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Introduction

Jakov Frenkel was a Russian born physicist who made multiple contri-
butions to fields both within and outside of condensed matter physics. His
book Kinetic Theory of Liquids, is a classic text on the subject [1]. He has
also made contributions to semiconductor physics, specifically in coming up
with the Poole-Frenkel effect [2]. One of his most important contributions
was the introduction of Frenkel Excitons, in his paper On the Transforma-
tion of Light into Heat in Solids I, although he certainly did not refer to the
excitations he studied as ”Frenkel Excitons,” in the paper [3]. This is the
topic that I will present in this report. Frenkel’s paper has garnered over 540
citations. Although this is impressive, it doesn’t even begin to capture the
influence of Frenkel’s work. Excitons are bound states made up of an electron
and a hole, and have become their own sub-field of condensed matter physics,
with some labs devoted completely to their study. The excitons studied in
Frenkel’s work, Frenkel Excitons, are only one type of exciton. As will be
discussed further below, Frenkel Excitons are highly localized excitons, where
the hole and electron are less than a lattice constant from each other and
are localized to the same atom in the crystal. This is in contrast to other
kinds of excitons, such as Wannier Excitons, where the distance between the
electron and hole can be larger than a lattice constant, and the electron and
hole are not necessarily localized to the same atom on the crystal [4].
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Initial Exciton Calculation

In [3], Frenkel tries to address the issue of how a model of a solid consist-
ing of essentially harmonic oscillators can take in the energy of absorbed light.
It is well known that when light is absorbed by a single molecule, an electron
in the molecule will jump to a higher energy, excited state. Although it is
fairly intuitive how single photons can also cause electrons to jump to excited
states in crystals, it is not obvious what the effects of excited electronic states
are on the entire crystal. Frenkel’s first conceptual leap was that, instead of
the excited electronic state being localized to a single atom/molecule (unit
cell), the excitation can actually be spread over the crystal, in ”Excitation
Waves.” Frenkel First introduces these, and studies their properties in detail;
this is essentially where the notion of excitons is introduced [3].

There are some clear assumptions in [3]. The coupling between atoms
in the crystal is assumed to be small, specifically compared to the coupling
between the electrons and the atoms. It is also assumed that each electron
stays fixed to its own atom. The vibratory motion of the atoms is also
neglected at first, until later in the paper when the relationship between the
excitons and the heat oscillators (normal modes) is developed [3].

Due to absorption of light, the electronic state of an atom can change from
the ground state to an excited state, where one of the valence electrons moves
to a higher energy state, leaving a hole in its previous state. The different
states of the crystal, in the presence of a single excitation, are then linear
combinations of the states where the excitation is on each of the different
atoms. For n atoms, there are n sets of coefficients cn characterizing the
different states:

Ψ =
n∑
l=1

clφl (1)

φ1 = ψII(1)ψI(2)...ψI(n), φ2 = ψI(1)ψII(2)...ψI(n), ... (2)

Here ψI refers to the ground state electron configuration of an atom, and
ψII refers to the excited state electron configuration. Then φn refers to the
state where the nth atom is in the excited electronic state and all of the other
atoms are in the ground state (the argument of ψ refers to the coordinate
of the electron in that atom). The set of possible states is referred to as
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the excitation multiplet. The coefficients are found by solving the matrix
equation

n∑
l=1

Uklcl = W ′ck (3)

Where Ulk are the matrix elements of the potential energy of the atoms and
W ′ is the difference between the energies of the different states (really the
set of coeffiecients cl and W ′ have an index for each of the n solutions to
the equations (3)). Ulk is calculated using the potential energy between two
electrons separated by a distance Rαβ.

U =
∑
α<β

U(α, β;Rαβ) (4)

Ukl =

∫
...

∫
Uφ∗kφldτ1...dτn (5)

What can be noticed about the equations in (3) is how much they resemble
the equations for classical, coupled harmonic oscillators, with cl representing
the amplitudes of the different oscillations,

√
W ′ representing the classical

frequencies, and Ulk representing the coupling coefficients between the oscil-
lators. It should be made clear again that in reality, the cl are the amplitudes
for which atom contains the excited electronic state.

At this point, [3] now assumes a rectangular or parallelipiped lattice in
order to make a concrete calculation. In this case, the normal modes of
vibration are standing waves with the following wave numbers:

g1 = ± r1
2a1

, g2 = ± r2
2a2

, g3 = ± r3
2a3

(6)

With ri the index associated with the different wavenumebers in the ith
direction (x, y, or z), ranging from 0 to ni − 1, ni being the total number of
atoms in the ith direction. Similarly, the ai are the edges of the crystal. The
solutions to the equations in (3) can be written in the following form [3]:

cr1,r2,r3,k1,k2,k3 = Ar1r2r3 cos
πδk1r1
a1

cos
πδk2r2
a2

cos
πδk3r3
a3

(7)

Where Ar1r2r3 is an overall normalization constant, and ri indexes the differ-
ent solutions, with one separate index for each spatial dimension. Plugging
this solution into (3) can help us find W ′:

W ′
r1r2r3

=
∑
l1l2l3

U000l1l2l3 cos
πδl1r1
a1

cos
πδl2r2
a2

cos
πδl3r3
a3

(8)
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Here the first index in Ukl was set to 0 by translation invariance. Up to
now we have been general about Ukl, we can then look at the case of nearest
neighbor coupling, here the previous expression becomes

W ′
r1r2r3

= V0 + 2V1(cos
πδ

a1
+ cos

πδ

a2
+ cos

πδ

a3
) (9)

Where V1 is the potential energy matrix element, calculated with equation
(5), for nearest neighbors, and V0 is six times the potential energy matrix
element calculated for the same atom. From this, we can then identify this
energy with the frequency associated with this excited state of the crystal.
The reason that this is useful is that we can then calculate the group velocity
for this excited state [3].

hν ′ = W ′, vi =
∂ν ′

∂gi
=
−4πδV1

h
sin 2πgiδ (10)

Which in the small gi limit reduces to

~v =
−8π2δ2V1

h
~g (11)

An important thing to note about this result is that the group velocity is
proportional to the interaction matrix element/energy. This captures the fact
that the probability for an excited electronic state to be transmitted from one
atom to another is larger for nearby atoms, as the interaction matrix element
is largest for nearest neighbors. Taking the small gi limit shows that, in this
limit, the propagation is parallel to the wavevector of the state, similar to
other particle-like states in quantum mechanics. With the coefficients cl,
one can create standing waves or wavepackets with suitable combinations of
states with different values of gi.

The argument just given seems somewhat simple and straightforward, but
the implications are very important. The fact that the excitation, meaning
the atom with the excited state, can move and show particle-like properties
really tells us that it behaves like a particle, which has been dubbed the
exciton. Specifically, when the electron is excited to a higher energy state
within the atom, it leaves behind a vacancy in the state that it previously
occupied, a hole. This electron-hole pair forms the exciton, and Frenkel’s
calculations show that they, together, show properties of a single particle [3].
Excitons have become their own subfield of condensed matter physics, and
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Frenkel excitons are only one limiting case, where the electron and hole are
localized to the same atom. Wannier calculated some of the properties of
the excited states of electronic crystals more from the perspective of energy
bands, and also found that the spectrum of states contains a section, below
the Bloch Band, consisting of the excitonic states of a bound electron-hole
pair [4]. Wannier found the lowest lying excitons resembled Frenkel Excitons,
where the electron and hole were localized on the same atom. However,
there were also excitons closer in energy to the bands, and the orbit of the
electron there is determined more by the coulomb interaction with the hole
the electron is bound to. Since an electron-hole pair is electrically neutral,
no photocurrent is observed in this region. Above this spectrum of states
current can be observed as there the electrons and holes move independently
from each other. The relationship between Frenkel Excitons and Wannier
Excitons is similar to the relationship between tight binding calculations and
band theory calculations, one involves electrons more localized to the ions
in the crystal, the other involves electrons more spread out in the crystal
compared to the ions.

Further Exciton Calculations due to Frenkel

After the initial calculation of excitons and some of their properties, Frenkel’s
paper next calculates the effect that excitons can have on the properties of
a crystal [3]. First, we can look at the speed of sound, which is given by

u =

√
κ

ρ
(12)

Where κ is the elastic modulus of the crystal and ρ is the mass density. Both
of these change in the excited states of the crystal. In the non-excited state,
the elastic modulus can be calculated by expanding the mutual potential
energy between the atoms in the crystal, W0:

W0 = W 0
0 +

1

2
(
∂2W0

∂v2
)0(v − v0)2, κ0 = v00(

∂2W0

∂v2
) (13)

With v referring to the volume of the crystal (so that the above describes
stretching and compressing of the crystal). Also, for a cubic crystal, the mass
density is given by ρ0 = m

δ30
. The same calculation can then be done with
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the excited state mutual potential energy. Taylor expanding the energy in
the change in the lattice constant, ∆δr = δr − δ0 (due to the excited state),
and using the fact that we are expanding around a minimum of the potential
energy gives

∂Wr

∂δr
=
∂W0

∂δ
+
∂2W0

∂δ2
∆δr +

∂W ′
r

∂δ
= 0 (14)

∆δr = −∂W
′
r

∂δ
/
∂2W0

∂δ2
(15)

Then using our expression for the energy of the excited state, equation (9),
the change in the lattice constant is found to scale as 1

n
since V1 doesn’t scale

with n. This result can be used with the expressions for the elastic modulus
and mass density, to see that the change in these quantities due to an excited
state also scales as 1

n
. Here n is the number of atoms in the crystal, and is a

huge number, so the direct changes to these quantities will be too small to
detect.

The significant effect that the excited electron states can have on the
crystal is that radiationless transitions from the excited electronic state to
an unexcited state are possible, with the difference in energy being converted
into vibrational motion [3]. Specifically, Frenkel refers to the vibrational nor-
mal modes of the crystal as ”heat oscillators,” which have harmonic oscillator
wavefunctions in the normal coordinates ξn.

fN (ξ) =
[
2NN !(πα)1/2

]−1/2
HN

(
α1/2ξ

)
e−1/2αξ

2

(16)

α = 4π2νm/h (17)

The relationship between the normal modes in the unexcited state ξ1 . . .
and in the unexcited state ξr1 . . . can be developed, the details of which can
be found in [3], which is necessary to calculate the probability of radiationless
transitions between the excited and unexcited states. This is approached with
perturbation theory, by looking at the matrix element of the perturbation
energy with respect to the wavefunctions of the electronic and vibrational
degrees of freedom.

Mr =

∫
UΨ∗0Ψr =

∫
...

∫
Uχ∗0χrdτ1...dτn

3n∏
s=1

fN0s (ξs) fNrs

[(
νrs
ν0s

)1/2

ξs

]
dξs

(18)
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Where χ refers to the electronic wavefunction, f(ξ) to the wavefunction of
the normal modes, ν0s to the unexcited frequencies, and νrs to the excited
state frequencies. The dominant processes will be at or near resonance,
which means that the energy conservation condition will be satisfied or nearly
satisfied.

WII −WI +W ′
r −W ′

0 +
3n∑
s=1

[
hνrs

(
Nrs +

1

2

)
− hν0s

(
N0s +

1

2

)]
= 0 (19)

Here WI is the ground state energy of a given electronic state and WII is
the excited state energy. This also lends itself to looking at radiative transi-
tions, which are related to absorption and emission of light. In this case, the
resonance condition, instead of having the change in energy equal to 0, it is
instead planck’s constant times the frequency of absorbed/emitted light [3].

hν = WII −WI +W ′
r−W ′

0 +
3n∑
s=1

[
hνrs

(
Nrs +

1

2

)
− hν0s

(
N0s +

1

2

)]
(20)

Further Developments in Exciton Physics

There has been a substantial amount of experimental and theoretical work
on excitons since Frenkel’s work, too much to give a complete summary in
this short paper, so instead I will highlight some particularly interesting
developments. For example, charge-transfer excitons are an intermediate
case between Frenkel and Wannier excitons, where the electron and hole
are not on the same molecule or largely separated, but stay on neighboring
molecules, and have been seen in organic molecules and ionic compounds
[5]. Excitons are bosons, and theoretically were predicted to be able to
form Bose-Einstein Condensates [6]. One of the first people to observe Bose-
Einstein Condensation of Excitons is a professor at UCSD, Dr. Leonid Butov
[7]. In these experiments, indirect excitons were used. Indirect excitons are
fairly different from Frenkel Excitons, in that the electron and hole are highly
nonlocalized from each other. Specifically, for indirect excitons the electron
and hole are in different, spatially separated layers of quantum wells.

Exciton research is still very active today. There was interesting recent
paper [8] which involved an experiment on electron emission in diamond nee-
dles that appealed to excitons as an explanation for experimental results. The
experiment essentially sent laser pulses of light (of varying frequency/energy)
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onto the backside of diamond needles. Electron emission from the tip of the
diamond needle was then measured, specifically the dependence of the emit-
ted current on an applied voltage and on the energy of the illuminating light.
An interesting puzzle arises in this experiment, namely that the penetration
depth for light in diamond is ≈ 5µm, while the distance between the point
of illumination and the point of emission is ≈ 100µm, so the region of carrier
generation is not the same as that of emission. An explanation proposed by
the authors of the paper is that the absorbed light could be creating excitons,
which can travel as wave packets to the tip of the needle. There, or along
the way, the applied field can turn the exciton into a free carrier, where the
electron can then be emitted. Some supporting evidence for this explanation
is that, at a constant bias voltage, the threshold for a significant increase in
the emitted current is around 5.2eV, which is the energy of the excitons in
diamond [8].

Conclusion

As stated earlier, the impact of Frenkel’s work is not fully captured by how
many citations it has. The purpose of this work was essentially to look at how
excited electronic states can affect the properties of a crystal, but it was found
that these excited electronic states can move and act like particles themselves.
This conceptual leap gave us excitons, which along with pioneering work
from Wannier and many others afterward, became a significant subfield of
condensed matter physics, which is now covered in most solid state textbooks
[9, 10]. Exciton physics is still a very active field today. A professor at UCSD,
Leonid Butov, is one of the current leaders of exciton physics, and has even
started to make devices that use properties of excitons [11]. Frenkel’s paper
is also still being cited this year, with 24 citations in 2018, the most recent
being October 29th [12]. It is quite impressive and a bit unexpected (to
me) that a question as simple as ”What are the effects of individual excited
electronic states on a crystal,” can have such large implications and spawn a
field of physics.
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