the material polarization field 
is however much smaller than the incident electric field, then a large number of atoms within the 
wavelength cube is not necessarily needed to hold as an assumption. Because  and0μ − 1 ≃ 1 −6  

 for solids, Equation (14) holds for the analysis of X-ray dispersion.0 cml ≃ 1 −3   
The electrons that will interact with the X-rays can be excited into different energy states 

depending on the electron’s initial state and its velocity; therefore the excited energy states are 
described by  or  where the quantum numbers  are compacted into a singlev, , , )( n k j v, )( r , ,n k j  
quantum number . The velocity of the excited electron is proportional to the frequency of ther  
transition to the excited state which means the state is described by . Thus the continuousω, )( r  
spectrum of states  make an absorption band of the material.ω, )( r   

Kronig finally links the formula he derived for the refractive index of a slab of material to 
the absorption band or absorption coefficient of the same material by stating that within a 
frequency interval of  there is a resonator with charge  and mass ωd (ω)dωf r * e (ω)dωf r * m  
where  is the frequency dependent oscillator strength (number of dispersion electrons).(ω)f r  
Using Equation (6) for the oscillator strength, the frequency dependent version is  

(ω)                                                                Eqn(15)                                                                 f r = πe2
cmα (ω) dωr  

Thus using this frequency dependent version of the oscillator strength, the refractive index of a 
solid can be related to the absorption band of the solid as : 

                                                             μ dω                                                Eqn(16) − 1 = δ = ∑
 

r
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Kramers-Kronig Relation: 
 

Not even one year later, Hendrik Anthony Kramers published a paper [6] detailing similar 
findings of Kronig and even expanding upon them. Due to the fact that the paper is in French 
and my knowledge of the French language is quite limited, I can only put together pieces of 
Kramers 1927 paper on the dispersion of light from atoms. Kramers uses electrodynamics to 
relate an incident electric field and the material polarization field to a complex value ηζ = ξ + i  



which Kramers calls the polarization coefficient. This value is similar to the refractive index term 
 that Kronig derived. Kramers uses the Sellmeier formula to state thatδ  

                                                                  ζ                                                      Eqn(17) = ∑
 

k
m
e2 f k

(ω −ω )k
2 2  

Here  is the oscillator strength and  are the resonant frequencies as in [2]. Kramers thenf k ωk  
introduces the atomic absorption coefficient  and states that it is dependent on both theα  
frequency of incoming radiation and the imaginary part of  asζ   

 .                                                                   α(ω) η                                                  Eqn(18) =  − c
4πω  

 
Kramers then goes on to state that the frequency dependent absorption must integrate to a 

constant value over all frequencies (which Kronig also discerned [2]) to .(ω)dωak = ∫
 

 
α  

He then makes the same equivalence as Kronig did for the oscillator strength and the material 
absorption: , then only difference from Kronig’s evaluation being the subscript on  andf k = 2πe2

mcαk f  
 and the factor of  in the denominator. Finally the complex value of the polarizationα 2  

coefficient is determined to be  

.                                                                  ζ dω                                                 Eqn(19) = c
2π2 ∫

∞

0

α(ω )′
ω −ω′2 2 ′  

He uses the Cauchy principle and the fact that the system is causal (does not depend on future 
time instances) to show that the real part of the polarization coefficient is equal to  

                                                      Re{ζ} dω                                            Eqn(20) = ξ = c
2π2∮

∞

0

α(ω )′
ω −ω′2 2 ′  

which is exactly what Kronig found in Equation (16) but not on a per unit volume basis and he 
even cites Kronig’s 1926 paper on this. This is where Kramers expands upon Kronig’s findings 
on the dispersion of incident light by a refracting medium. Kramers uses the frequency 
dependent absorption that he derived previously (18) to relate the real and imaginary parts of 
the complex polarization coefficient 

.                                                         ξ(ω) dω                                                 Eqn(21) =  − 2
π∮

∞

0
ω −ω′2 2
ω  η(ω )′ ′ ′  

It is easy to see that the real part of the polarization coefficient is even with respect to ω  
as . From the fact that  it is safe to say that because  is  out of(− ) (ω)ξ ω = ξ η,ζ = ξ + i η /2π  
phase from  then  must be an odd function with respect to  The real polarizationξ η .ω  
coefficient can be simplified by using the fact that it is even  

(ω) dω − dω  dω dω    Eqn(22)ξ =  − 2
π∮

∞

0
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π∮
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ω  η(ω )′ ′
(ω +ω)(ω −ω)′ ′ ′ =  − 1

π∮
∞

−∞

ω  η(ω )′ ′
(ω +ω)(ω −ω)′ ′ ′ = 1

π ∫
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η(ω )′
ω−ω′ ′  

Using the fact that  and  are 90 degrees out of phase, thenξ η   

                                                            η(ω) dω                                                Eqn(23) =  − 1
π ∫

∞

−∞

ξ(ω )′
ω−ω′ ′   

Thus Kramers (and by his previous work, Kronig) have derived a correlation between the real 
and imaginary part of the complex polarization coefficient given by the two equations (22) and 
(23). Because of this triumph to material sciences and optics, these relations have since been 
known as the Kramers-Kronig relation. The Kramers-Kronig relation is invaluable in the field of 



optics as one can experimentally determine a material’s refractive index via absorption 
measurements. Using a tunable light source, various wavelengths of light can be made incident 
upon a lossy material of known length. By measuring the intensity of the output light after 
propagating through the material, the absorption coefficient at various wavelengths can be 
determined via Beer’s Law assuming that the loss is linear:  

⇒                        I(ω, ) exp[− (ω) z] z = I0 α (ω) ln( )                                      Eqn(24)α =  − 1
L I0

I(ω,L)  

From these absorption measurements one can then use the Kramers-Kronig relation to 
determine the real refractive index of the material. Although Kronig derived his form of the 
refractive index of a solid in terms of its absorbance with the thoughts of X-ray dispersion in 
mind, the Kramers-Kronig relation is actually valid for any range of wavelengths. The only fault 
is that the integration in equations (22) and (23) are bound from negative infinity to infinity. This 
means to get an exactly correct result one would need a lightsource with infinite bandwidth in 
wavelength or infinitely small resolution in wavelength such as to sweep over all wavelengths 
and frequencies. In practice this is never the case. Therefore there can be some error in 
experiment if the range of frequencies used to characterize the attenuation of the media is not 
fine or broad enough. However, nonlinear media can still take advantage of Kramers-Kronig 
relation as the absorption of nonlinear optical media is continuous in short bands of frequency.  
 
 
Current Research: 
 
Material Classification: 
 

As previously stated, both linear and nonlinear optical responses of materials can be 
classified by using the Kramers-Kronig relationship. In Kramers and Kronig’s time, they were 
describing dispersion via the polarization coefficient. In current research and teachings the 
Kramers-Kronig relation is most often used for the complex susceptibility of a material, . Theχ  
complex electric susceptibility is defined as the proportionality constant (or tensor) that relates 
the electric field and the material polarization field: . In general  can be complex andχEP

→
= ε0

→
χ  

a function of time or frequency. In the case of a causal linear system, the susceptibility can be 
seen as the response of the material. In general, a material cannot respond instantaneously to 
the incident radiation and therefore the polarization field is  defined to be a convolution of the 
time dependent susceptibility and the time varying electric field 

                                              P (t) (t )E(τ )dτ χ(t) (t)                                              Eqn(25) = ε0 ∫
t

0
χ − τ = ε0 * E  

Performing a Fourier Transform of this equation takes it into the frequency domain. It is common 
knowledge that the Fourier Transform of a convolution is equivalent to a product of two 
functions in the frequency domain. Therefore  In this form it is clear to see(ω) χ(ω) E(ω).P = ε0  
that the susceptibility is the transfer function of this material system (the output to input ratio).  

As noted this is a complex term as shown in [2,6]. The modern version of the 
Kramers-Kronig relation for the electric dipole material response is thus [7] 



(ω) dΩχ′ = 1
π ∫

∞

−∞
ω−Ω
χ (Ω)′′  

(ω) dΩχ′′ =  − 1
π ∫

∞

−∞
ω−Ω
χ (Ω)′  

where                                    χ(ω) (ω) χ (ω)                         Eqn(26a 6c) = χ′ + i ′′ − 2  
In the field of optics, the real part of the complex susceptibility is related to the phase or 
refractive index of the material and the imaginary part is related to the loss or absorption 
coefficient. In Mathematics and signal processing, the Kramers-Kronig relation is known as the 
Hilbert Transform.  
 
Acoustic Waves and Compressibility: 

In 1980, M. O’Donnell et. al [8] derived an acoustic version of the Kramers-Kronig 
relation by following the formalism and derivations of Kramers and Kronig but applying it to an 
acoustic medium that obeys Hooke’s Law and analyzed the response of the medium when an 
acoustic wave is incident (instead of an Electromagnetic wave as done by Kramers and Kronig). 
They use the ultrasonic equation of motion to derive a linear acoustic response in the form of  

                                                       s(t) (t )p(t )dt                                                     Eqn(27) = ∫
∞

−∞
K − t′ ′ ′  

where  is the condensation,  is the compressibility, and  is the pressure. In this acoustics K p  
version,  takes the role of the generalized susceptibility relating the response of the materialK  
to the stimulus. They then use the same formalism as Kramers [6] to derive the real and 
imaginary components of the complex compressibility (susceptibility) to form an acoustic 
Kramers-Kronig relation:  

(ω) P dωK1 = 2
π ∫

∞

0
ω −ω′2 2

ω  K (ω )′ 2 ′ ′  

(ω) P dωK2 =  − 2
π ∫

∞

0
ω −ω′2 2

ωK (ω )′ 1 ′ ′  

                                                                K(ω) (ω) K (ω)                                        Eqn(28a 8c) = K1 + i 2 − 2  
where  is a factor from the integration. Using Kramers-Kronig relations O’Donnell et al wereP  
able to relate the phase and attenuation of acoustic waves through acoustic media together (as 
just in the optical case, the real part of the compressibility is related to the phase that the 
acoustic wave experiences and the imaginary part is related to the attenuation that the acoustic 
wave experiences in the material. Theses acoustic Kramers-Kronig relations were then used to 
determine the dispersion and attenuation of different material systems such as  solutionoSOC 4  
in water and polyethylene. The validity of their derived relations proved sound as experiments 
measured the attenuation and dispersion of  solution from to  then theyoSOC 4  MHz 1 0 MHz,1  
used the above relations to transform the measured attenuation into dispersion data. The 
dispersion data matches well within error when compared to the directly measured dispersion of 
the  solution, thus the acoustic Kramers-Kronig relations hold valid.oSOC 4   
 
 
Communication Systems: 



In even more recent research, Antonio Mecozzi et al have developed a communication 
system using what they call Kramers-Kronig coherent receiver [9]. They do so by describing that 
a signal that is considered to have minimum phase means that the phase of the signal can be 
uniquely extracted from the measured intensity of the signal. If the signal is a minimum phase 
signal, then the phase and magnitude of the signal are related via the Hilbert Transform 
(Kramers-Kronig relation). Therefore if they have an Electric field as the signal which is 
sideband modulated with an optical bandwidth  and a real constant amplitude of  then theB ,E0  
modulated signal is given by 

                                                             E(t) (t)  exp[iπBt]                                                 Eqn(29) = Es + E0  
where  is the current measured by the photodetector and is proportional to the electric field(t)I  
intensity, and  is the phase of the phase. If  is large enough such that the demodulated(t)  ϕE E0  
signal  is a minimum phase signal, then the phase and(t) exp[− πBt] (t) exp[− πBt]E i = E0 + Es i  
amplitude of the signal can be reconstructed using: 

(t)  exp[iϕ (t)] }exp[iπBt]  Es = {√I(t) E − E0  

(t) p.v t                                        Eqn(30a 0b)                                                                 ϕE = 1
2π ∫

∞

−∞
d ′ t−t′

log[I(t )]′ − 3  

They use digital signal processing to desample the directly detected modulated signal and then 
use the Hilbert Transform shown above to reconstruct the signal.  
 
Conclusion: 

Ralph de Laer Kronig has contributed many grand enterprises to the field of physics as a 
whole. He is credited for being the first person to introduce particle spin, introduced the 
Kronig-Penny model of describing solids with periodic attractive potentials, and propelled the 
field of X-ray absorption spectroscopy. In his 1926 paper “On the dispersion of X-rays”, Kronig 
discusses general dispersion theory using classical electrodynamics. Then he produces a 
quantum equivalent of the electric dipole moment in terms of a material’s oscillator strength, 
absorption coefficient, and natural resonance frequency with the help of Kramers and 
Ladenburg (1921). Kronig also shows how one can derive the refractive index of a material in 
relation to the materials absorption as a function of frequency. Kramers expanded upon this 
finding by deriving explicit formulae for the real and imaginary part of the complex susceptibility 
of a material response to incident radiation. These formula are today known as the 
Kramers-Kronig relations named so for both Kramers and Kronig’s contribution to the derivation 
of the relations. 

These relations have been used countlessly in experiment to determine the refractive 
index (real part of electric susceptibility) of an unknown material by measuring the intensity of 
light after having propagated through the absorbing material with various wavelengths of light. 
The findings of Kramers and Kronig will most likely be used time and time again in experiment 
to not only classify materials, but also their derivation laid down the groundwork for nuclear 
magnetic resonance measurements, acoustic wave attenuation and phase measurements, and 
even coherent detectors.  
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