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Famous for the Heisenberg uncertainty principle, Werner Heisenberg contributed 

hugely to the development of quantum mechanics, especially with his work on the matrix 

formulation. He also led important progress in fluid dynamics, quantum field theory, cosmic 

rays, and ferromgnetism. In his paper On the Theory of Ferromagnetism, Werner Heisenberg 

identifies the electrostatic interaction between electrons as the basis for ferromagnetic order 

for the first time. The “exchange integral” he discussed not only suggests preliminary 

explanation for the conditions of ferromagnetism, but also leads to new topics that are 

actively studied till present time. 

Background Motivation 

With the understanding of electromagnetism and atomic theory, study on magnetism 

begun at 19th century. Even though diamagnetism and paramagnetism were explained with 

Lorentz force and dipole moment of orbiting electrons respectively, people could not find a 

classical theory for ferromagnetism. Experiments show that there exists critical temperature 

for ferromagnets: below Tc, the material has a spontaneous magnetization even without 

external field, which shows its ferromagnetic ordering; above Tc, the ordering is destroyed by 

thermal fluctuations, and the material behaves paramagnetically. Within the paramagnetic 

regime, ferromagnets are found to obey the Curie-Weiss law: 

𝜒 =
𝐶

𝑇−𝑇𝑐
 , 

which can be distinguished from a normal paramagnet oberying Curie law[5]: 

𝜒 =
𝐶

𝑇
 . 

In 1907, Pierre Weiss proposed Mean Molecular Field Theory, which assumes an internal 

magnetic field proportional to the magnetization (M), so by calculations[4]: 

𝑀 = 𝑁𝜇 tanh (
𝜇(𝐻𝑒𝑥𝑡+𝜆𝑀)

𝑘𝐵𝑇
) . 

Hence when there’s no external field, there is still a non-zero solution for M, which 

demonstrates the spontaneous magnetization of ferromagnet. Moreover, calculating 

susceptibility for high temperature with 

𝜒 =
𝜕𝑀

𝜕𝐻
 , 



one obtains the Curie-Weiss law. Though the theory explains the ferromagnetic behavior 

well, the origin of the “internal magnetic field” remained a problem. Naturally, one might 

think about the net magnetization as phenomenon due to magnetic interactions. Yet according 

to experiments, the internal field must be a few orders of magnitude larger than the possible 

resultant fields from magnetic interactions between atoms. On the other hand, the electrical 

interactions between atoms does not fall off with distance as Weiss’s theory suggests[1].  

 Meanwhile, Samuel Goudsmit and George Uhlenbeck discovered the intrinsic 

magnetic moment of spinning electrons, and Einstein-de-Haas effect showed that the 

gyromagnetic ratio for electrons is roughly 2. With these established studies, Heisenberg 

identified that the orientation of magnetic moments of spinning electrons are in fact 

responsible for the magnetization, instead of those of atoms[4]. Connecting to his own 

research on many-electron system at that time, he pointed out that the strong coupling of the 

orientation stems from the quantum-mechanical exchange phenomenon. 

Heitler-London Approximation 

In his paper, Heisenberg refers to 3 approximation methods to calculate the energies: 

Pauli-Sommerfeld free electron model, Bloch tight-binding model, and London-Heitler 

theory[1]. The first model treats electrons as free and adds interactions with the lattice as 

perturbation, and the second approximates the background as a periodic potential and adds 

coupling between different Brillouin zones as perturbation. Only the London-Heitler theory, 

formulated in 1927 to explain the He spectrum, takes the interactions between electrons into 

account, and Heisenberg generalizes its exchange expression to explain the ferromagnetic 

phase in 2n-electron system. 

If electron-electron interaction is ignored, the solution to a two-electron problem can 

be constructed from independent electron approximation: namely, the overall orbital 

wavefunction is a linear combination of product states of one-electron solutions. Say the 

eigenfunctions with two lowest energies to the Schrodinger equation 

𝐻𝜓 = 𝐸𝜓, 𝐻 = −
ℏ2

2𝑚
∇2 +

𝑒2

|𝑟 − 𝑅𝐾|
+

𝑒2

|𝑟 − 𝑅𝜆|
 

are 𝜓0(𝒓), 𝜓1(𝒓), then the lowest symmetric and antisymmetric overall orbital wavefunctions 

are given by 

𝛹𝑠𝑦𝑚 = 𝜓0(𝒓𝟏)𝜓0(𝒓𝟐), 𝛹𝑎𝑛𝑡𝑖 = 𝜓0(𝒓𝟏)𝜓1(𝒓𝟐) − 𝜓1(𝒓𝟏)𝜓0(𝒓𝟐). 

The one-electron problem was solved to give bonding and anti-bonding wavefunctions: 

𝜓0(𝒓) = 𝜙𝐾(𝒓) + 𝜙𝜆(𝒓), 𝜓1(𝒓) = 𝜙𝐾(𝒓) − 𝜙𝜆(𝒓) 



, before normalization, where 𝜙𝜇 is the atomic orbital around nucleus at 𝜇. Plugging in gives 

the orbital wavefunctions as[5] 

𝛹𝑠𝑦𝑚 = 𝜙𝐾(𝒓𝟏)𝜙𝜆(𝒓𝟐) + 𝜙𝜆(𝒓𝟏)𝜙𝐾(𝒓𝟐) + 𝜙𝜆(𝒓𝟏)𝜙𝜆(𝒓𝟐) + 𝜙𝐾(𝒓𝟏)𝜙𝐾(𝒓𝟐) , 

𝛹𝑎𝑛𝑡𝑖 = 2(𝜙𝜆(𝒓𝟏)𝜙𝐾(𝒓𝟐) − 𝜙𝐾(𝒓𝟏)𝜙𝐾(𝒓𝟐)) . 

However, the symmetric orbital given by independent electron approximation would lead to 

an energy too high if electron-electron interaction is considered. The first two terms (which 

Heisenberg refers to as “simple transpositions”) describe the case of each atom surrounded 

closely by one electron, while the last two terms describe two electrons around a single atom, 

leaving the other atom empty. Hence, the latter scenario leads to high interaction energy due 

to e-e repulsion. A modified wavefunction would give much lower energy: 

𝛹𝑠𝑦𝑚 = 𝜙𝐾(𝒓𝟏)𝜙𝐾(𝒓𝟐) + 𝜙𝐾(𝒓𝟏)𝜙𝜆(𝒓𝟐) , 

which is referred to as Heitler-London approximation[5]. Since the case of two electrons being 

close together is excluded, this approximation works better when the nuclei are separated 

relatively far in the material and the wavefunctions of electrons are localized. 

Exchange Integral and Ferromagnetism 

 The addition of two spin-1/2 particles gives either antisymmetric singlet state (when 

two quantum spins are antiparallel) or symmetric triplet state (when two spins are parallel). 

Pauli exclusion principle requires the overall wavefunction of fermions to be antisymmetric, 

so the symmetric orbital function is tensored with antisymmetric spin function, and the 

antisymmetric orbital with symmetric spin. Due to this determined pairing of orbital and spin, 

the energy difference between the two orbital wavefunctions can be regarded as the resultant 

energy splitting between singlet and triplets states: 

𝐸𝑠 − 𝐸𝑡 =
<𝛹𝑠𝑦𝑚|𝐻|𝛹𝑠𝑦𝑚>

<𝛹𝑠𝑦𝑚|𝛹𝑠𝑦𝑚>
−

<𝛹𝑎𝑛𝑡𝑖|𝐻|𝛹𝑎𝑛𝑡𝑖>

<𝛹𝑎𝑛𝑡𝑖|𝛹𝑎𝑛𝑡𝑖>
 . 

Since the splitting is caused by the quantum-mechanical exchange phenomenon, it is also 

called “exchange integral” 𝐽 (with a factor of 2). Plugging in the wavefunctions and taking 

the limit of large spatial separation gives[5]: 

J=
Es-Et

2
= ∫ dr1dr2(ϕK(r1)ϕλ(r2)) (

e2

|r1-r2|
+

e2

|RK-Rλ|
-

e2

|r1-RK|
-

e2

|r2-Rλ|
) (ϕλ(r1)ϕK(r2)) . 

Hence, the sign of the exchange integral tells which overall spin state is favored. 

Recognizing the similarity between the singlet/triplet perference and the 

ferromagnetic ordering, Heisenberg generalizes the Heitler-London method to 2n-electron 

system and successfully demonstrates that the exchange term “generates” the Weiss 

molecular field. Because the terms in J are due to electrostatic interaction, the integral gives 



the correct order of magnitude to account for the ad hoc Weiss field. Heisenberg uses the 

following notation in his paper to express the generalized exchange integral[1]: 

𝐽𝑘𝑙=
1

2
∫ dτkdτl𝜓𝑘

𝐾𝜓𝑘
𝜆𝜓𝑙

𝐾𝜓𝑙
𝜆 (

2e2

𝑟𝑘𝑙
+

2e2

𝑟𝐾𝜆
−

e2

𝑟𝐾𝑘
−

e2

𝑟𝐾𝑙
−

e2

𝑟𝜆𝑘
−

e2

𝑟𝜆𝑙
) , 

where k and l are the electrons, K and 𝜆 are atoms, and the factors of 2 come from summing 

each interaction pairs twice. Because of the first recognition of exchange interaction as the 

explanation for orderings in spins, and the explicit expression for J in many-electron system, 

the spin-dependent part of Hamiltonian 

𝐻 = − ∑ 𝐽𝑖𝑗𝑺𝑖 ∙ 𝑺𝑗 

is referred to as Heisenberg model even though it is not in the original paper[4]. 

To evaluate the magnetization, Heisenberg makes the assumption that the energies for 

a given total spin s of the system follows Gaussian distribution[1]. He then calculates the 

mean and variance of the energies: 

𝐸𝜎 =
1

𝑓𝜎
∑ 𝜒𝜎

𝑃
𝑃 𝐽𝑃 ,  𝛥𝐸𝜎

2̅̅ ̅̅ ̅ =
1

𝑓𝜎
2 ∑ (𝜒𝜎

𝐸𝜒𝜎
𝑃,𝑃′

−𝑃,𝑃′ 𝜒𝜎
𝑃𝜒𝜎

𝑃,𝑃′

)𝐽𝑃𝐽𝑃,𝑃′ , 

where 𝜎 is the set of energy levels with total spin s, 𝜒𝜎
𝑃 is the group character of permutation 

P, and 𝑓𝜎 = 𝜒𝜎
𝐸  is the number of levels. With only nearest neighbor terms and setting all 𝐽𝑃 

equal as some 𝐽0, he then gets the result: 

𝐸𝜎 = −𝑧 
𝑠2+𝑛2

2𝑛
𝐽0 + 𝐽𝐸  , 𝛥𝐸𝜎

2̅̅ ̅̅ ̅ = 𝐽0
2𝑧

(𝑛2−𝑠2)(3𝑛3−𝑠2)

4𝑛3   , 

where z is the number of nearest neighbor, and  𝐽𝐸  is the Coulomb interactions between 2 

electrons, 2 atoms, and electrons and atoms[1]. With the distribution, Heisenberg then 

calculates the partition function S by summing up all possible total spin cases (–n to n), and 

finds the expected value of magnetization m: 

𝑚0 =
𝜕 𝑙𝑛𝑆

𝜕𝛼
= 𝑛 𝑡𝑎𝑛

𝛼+𝛽
𝑚0

𝑛
−𝛽2𝑚0

𝑛𝑧
+𝛽2 𝑚0

3

2𝑛3𝑧

2
 , 

with definitions[1] 

𝛼 =
ℏ𝑒

𝑚𝑒𝑐

1

𝑘𝐵𝑇
𝐻 , 𝛽 =

𝑧 𝐽0

𝑘𝐵𝑇
 . 

Showing that the formula for m only differs from Weiss’s formula in a term cubic in 
𝑚0

𝑛
 (so 

can be neglected for large n), Heisenberg succeeds in reproducing the Weiss molecular field 

with the exchange interaction. The only concern in the process is the seemingly arbitrary 

assumption of Gaussian distribution. In fact, Heisenberg himself notes in his paper that it 

gives rise to a nonphysical result at low temperature. For the equation to have a nonzero 

solution, the condition for ferromagnetic is expressed as[1]: 



𝛽 (1 −
𝛽

𝑧
) ≥ 2 . 

Because the peak of the left hand side is achieved at 𝛽 =
𝑧

2
 , it then leads to the result that 𝑧 ≥

8 for ferromagnetism to take place. Another important criterion is 𝐽0 being positive, which 

Heisenberg does not give a definite answer to. But arguing high quantum principle number n 

results in positive 𝐽0, Heisenberg puts a rough boundary at n = 3[1]. 

Antiferromagnetism and Quantum Spin Liquid  

 While Heisenberg model with positive J explains the existence of ferromagnetism, 

negative J leads to other numerous interesting topics: J < 0 implies the antiferromagnetic 

case, where quantum spins are favored to align antiparallel. Different antiferromagnetic 

interactions can conflict with each other, and when the lattice structure doesn’t allow them to 

be simultaneously satisfied, the material is said to be frustrated[3]. The simplest example 

might be an Ising antiferromagnet on a triangular lattice with equal nearest neighbor 

interactions has geometric frustration: if two spins on a triangle are set to align antiparallel, 

the last one cannot satisfy the preferred interactions with both neighbors at the same time. 

Existence of frustration is connected to an exotic phase: quantum spin liquid (QSL).  

 In 1973, P.W.Anderson first proposed the term in his paper. He used it to describe a 

special state called resonance valence bond (RVB), and claimed that it is the ground state of 

Heisenberg antiferromagnet on a triangular lattice, which was proven to be incorrect[2]. 

“Liquid” refers to the disorderness of the system, and spin liquid is a system of spins with 

high entanglement yet without an ordering. A spin liquid can be classical or quantum, where 

classical spin liquid is disordered due to thermal fluctuations and a high degeneracy of states 

to transfer between, and a QSL is due to quantum fluctuation. Hence despite their spins are 

highly correlated, a classical spin liquid can retain disorderness down to very low 

temperature, and a QSL can be disordered even at absolute zero. Typically, frustration leads 

to necessary compromise of one of the competing exchange interactions, and the choice of 

which bond to compromise can give a high degeneracy, so frustration is often a defining 

feature of QSL. In 1987, Anderson and others proposed that doping a QSL can give rise to 

superconductivity. Around 2000, people noticed the use of QSL in quantum computation due 

to its robustness in error[2]. Furthermore, studying QSL is also related to Majorana particles, 

magnetic monopoles, and topological orders, etc. The richness of possibilities in QSL stirs 

constant hot debate around it till nowadays. 

 Usually QSL is identified as the lack of magnetic order at zero temperature, but a 

positive definition makes it easier to work with. In that context, QSL is often identified as 



phase with extremely high entanglement, which means it can’t be smoothly deformed into a 

finite product state[2]. Even then, it is hard to measure the degree of entanglement, so the 

experimental realization of QSL has been challenging. Yet, there already exist theoretically 

contrived models that help people understand general properties of QSL and provide 

references for experimental work.  

Theoretical Model of QSL 

One of the earliest models is toric code model proposed by Alexei Kitaev in 1997, 

which is similar to Heisenberg model, but “entangles” 4 spins at a time. It is a model 

(originally) defined on a 2D square lattice with periodic boundary condition, spins at the 

middle of each edge of the squares, and a Hamiltonian: 

𝐻 = −𝐽 ∑ 𝑃𝑝

𝑝

− 𝐽′ ∑ 𝑆𝑠

𝑠

 

, where the operator first term is summed over all plaquettes on the lattice and the second 

term is summed over all sites (as shown by blue and red lines in the Fig.1), and “plaquette” 

and “star” operators are tensors of Pauli spin matrices[2]: 

𝑃𝑝 = ∏ 𝜎𝑖
𝑧

𝑖∈𝑝

, 𝑆𝑠 = ∏ 𝜎𝑖
𝑥

𝑖∈𝑠

 . 

Taking one plaquette and one star operator, they either not overlap or overlap on two edges. 

Because one action of 𝜎𝑖
𝑥 flips z-based eigenstates once and the eigenvalues for 𝜎𝑖

𝑧 are ±1, 

two overlapping edges mean the measured eigenvalues are flipped twice: (−1)2 = 1. 

Thence, the action of 𝑆𝑠 would not change the result of 𝑃𝑝, and the same applies for vice 

versa; namely, 𝑆𝑠 and 𝑃𝑝 commute. Consequently, minimizing the energy to find the ground 

state is the same as maximizing the eigenvalue of each 𝑆𝑠 and 𝑃𝑝 operator at the same time, 

so the ground state occurs when each individual 

operator gives +1. Obviously, this is a highly-

entangled phase: for a star to give +1, there 

must be an even number of spins corresponding 

Fig. 1 Operators of the toric 

code model[2] 

Fig. 2 Periodic boundary condition 

of the toric code model 



to eigenvalues -1, so measuring some of the 4 spins gives information on the rest, and this 

applies to every single site and plaquette.  

Degeneracy is also found in this model. Consider the loop operator L as a larger 

version of 𝑃𝑝, only that now the spins acted on are only those on the contour L. Then a trivial 

L can be regarded as the multiplying all the plaquettes inside together, since all the interior 

edges are multiplied twice and give +1. Then for ground state, because each small 𝑃𝑝 needs to 

be +1, any L that can be expressed as tensor of 𝑃𝑝 should also give +1. However, there are 

two non-trivial loops: the ones going around the torus (the shape is due to the periodic 

boundary condition), as shown in Fig.2. If a strip of plaquesttes are multiplied together, the 

resultant contour would be two parallel loops. This gives 4-fold degeneracy for ground state, 

since each of the non-trivial loop can then be either +1 or -1. 

 Other general features of QSL that the toric code model demonstrates are non-local 

excitation and anyon statistics. The minimal excitation to the ground state is taking one 𝑆𝑠 or 

𝑃𝑝 to be -1, so that the total energy is raised by 2J or 2J’ respectively. Exciting an individual 

star or plaquette is referred to as electric (e) or magnetic (m) particles, so e sits on lattice sites 

and m sits in the middle of lattice sites[2]. Locally, e and m particles can only be created in 

pairs since any action on a single edge/spin, such as acting 𝜎𝑖
𝑧 on one spin, always involves 

two plaquettes and two stars. To create an isolated particle, it is necessary to take a non-local 

excitation. For example, action of a line of 𝜎𝑖
𝑧 only flips the stars at the end of the line (the 

stars in the middle are unchanged because of an even number of flipping), hence creating 2 m 

particles separated from each other. The non-locality leads to the exotic mutual statistics 

between e and m[2]. Considering there exist an isolated m and an isolated e particles, which 

represents the state of the system with one star and one plaquette being -1, the rest all +1. 

Again because 𝜎𝑖
𝑧 flips x-based eigenstates, acting 𝜎𝑖

𝑧 on an edge can be regarded as 

translating the e particle. If the e particle is move along a closed loop around m, the action is 

equivalent to take the loop operator L on the initial state, which is the same as the product of 

all plaquettes inside as mentioned before. Yet due to the existence of an m particle in the 

middle, there is one plaquette with value -1, so the overall effect is multiply by -1 and the 

final state is off by a π phase shift[2]. 

 There are also other theoretical models proposed for QSL ground state, including the 

honeycomb, Heisenberg model on other lattices, etc. They are usually contrived quite 

artificially and share similar features discussed above. 

Experimental Realization of QSL  



 Because most properties of QSL are hard to measure, like entanglement and non-

locality, there are few experimental signatures that can be used to identify QSL. The widely-

accepted defining feature – lack of magnetic order at zero temperature – is not easy to verify 

neither. Typically, identification requires combining multiple measurements together for 

analysis, or perfect match with some theoretical models. So far, there is still no clear 

evidence for any experimental realization. Practically, frustration is an important aspect that 

people examine when looking for QSL; it can be caused either by next nearest neighbor 

interaction or just geometry of the lattice[2]. Commonly used techniques include NMR and 

muon spin resonance to measure magnetic ordering, neutron scattering to probe excitations, 

and specific heat measurements to match with theoretical models. Though there exist some 

candidates, such as herbersmithite and triangular organics, none has a perfect matching with 

theoretical models[2][3]. 

Summary  

Correctly identifying the electrostatic interactions between electrons as the origin for 

the Weiss molecular field, Heisenberg demonstrates the significance of electron-electron 

interaction and provides the basis for explaining the ferromagnetism. His calculations on the 

exchange phenomenon match the experimental observations and set the first conditions on 

ferromagnetism. Furthermore, the Heisenberg model generated by his exchange integral 

inspires other profound discussions. Particularly, the antiferromagnetic interactions leads to 

the topic of quantum spin liquid, which is intensely studied on till today. 
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