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FIELD ELECTRON EMISSION 
Electron emission in intense electric fields (1928), R.H. Fowler and L. Nordheim 

 
ABSTRACT 
Electron emission from metal surfaces under high electric fields at low temperatures intrigued 
the researchers of early twentieth century. This article aims at understanding the historical 
development of this topic by targeting the most significant work in the area, viz. the 1928 paper 
of Fowler and Nordheim1. The treatment prior to Fowler-Nordheim (FN) has been examined in 
brief and recent developments have also been included. The paper seeks to emphasize the 
ubiquity of FN theory beyond emission from metals into vacuum, which accounts for its 
significance and present day relevance.  
 
INTRODUCTION 
Electron emission takes place when emissive materials are subjected to high temperatures 
(thermionic emission), applied fields (field emission), or light (photoemission). For thermionic 
and photoemission, the field is smaller than field-emission, and a usual approximation is that all 
energy more than the barrier are emitted. For thermionic emission, the energy of the transmitted 
electrons is assumed to be Maxwell-Boltzmann distributed leading to the Richardson-Laue-
Dushman equation. However, the underlying physical phenomena for field-emission was not 
understood until the work of Fowler-Nordheim. 

The experiments of Earhart2, in 1901, indicated for the first time that electrons may be 
pulled out of metals by high electric fields. Thereafter, many successive experiments by Kinsley3, 
Hobbs4, Hoffman5, Lilienfeld6 and, Millikan and Shackelford7 demonstrated the same without a 
theoretical discussion. In 1923, Schottky8 developed an approximate theory in which he assumed 
that the electrons constituting the field-currents are identical with thermions. This was later 
refuted by much improved experimental data by Millikan-Eyring9, and Millikan-Lauritsen10. 

The development of quantum mechanics around that time played a vital role in the 
understanding of this phenomenon. The theory was considered anew by Richardson11 and 
Houston12, borrowing from the concepts developed by Sommerfeld. But the breakthrough came 
with the seminal paper of Fowler and Nordheim, in 1928, built on the works of Nordheim13 and 
Oppenheimer14. Their paper has shaped much of the subsequent work. The name ‘Fowler-
Nordheim tunneling’ is now used for any field-induced electron tunneling through a roughly 
triangular barrier. The main modern contexts are: (i) vacuum breakdown in high-voltage 
apparatus, (ii) cold-cathode electron sources-their many applications include bright point 
sources, X-ray generators, electronic displays and space vehicle neutralizers, and (iii) internal 
electron transfer in some electronic devices. 

The original 1928 equation used an unrealistic barrier model which seriously 
underpredicts the current densities. Various modified equations have been introduced known as 
‘FN-type equations’. Most frequently used is the ‘standard FN-type equation’ derived from 
Murphy and Good’s15 1956 work. In recent years, several developments have been made in this 
direction by Forbes16, Jensen17 and, Forbes and Deane18. Forbes and Deane19 also claim to have 
obtained an exact analytical theory for the exact triangular barrier problem which can replace 
Fowler-Nordheim’s 1928 theory. 
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PRIOR TO FOWLER-NORDHEIM (1928) 
 
In 1926, Millikan and Eyring first developed experimentally the laws governing the emission of 
electrons from metals by fields alone. Their experimental setup is shown in Fig. 1. They first 
proved that the electrons constituting the field-currents are not identical with thermions as had 
theretofore been assumed. The key results obtained by them were: (i) the field-currents in 
general have their origin in a few minute surface spots, and (ii) the critical gradients and the field 
currents are completely independent of temperature between 300 K and 1000 K.  

  

The conclusions that were made: 
(i) Field currents are due to conduction electrons. 
(ii) The field currents consist of electrons which escape only from isolated points on the 

surface where the work function b has been enormously reduced by microscopic 
geometrical roughness, or chemical impurities, or both. 

(iii) Energy of conduction electrons is independent of temperature. Independence upon 
temperature of the field-currents over a range of 700 ˚C constitutes evidence that 
equipartition does not hold for the bulk of conduction electrons in tungsten at 
ordinary temperatures. For when these conduction electrons escape as thermions, 
the law governing their escape is 

𝑖 = 𝐴𝑇𝑛𝑒−𝑏/𝑇 (1) 
in which b is the work function of Richardson. The fact, then, that in the present 
experiments i is not at all dependent upon T over a 700 ˚C interval means that the 
electrons pulled out by the fields here are not thermions at all. 

(iv) Relations of field-currents and thermionic currents- For at a sufficient distance x1 from 
the surface of the wire (a distance large compared to the surface irregularities) it is 
the image-force alone which must be overcome to cause the electron to leave the 

Fig. 1. Diagram of apparatus and electrical connections. Fig. 2. Logarithm of field current vs square root of field 
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surface. The value of this image-force per unit charge is e/4x1
2. Every electron must 

escape which reaches the distance 𝑥1 = √𝑒/4𝐹. Now, the total work necessary to 

bring an electron out to x1 is the work b0 necessary to bring it up to point x0 at which 

the image law begins to be valid plus the integral ∫ (
𝑒

4𝑥2 − 𝐹) 𝑒 𝑑𝑥
𝑥1

𝑥0
. That is, the work 

function is 

𝑏0 + ∫ (
𝑒

4𝑥2 − 𝐹) 𝑒 𝑑𝑥
√𝑒/4𝐹

𝑥0
= 𝑏0 +

𝑒2

4𝑥0
− √𝑒3𝐹 + 𝑒𝐹𝑥0 (2) 

Since x0 is very small (10-8 cm) the last term may be dropped while the first term is the 
total work necessary to bring the electron out where there is no field. Hence 𝑏 −

√𝑒3𝐹 is the work function in the presence of an external field F and the thermionic 

equation becomes 𝑖 = 𝐴𝑇𝑛𝑒−(𝑏−√𝑒3𝐹)/𝑇. This equation shows that when T is constant 

and F alone varies log 𝑖 ∝ √𝐹. However, plot for log i against √𝐹 is not a straight line 
(Fig. 2).  

 
As a continuation of the last conclusion, Millikan and Lauritsen plotted log i against 1/F. 

The result shown in Fig. 3 reveals that log i plots as quite as good a straight line against 1/F as is 
obtained in the thermionic work when log i is plotted against 1/T. 

 
 
 

Further, in view of the fact that except at high temperatures the field currents have been 
shown to be independent of temperature, they justified that log i - 1/F curves would have 
precisely the form given above at absolute zero. They combined the empirical formula governing 

field currents (𝑖 = 𝐶𝑒−𝑏/𝐹) with the usual formula governing thermionic currents (𝑖 = 𝐴𝑒−𝑏/𝑇) 
and obtained the general formula for the extraction of electrons by fields or by temperature-or 

by both-in the form 𝑖 = 𝐴𝑒−
𝑏

𝑇+𝑐𝐹. For the sake of more exact identification of form with the 
customary thermionic equation, 

𝑖 = 𝐴(𝑇 + 𝑐𝐹)2𝑒
−

𝑏

𝑇+𝑐𝐹 (3) 
They concluded that application of an external field is equivalent to increasing the temperature 
of the electrons within the metal. 

Fig. 3. Logarithm of field-current vs inverse of field 
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FOWLER-NORDHEIM’S PAPER 
 
Millikan and his associates asserted that a distinction should be drawn between the electrons 
which can function as thermions and the ordinary conduction electrons which yield the emission 
at great field strengths and are absolutely independent of the temperature. Fowler and 
Nordheim found this deduction liable to mislead. They showed that Sommerfeld’s picture of a 
metal yields the formula both for strong fields and thermionic emission. A single set of free or 
conduction electrons distributed according to the Fermi-Dirac statistics suffices for both 
purposes. 
 
The Reflection of Electrons at a Potential Jump when an Electric Field acts on one Side- 
When a uniform external field acts, potential energy of the electrons is as shown in Fig. 4. The 
corner at the top will really be rounded off by the image effect. Fowler-Nordheim claimed that 
this modification is unimportant in calculating the strong field emission at ordinary temperatures. 
To study the emission through the potential energy step of Fig. 4, one needs to solve- 

𝑑2𝜓

𝑑𝑥2 + 𝜅2(𝑊 − 𝐶 + 𝐹𝑥)𝜓 = 0 (𝑥 > 0) (4) 

𝑑2𝜓

𝑑𝑥2 + 𝜅2𝑊𝜓 = 0 (𝑥 < 0)   (5) 

subject to the conditions that 𝜓 and 𝑑𝜓/𝑑𝑥 are continuous at x=0 and that for x>0 𝜓 represents 
a stream of electrons progressing to the right only. Constant 𝜅 is defined by 

𝜅2 = 8𝜋2𝑚/ℎ2 (6) 
 
 
 
 
 
 
 
 
Let 

(−
𝐶−𝑊

𝐹
+ 𝑥) (𝜅2𝐹)

1

3 = 𝑦 (7) 

then Eq. 4 becomes 
𝑑2𝜓

𝑑𝑦2 + 𝑦𝜓 = 0   (8) 

of which the solutions are expressible in terms of Bessel’s functions of order 1/3, 

𝜓 = √𝑦𝐽
±

1

3

(
2

3
𝑦

3

2)  (9) 

We require that solution which for large x (i.e. y) represents a wave travelling to the right. 
Therefore, 

𝜓 = √𝑦𝐻1

3

(2)
(

2

3
𝑦

3

2)  (10) 

where H(2) denotes second function of Hankel. For large y, 

C 

Fig. 4. Potential energy of electrons 
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𝜓~ (
2

𝜋
)

1

2 1

𝑦
1
4

1

(
2

3
)

1
2

𝑒
−𝑖[

2

3
𝑦

3
2−

5𝜋

12
]
 (11) 

As 𝑦 → ∞, 

|𝜓|2~
𝐴

(𝑊−𝐶+𝐹𝑥)
1
2

=
𝐴′

𝑣
    (12) 

where A, A’ are constants and v is the velocity of electrons. Hence the density of electron stream 
behaves as it should. 
For x<0 we get, 

𝜓 =
1

𝑊
1
4

[𝑎𝑒𝑖𝜅𝑥√𝑊 + 𝑎′𝑒−𝑖𝜅𝑥√𝑊
]  (13) 

Let us write 

2

3
𝜅√𝐹 (

𝐶−𝑊

𝐹
)

3

2
= 𝑄    (14) 

so that Q is real and in practice large. 
The equations of continuity of 𝜓 and 𝑑𝜓/𝑑𝑥 can therefore be reduced to 

𝑎 + 𝑎′ = 𝑊
1

4 (
𝐶−𝑊

𝐹
)

1

2
𝐻1

3

(2)
(𝑒−

3

2
𝜋𝑖𝑄)  (15) 

−𝑎 + 𝑎′ =
𝑖

𝜅𝑊
1
4

[
1

2
(

𝐶−𝑊

𝐹
)

−
1

2
𝐻1

3

(2)
(𝑒−

3

2
𝜋𝑖𝑄) +

𝐶−𝑊

𝐹
𝜅√𝐹

𝑑𝐻1
3

(2)

𝑑𝑄
(𝑒−

3

2
𝜋𝑖𝑄)] (16) 

By the definition of functions of Hankel, we can express 𝐻1

3

(2)
(𝑒−

3

2
𝜋𝑖𝑄) in terms of real functions 

𝐼
±

1

3

(𝑄) by the equation 

𝐻1

3

(2)
(𝑒−

3

2
𝜋𝑖𝑄) =

−1

sin
1

3
𝜋

{𝐼
−

1

3

(𝑄) + 𝑒
1

3
𝜋𝑖𝐼1

3

(𝑄)}  (17) 

Let us now write 

𝛼 + 𝑖𝛽 =
𝐼′

−
1
3

+𝑒
1
3𝜋𝑖

𝐼′
1
3

𝐼
−

1
3

+𝑒
1
3𝜋𝑖

𝐼1
3

     (18) 

where 𝛼 and 𝛽 are real. Let us also write D(W) for the fraction of W electrons penetrating the 
boundary peak and emerging under the influence of the external field F. 

𝐷(𝑊) =
|𝑎|2−|𝑎′|

2

|𝑎|2 =
4𝛽(

𝐶−𝑊

𝐹
)

3
2

√𝐹

{𝑊
1
4(

𝐶−𝑊

𝐹
)

1
2

+
𝐶−𝑊

√𝐹

𝛽

𝑊
1
4

}

2

+
1

𝜅2𝑊
1
2

{
1

2
(

𝐶−𝑊

𝐹
)

−
1
2

+
𝐶−𝑊

√𝐹
𝜅𝛼}

2 (19) 

Calculation of 𝛼 and 𝛽 remains. It can be verified that 

𝛽 =
√3

2

(𝐼′
1
3

𝐼
−

1
3

−𝐼′
−

1
3

𝐼1
3

)

(𝐼
−

1
3

+𝐼1
3

)

2

+
3

4
𝐼1

3

2

  (20) 

The numerator is the Wronskian of Bessel’s equation of purely imaginary argument and we have 
exactly- 
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𝐼′
1

3

𝐼
−

1

3

− 𝐼′
−

1

3

𝐼1

3

=
2 sin

1

3
𝜋

𝜋𝑄
 (21) 

For the denominator, we can use the asymptotic expansion, Q being large. The denominator is 

|sin
1

3
𝜋 𝐻1

3

(2)
(𝑒−

3

2
𝜋𝑖𝑄)|

2

~
3

4

2

𝜋𝑄
𝑒2𝑄 (22) 

so that 
𝛽~𝑒−2𝑄    (23) 

In evaluating 𝛼 we can use asymptotic values throughout and find 𝛼 = 1. 
Thus, with sufficient accuracy 

𝐷(𝑊) =
4(

𝐶−𝑊

𝐹
)

3
2

√𝐹𝑒−2𝑄

𝑊
1
2(

𝐶−𝑊

𝐹
)+

1

𝜅2𝑊
1
2

{
1

2
(

𝐶−𝑊

𝐹
)

−
1
2+

𝐶−𝑊

√𝐹
𝜅}

2 (24) 

By considering the relative order of the terms in the denominator it is found that those 
independent of 𝜅 are dominant. Therefore, on inserting the value of Q 

𝐷(𝑊) =
4{𝑊(𝐶−𝑊)}

1
2

𝐶
𝑒−

4𝜅(𝐶−𝑊)
3
2

3𝐹  (25) 

 
The Complete Electron Emission from a Cold Metal- 
The number of electrons N(W) incident on a surface of unit area per unit time with a kinetic 
energy W normal to the surface has been evaluated by Nordheim according to Sommerfeld’s 
theory. He finds 

𝑁(𝑊) =
4𝜋𝑚𝑘𝑇

ℎ3 𝐿 (
𝑊−𝜇

𝑘𝑇
)  (26) 

where 

𝐿(𝛽) = ∫
𝑑𝑦

𝑒𝛽+𝑦+1

∞

0
   (27) 

and 𝜇 is the usual parameter of the electron distribution in the Fermi-Dirac statistics equivalent 
to the thermodynamic partial potential of an electron. Hence the current I is given quite generally 
by- 

𝐼 =
4𝜋𝑚𝜀𝑘𝑇

ℎ3 ∫ 𝐷(𝑊)𝐿 (
𝑊−𝜇

𝑘𝑇
) 𝑑𝑊

∞

0
 (28) 

where 𝜀 is the electronic charge. At ordinary and low temperatures, a sufficient approximation 

to 𝑘𝑇𝐿 (
𝑊−𝜇

𝑘𝑇
) is 𝜇 − 𝑊 when 𝑊 < 𝜇 and otherwise zero. Since 𝜇 is considerably less than C, we 

may then use Eq. 25 for D(W) and find 

𝐼 =
16𝜋𝑚𝜀

𝐶ℎ3 ∫ 𝑊
1

2(𝐶 − 𝑊)
1

2(𝜇 − 𝑊)
𝜇

0
𝑒−

4𝜅(𝐶−𝑊)
3
2

3𝐹 𝑑𝑊 (29) 

Since the exponent in the integrand is very large for the largest values of W, it is easy to evaluate 
this integral to a sufficient approximation. We find using Eq. 6 and putting 𝐶 − 𝜇 = 𝜒, that 

𝐼 =
𝜀

2𝜋ℎ

𝜇
1
2

(𝜒+𝜇)𝜒
1
2

𝐹2𝑒−
4𝜅𝜒

3
2

3𝐹    (30) 

The 𝜒 of this equation is necessarily and exactly the thermionic work function. 
If we express I in amperes per square centimeter of emitting surface, 𝜇 and 𝜒 in volts and F in 
volts per centimeter, and insert numerical values for the other constants, we find 
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𝐼 = 6.2 × 10−6 𝜇
1
2

(𝜒+𝜇)𝜒
1
2

𝐹2𝑒−2.1×108𝜒
3
2

𝐹   (31) 

According to this formula emission begins to be sensible for fields of rather more than 107 V/cm. 
These values are higher than those commonly derived from experiments, which indicate 
measureable emission for values of F about 106 V/cm. They also attributed this to surface 
irregularities or peaks near which values of F will be larger. 

To summarize, Fowler-Nordheim theory uses the following physical assumptions. That 
the metal: (i) has a free-electron band structure; (ii) has electrons obeying Fermi-Dirac statistics; 
(iii) is at zero temperature; (iv) has a smooth flat surface; and (v) has a work function that is 
uniform across the emitting surface and is independent of external field. It is also assumed that: 
(vi) there is uniform electric field outside the metal surface; (vii) the exchange-and-correlation 
effects may be neglected in a first approximation; and (viii) barrier penetration coefficients may 
be evaluated using the JWKB approximation. 
 
Murphy and Good’s improvement 
Elementary FN theory neglects correlation-and-exchange effects. These can be included by taking 
the barrier as sum of a uniform electric field and an image potential, with the electrical surface 
and the image plane in the same place. Forbes refers to this as Schottky-Nordheim (SN) tunneling 
barrier. Murphy and Good treatment used this and also considers finite temperatures.  

 
 
 
The final equation for field emission turns out to be- 

𝑗 =
𝐹2

16𝜋2𝜙𝑡2 (
𝜋𝑐𝑘𝑇

sin 𝜋𝑐𝑘𝑇
) exp (−

4√2𝜙
3
2𝑣

3𝐹
) (32) 

where 𝜙 is the work function, arguments of t and v are 
𝐹

1
2

𝜙
 

𝑐 = 2√2𝐹−1𝜙
1

2𝑡 (
𝐹

1
2

𝜙
)    (33) 

Numerical values of t(y) can be easily found from Burgess, Kroemer and Houston’s tables; in 
terms of the functions v(y) and s(y) which they tabulate, t(y) is given by 

3𝑡(𝑦) = 4𝑠(𝑦) − 𝑣(𝑦)   (34) 
 

When ckT is small that 
𝜋𝑐𝑘𝑇

sin 𝜋𝑐𝑘𝑇
 can be replaced by one, Eq. 32 becomes the Fowler-Nordheim 

formula. 

Fig. 5. Image-force barrier lowering 
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Experimental Verification 
 
Lenzlinger and Snow20 studied Fowler-Nordheim tunneling in metal-silicon dioxide-silicon (MOS) 
structure and observed all the essential functional dependencies of the FN emission theory. 

    

 
 

    

 
 
 
RECENT DEVELOPMENTS 
 
Forbes, in 1999, suggested that relaxing one or more conditions used in deriving the FN equation 
leads to equations in various forms and approximations. All can be regarded as specialized 
versions of the generalized Fowler-Nordheim equation- 

𝐼 = 𝜆𝑅𝑒𝑙𝐹2 exp {µ
𝑆𝑒𝑙

𝐹
} (35) 

Fig. 6. Field at a given current density (J=0.2A/cm2) 
vs oxide thickness 

Fig. 7. Current density vs field for Mg, Al and Si 

Fig. 8. Fowler-Nordheim characteristics (log J/E2 vs 1/E) Fig. 9. Current vs temperature for Al for E=6.1x106 V/cm 
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where 𝐼 = 𝑅𝑒𝑙𝐹2 exp {
𝑆𝑒𝑙

𝐹
} is the elementary FN equation; 𝜆 and µ are generalized correction 

factors, whose form in a given case depends on the particular assumptions and approximations 
made. 

In 2003, Jensen developed a generalized thermal-field emission methodology developed 
to account for low work function, high fields, photoexcitation, and other conditions in which the 
incident electron energy is near the barrier maximum. He also examined specialized topics like 
application to multidimensional structures and statistical nature of emission site variation. 

In 2007, Forbes and Deane reformulated the standard FN theory by a different treatment 
of the SN barrier which can serve as a paradigm for other barrier shapes. The same authors, in 
2011, found an exact solution to the exact triangular (ET) barrier problem, which was investigated 
in the original 1928 paper of Fowler-Nordheim. They found equations for different regimes as 
shown in Fig. 10. Their analysis reproduces the FN formula for deep tunneling regime. 

 

 
 
 
EPILOGUE 
 
The ET barrier is not a physically realistic model for the actual surface barrier experienced by 
escaping electrons. The SN barrier, which contains an image-PE term, is a better physical model, 
certainly for metals. However, the Schrödinger equation for the SN barrier cannot be solved 
exactly. The ET barrier has the marked advantage that an exact analytical solution to the related 
Schrödinger equation exists. It has the disadvantage that-although trends can be found-
quantitative predictions of experimental quantities such as current densities are not accurate. 

The standard FN equation has been invoked even when operational conditions violate 
one or more of the approximations upon which it is based: Semiconductor band bending effects 
change the supply function; tunneling barriers may be so reduced or narrowed that the classical 
image charge modification to the potential is compromised; the emitters run relatively hot; the 
geometry of a typical field emitter is hardly one dimensional and results in potential barriers that 

Fig. 10. Transmission regime diagram. The 
chosen regimes are: deep tunneling (DT); 
barrier-top regime (BT), which includes 
shallow tunneling (ST) and low flyover 
(LF); and high flyover (HF). For shaded 
regions, no good working formula has 
been found. 
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are not linear for emission into a vacuum; oxides, coatings, and semiconducting layers exist or 
are purposely applied; the electric fields are often so large or the work functions so low that the 
barrier maximum is not well above Fermi level; the surface is in a state of flux due to adsorbates, 
ion bombardment, and/or evolving nanoprotrusions; adsorbate migration and other surface 
effects introduce noise; and other mechanisms (from resonant tunneling to photoexcitation to 
thermal emission) supplement, complicate, or dominate the emission process. 
 
ABOUT THE SCIENTISTS 
 
R.H. Fowler: Sir Ralph Howard Fowler was a British physicist and astronomer. Fifteen fellows of 
the Royal Society and three Nobel laureates (Chandrasekhar, Dirac, and Mott) were supervised 
by him. He is best known for Fowler-Nordheim tunneling and Darwin-Fowler method. He was the 
first to formulate and label the zeroth law of thermodynamics. 
 
L. Nordheim: Lothar Wolfgang Nordheim was a German born Jewish American theoretical 
physicist. Upon his immigration to the United States Nordheim served as a visiting professor at 
Purdue University, moving on to a permanent faculty position at Duke University. He is best 
known for Fowler-Nordheim tunneling. 
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