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The Kronig-Penney Model 

Inspired by the work of Felix Bloch, Ralph Kronig and William Penney came up with a 

simple way to model a crystal lattice. Born June 24, 1909 William Penney studied at the Imperial 

College of Science and completed his post-doctoral research at London University.[1] 

Subsequently during WWII, he studied explosions and shockwaves, and eventually began working 

on the Manhattan Project using his previous research to estimate the atomics bomb’s power. He 

continued research into a British hydrogen bomb and his work with these types of weapons became 

the primary focus of most of the later part of his life, and some believe tainted his legacy, he died 

March 3rd, 1991. On the other hand, Ralph Kronig was born March 10th, 1904 and received his 

PhD in 1925 from Columbia University, and before even graduating he had proposed the idea of 

spin which was shut down by other scientists, including Pauli who would later publish about it.[2] 

He then moved to Europe for his studies where he eventually became a full professor at Delft 

University of Technology. Over his career he was friends with many other prominent physicists. 

He stayed in academia, where he studied x-ray spectroscopy, until his eventual retirement. A 

prolific number of papers where published that invoked his theories and he died November 16th, 

1995. 

Kronig and Penney’s work was encouraged by previous studies into periodic potentials and 

they hoped that they could come up with a model more similar to actual physical systems that gave 

quantitative results. They begin their model assuming a finite width and height of the potential 

giving them the Schrödinger’s equation of 
𝑑2𝜓

𝑑𝑥2 + 𝜅2[𝑊 − 𝑉(𝑥)]𝜓 = 0 with 𝜅2 =
8𝜋2𝑚

ℎ2 .[3] With 

a finite width they use continuity at boundaries of the wave function and its derivative, along with 
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the Bloch condition to come up with: 
𝛾2−𝛽2

2𝛽𝛾
sinh(𝛾𝑏) sin(𝛽𝑎) + cosh(𝛽𝑎) cos(𝐵𝑎) = cos (𝛼(𝑎 +

𝑏)) , where 𝛾 = 𝜅√𝑉0 − 𝑊 and α =
2𝜋𝑘

𝐿
 𝛽 = 𝜅√𝑊, which by applying the width of the potential, 

b, goes to 0 they get the familiar equation 
𝑃𝑠𝑖𝑛(𝛽𝑎)

𝛽𝑎
+ cos(𝛽𝑎) = cos (𝛼𝑎), where lim

𝑏→0
𝛾→∞

𝛾2𝑎𝑏

2
= 𝑃. 

To solve this, they plot each side of the equation and seeing where they overlap, noting that there 

are disallowed regions. They note that as P goes to infinity this becomes the case of a free electron, 

while as P increases it has discrete energy values as the electrons become bound. They similarly 

use the boundary conditions and normalization to find the constants of the wave function and they 

find that as the distance between the potentials increases the energy values get closer together. 

Using the wavefunction they are able to calculate the average momentum, and thus how current 

behaves in this solid due to any stationary state. 

They reach a motivation for their theory by examining how an electron entering the crystal 

would react. In doing so they are able to calculate a coefficient of reflection dependent on velocity 

and the spacing of a crystal and find that as velocity increases that reflections only can occur when 

the lattice spacing is very close to the de Broglie wavelength or an integer multiple of such (Fig 

1). They do however acknowledge that its is difficult to quantitatively compare this to experimental 

results as their model is one dimensional, the periodic behavior of potentials in metals isn’t fully 

analogous to what it is in real life and it does not include the scattering of electrons off of each 

other, general features such limit of the reflection maxima, and its decrease as velocity increases 

can be seen in research done by Rupp. However, much of Rupp’s work was discredited in 1935, it 

is unclear how legitimate those results are. 



 

Figure 1: Velocity vs Reflection Coefficient for Kronig-Penney Model [3] 

They then postdict something that appears in Rupp’s experiments where “new radiations 

appear in the soft X-ray spectrum of the substance bombarded at about the same velocity at which 

the reflection coefficient has a maximum” which they explain from their look at the average 

momentum finding that as it increases to a disallowed regime it enters a new set of energy values. 

They also note that an electron can transition to other stationary states when radiation is absorbed. 

While the Kronig-Penney model is easy to understand it lack certain details that would 

allow it to be more directly comparable to experimental results. Its assumptions do not take into 

account other electrons nor how different structures of the lattice might affect the behavior of 

electrons.  

 William Shockley continues this investigation into 1D periodic lattices in “On the Surface 

States Associated with a Periodic Potential” where he brings up the problem with using infinite 

crystals just to simplify the wave function, the edge effects in real systems.[4] Following up on the 

research of Tamm, he examines a finite 1D lattice and examines how surface states come into 

being. One result to note is that now that the crystals are finite it has a defined center, the wave 

function can be either symmetric or anti symmetric depending on edge behavior. By requiring 
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periodicity he finds that tan (
𝑘𝑎

2
)2 = −(

𝑔′

𝑔
)/(

𝑢′

𝑢
) where the function in each cell is expanded into a 

symmetric and anti-symmetric function where g and u, and g’ and u’ represent the value of those 

functions at the edge of the cell and their derivatives respectively. Energy bands can only occur 

when only one of  (
𝑢′

𝑢
) and (

𝑔′

𝑔
) are negative as they result on the left side of the equation must be 

positive. (Fig 2) Then using a similar potential and applying perturbation theory to the previous 

calculation he finds 2 states with energies above the boundary curves as in the previous case, which 

he labels as surface states, these surface states are noted to diverge from their energy bands after 

the crossing of the boundary curves.  

 

Figure 2: The energy spectrum of the periodic array of 8 atoms. Two state can be seen to split off. [4] 

He explains that if the bands are full then after crossing the boundary curve there is now 

one too few states for the electrons and they are pushed into a surface state. Seeing as there are 

now N-1 states by looking in three dimensions this gives a result of 3𝑁2 electrons pushed out and  

6𝑁2 states so it is expected that this “surface band” will be half filled. As such he predicts that this 

surface band would be conducting though he also notes that while it should work in diamond it 

does not, possibly due to additionally adsorbed atoms donating electrons to the surface band and 
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that these surface state should be present in numerous metals and needs to be taken into account 

when looking at the charge distribution of metals, this description of surface states became known 

as Shockley states. 

 The Kronig-Penney model was especially interesting to people studying x-ray scattering. 

George H Vineyard uses a method for calculating x-ray scattering which he compares to the 

Kronig-Penney Model. Rather than the Born approximation which uses a plane wave, he uses the 

distorted wave approximation which involves simpler scatterer distribution where a field is then 

calculated based on how a plane wave interacts with it and is calculated exactly, this is the distorted 

wave which is then used with the real scatterer to get a more accurate representation than the Born 

approximation.[5] This can then be done to higher orders. He begins by assuming a varying 

permittivity which has a can be broken into both small- and large-scale variations, solving for how 

a wave scatters on the large-scale variation first, then then using that resulting wave to scatter on 

the small-scale variation. Using Maxwell’s equations and Snell’s law the different components of 

the incident wave vector. He then calculates the different components of E’, the wave interacting 

with the large-scale variation of the permittivity, and uses this as a distorted wave to interact with 

the small-scale variation of the permittivity. He finds that the scattering intensity peaks when the 

different components of the wave vector line up with reciprocal lattice points.  

In the appendix he performs these calculations again using a permittivity based on the 

Kronig-Penney model of a layered lattice  𝜖(𝑟) = 1 −
𝑟𝑒𝜆2𝑀𝑓0

𝜋
∑ 𝛿𝐷(𝑧 − 𝑛𝑑)∞

𝑛=0  where M is the 

number of atoms per unit area, 𝑓0 is the electrons per atom, d  is the spacing between planes, 𝜆 is 

the wavelength of light on the samples and 𝑟𝑒 is the classical electron radius. He finds that there is 

a simple harmonic wave between each lattice point and finds the field of the wave to agree with 

the field of the homogenous slab calculated with the distorted wave. 
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While this paper generally took a larger scale approach to the problem of x-ray scattering, 

he still used the Kronig-Penney model to check his work on the small-scale interactions, showing 

that the 1D potential being use for modelling stratified lattices stacked on top of each other. The 

simplicity of the Kronig-Penney model illustrates its usefulness here. It is worth noting that this is 

still a very idealized case and is only checked on a homogenous crystal, but as a sanity check 

between the two methods it gives an appreciative result. 

The Kronig-Penney model is useful for this kind of simplicity, but it is difficult to take into 

many variations. L. R. Ram-Mohan, K. H. Yoo, and R. L. Aggarwal set out to develop a method 

an extended transfer-matrix in order to calculate wave functions and energy spectra for more 

arbitrary lattices. By expanding their wave functions into a slowly varying envelope function 

around a faster oscillating term and having their Hamiltonian included potential from the 

conduction-band and valence-band they get a series of differential equations.[6] The solution to 

which allows for the construction of a 16x16 transfer matrix 𝒯(𝑧) from as 𝛷(𝑧) = 𝒯(𝑧)𝛷(0) 

where 𝛷(𝑧) is the system of 16 first order differential equations from their Hamiltonian. By 

diagonalizing the total transfer matrix, a wavefunction can be obtained. Their model produces the 

band structure of GaAs/GaAlAs superlattice which is relatively similar to those calculated by 

Guido Altarelli, with a few differences, such as valence bands having higher dispersion, band-edge 

energies differing, and the light hole band having a maximum at a different location in k space. 

They notice a large change in the valence bands due to the use of a spherical approximation that 

does not take into account the warping of the valence bands of the bulk material, noting that these 

values are sensitive to the small changes this includes. The spherical approximation changes some 

constants which the valence bands depend on, one of which occurs from a Kronig-Penney 

arrangement and is inversely dependent on the changed constants. 
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They then leverage their methodology to look at the effects of magnetic fields on these 

calculations. Using a standard practice, they rewrite this magnetic field Hamiltonian in terms of 

creation and annihilation operators and apply their transfer matrix method to calculate the Landau 

levels dependence on the magnetic field. They follow this by comparing their calculations to the 

tight binding model of a different super lattice which line up well with calculations done by others. 

The method they use extends the of the one band transfer matrix to solve Kronig-Penney model 

into a larger structure, maintaining its conceptual simplicity while also being able intake applied 

magnetic fields and strain. 

In general, the Kronig-Penney model is used for comparison to newer methods, one such 

method used by A Tanimu and E A Muljarov is the resonant-state expansion, a type of perturbation 

theory developed for electrodynamics, they applied to a one-dimensional quantum system. They 

use resonant states, which have a complex frequency and can be used to replace a continuum, of 

the unperturbed Hamiltonian as their basis to construct perturbed resonant states.[7] They use 

Dirac δ to model the potential and they use the resonant states as their unperturbed basis. 𝑉(𝑥) =

−𝛾𝛿(𝑥 − 𝑎) − 𝛾𝛿(𝑥 + 𝑎), where 𝛾 is the strength of the potential and a is half the distance 

between them, and thus have three different regimes and give the secular equation 1 +
2𝑖𝑘𝑛

𝛾
=

∓𝑒2𝑖𝑘𝑛𝑎. The perturbation is Δ𝑉(𝑥) = −𝛽𝛿(𝑥 − 𝑏) where |𝑏| < 𝑎. They find an analytic solution 

to both the double and triple well potentials and numerically solve for RSs. They find that the 

symmetric triple well system it is similar to a double-well system with small oscillations around 

it, but that the asymmetric triple-well is fairly different showing a larger oscillation in the 

wavefunction. 
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 They then calculate the elements of the perturbation matrix and find that if the unperturbed 

and perturbed potentials are symmetric, the resonant state wavefunction are the in each are either 

even or odd. Thus, the perturbation does not mix any of the resonant states of different parity.  

 

Figure 3: Wave numbers of Resonant States, note the quasi-periodicity [5] 

Additionally, if the perturbation is in at b=0 then the odd states are not perturbed at all, and this is 

seen in the exact solution. By comparing their resonant state expansion to the exact solution, they 

find that it matches up very well. Following this they apply their method to a finite periodic lattice. 

They claim the advantage their method has is that when using resonant states in a certain spectral 

range they have access to all observables without needing to completely redo the calculation for a 

different energy. Their potential is N evenly spaced delta functions of strength 𝛾 and a perturbation 

Δ𝑉𝑛𝑚 = −𝛾 ∑ 𝛿(𝑥 − 𝑏𝑘)𝑁−1
𝑘=2  where 𝑏𝑘 = −𝑎 + 𝑑(𝑘 − 1). As they increase N the numerical 



complexity remains the same as long as the integral strength of the perturbation does not, if it does 

it requires an increase in the basis size M. As N increases the number of states in the periodic 

deviation from the unperturbed states increases as well (Fig 3). As N goes to infinity this becomes 

the Kronig-Penney model. They compare the Kronig Penney model to their model at N=20 and 

realize that the periodic groups of resonant states they saw earlier form the allowed energy bands. 

As they increase 𝛾 they see that and find that the separation between the periodic dependence is 

strongly dependent on it. This matches up the Kronig-Penney model results. 

Generally, they seek validation for this method of solving 1D quantum systems, so they 

compare it to either an analytical solution that can be calculated or other models, but do not apply 

it to a novel system. It does replicate those other methods and models well but does not predict 

any new behavior. The most notable thing they discover is that the periodic groups of resonant 

state become the band structure as the number of wells increases, showing how a certain size of 

crystal is necessary for band structure, but again this is only explaining a phenomenon that also 

appeared in the analytic solution that already existed for these potentials. And still this is an 

explanation for behavior that is seen in a theoretical system, not actually looking at experimental 

results. 

In general, while some earlier work may have been based directly on the Kronig-Penney 

model many subsequent researchers used the model as a comparison to their own. Due to its 

analytic solution they can apply their method to solve the Kronig-Penny potential, or a similar high 

N system and see if the solutions are at least qualitatively similar to validate their model. While 

the Kronig-Penney, is very simple it was useful for showing that the electron in the potential have 

similar characteristics to free and bound electrons. For the most part it is most useful as a toy model 

to check the validity of other models or methods of solving for the energies of a potential structure. 
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