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Abstract 

In this report, I followed Brillouin’s derivation of energy gap near degeneracy and 

compared it with contemporary formulation. The previous and follow-up work of the 

paper is investigated and the implication of the paper on X-ray experiments with alloy is 

discussed. Recent applications and development of Brillouin Zone in topological 

insulator, photonic crystal and anisotropic materials are also included with examples. 

 

Introduction 

Born in an academic family in France, Léon Brillouin is a great French physicist with his 

contributions over various aspects. From 1908 to 1912. Brillouin joined École Normale 

Supérieure where he extracted a new value of Avogadro’s number from his 

measurements of the blue light of the sky under Perrin’s supervision. In 1926, the famous 

Wentzel–Kramers–Brillouin approximation, also known as the WKB method came out 

and became a well-known tool to find approximate solutions to linear differential 

equations with spatially varying coefficients.1 Later, Brillouin proposed a method to 

calculate the propagation of light in dispersive media guided by Sommerfeld. The 

Brillouin-Wigner’s formula proposed by him was proved useful in many-particle 

problems, mainly in quantum chemistry and nuclear theory. Besides theoretical 

contribution, Brillouin also worked on radio transmission in the laboratory of General 

Ferrié and proposed a new type of amplifier.2 

 

Previous work 

In 1927, Sommerfeld modified the free electron gas model by replacing the Maxwell-

Boltzmann distribution by Fermi-Dirac distribution3, which successfully explains 

thermal-electric field and heat capacities, but the mean-free path still exists in his 

calculation. In 1927, Bloch found the form of eigenfunction in the periodic potential.4 

Shortly afterwards, Rudolf Peierls applied Schrodinger’s weak potential approximation to 

explain the properties of energy band.5  Phillip Morse also analyzed the band spectrum 

and total reflection almost at the same time.6 However, most previous discussions in 

weak potential approximation were about in one-dimensional case and Peierls’ argument 

about 2D structure limited to the diffraction plane parallel to the coordinate axis. By then, 

there was no characterization of how Bragg diffraction would affect energy bands in 2D 

periodic potential system. Moreover, the description of electronic property of periodic 

lattice is nowhere systematic. 7 
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Instead of working in one-dimension, Brillouin proposed a set of mutually intersecting 

planes in k-space based on Bragg condition close to where the energy bands distorted. 8It 

was revealed that the description of the shape of Fermi surface was greatly simplified and 

easily visualized under this view. The concept of “Brillouin Zone” becomes widely used 

to describe the electronic property of solids in both 2D and 3D. The Brillouin Zone is 

also useful in the description of the new emerging field of topological insulators and 

photonic crystals, where the concepts in solids were borrowed to control the flow of light 

with periodic structures. 

 

Contents of the paper (Brillouin, 1930) 

The paper studies selective reflection (Bragg reflection) and its relationship with the 

anomalies of propagation of electronic wave in the metal. Brillouin applies the 

perturbation theory to calculate the first-order and second-order approximation by solving 

the Schrodinger equation with periodic potential. The main assumptions are that the 

periodic potential is weak, and the electrons are “nearly free” based on the Sommerfeld’s 

work on free electron gas. Two of the reasons explain why such assumption would work: 

(1) Conduction electrons are not allowed to get into inner shell of ions due to Pauli 

principle. (2) The field of ions are shielded by other electrons. Based on the weak-

potential and “near free” electron model, Brillouin starts his discussion on the band 

structure near degeneracy. The original symbols and formalism are kept in the following 

derivation.  

According to the Floquet theorem generalized by Bloch: 

                                      

First, we consider the case of almost free electrons, assuming that the potential 

inequalities in the crystal are very small, then we apply successive approximations to 

obtain the solution. Starting from Schrodinger equation 

 

The potential P can be separated as constant P0 and lattice potential P’(x,y,z). Because of 

the periodicity of the lattice potential, it can be expanded as Fourier series 

    are integers 

The perturbed eigenfunctions and eigenvalues are 

 

By introducing the coupling, the original eigenstates couples if (for small e) 
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The coupling induced by the perturbed potential can be represented by the matrix element: 

 

We have a degeneracy problem when the following equations are satisfied: 

         

The Bragg condition is approximately satisfied when 

  

We need to find a linear combination of the original eigenfunction to make the next order 

calculation possible. The intermediate energy is defined by 

  or   

The combined wave function needs to satisfy the Schrodinger equation with energy E. 

 

Insert into Schrodinger equation, we obtain  

 

The first order perturbation term in wavefunction should be orthogonal to both original 

wavefunction. Hence, the above equation times the ' ' ',abc a b c    and integrate 

respectively, we have 

 

 

It has solution only when the determinant is zero, which gives the results of   as 

   

An example of the abnormal energy variation caused by degeneracy is demonstrated in 

Figure 1(a). The region is selected for , , . In the Figure 1(a), the curves 

split into a series of separate branches and Brillouin pointed out that the curve branch 



should with vertical tangent. At the degeneracy point, the curve shows a discontinuity of 

energy and such discontinuity happens in the vicinity of all these planes in 2D. Brillouin 

also pointed out that the waves of each zone were obtained by the coupling of the waves 

corresponding to oscillations of the electron in each valley of potential.  

 

Fig. 1 (from Brillouin, 1930) (a) 1D energy variation near degeneracy. Energy gap opens 

near the degeneracy points according to Brillouin’s derivation.  (b) 2D Brillouin Zone in 

reciprocal lattice. The lines indicate Bragg planes and each zone is colored differently.  

 

From the intriguing Figure 1(b) plotted by Brillouin, it can be concluded that long waves 

propagate without anomalies but when wavelength decreases, the proportion of waves 

propagation freely without affected by Bragg diffraction decreases dramatically. After 

simply derivation, Brillouin shows that the area in reciprocal space affected by Bragg 

diffraction at distance p from the origin increases as  𝑝3 . In the paper, Brillouin also 

discussed about average electric current of wave-guided electrons and the high order 

Brillouin Zone in 3D structure (for example, body-centered cubic) along with its 

representations. 

It is interesting to compare the section of derivation in contemporary textbook with the 

Brillouin’s original work. To solve similar degeneracy problem near the Bragg plane, the 

Ashcroft textbook describes it in a more general way by dividing the problem into non-

degenerate and nearly degenerate cases and the derivation is clearer. Consider the Bloch 

wave function 

 

, where K points from one lattice in reciprocal space to another. The Schrodinger 

equation leads to 

 .   

Conceptually, in the free space, the translational symmetry makes the wave with 

momentum k-K a non-degenerate eigenfunction. After the system is perturbed by weak 



periodic potential, mode k-K are perturbed by other modes, hence introducing 

perturbation terms. 

To solve the coefficient and energy, the textbook considers the following two cases: 

Non-degenerate Case: the mode considered is non-degeneracy, as U is too small to 

couple it to other modes 
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By applying the nondegenerate perturbation theory, the first order perturbation would 

give  
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Plug the first order perturbed wave function into the Schrodinger equation, we obtain the 

second order perturbation of energy 
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Nearly-degenerate Case: the mode considered is nearly-degeneracy, as the perturbed 

potential manages to couple it to other modes 
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Similarly, to the first order perturbation 
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Consider only the leading term where modes are coupled by O(U)  
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Consider the simplest example, where only two free electron levels are with order U of 

each other, we have 

， 

 

It is solvable only when the determinant is zero, which gives  



 

which is of the same form as the result in paper. 

 

Follow-up work 

At the time solid state is fast developing theoretically, experimentalists have been using 

X-rays to examine the structure of alloy. However, not all the observations are well-

explained, and difficulties remain in understanding some results. In this case, Brillouin’s 

work become a useful tool to analyze and understand the experiment data. In 1934,  H. 

Johns applied the Brillouin Zone and the energy gap calculation in understanding alloy in 

gamma-phase.11 Based on Bradley and Thewlis’ experimental results of brass with X-

ray12, Johns calculated the energy gap near the Bragg plane explicitly, following 

Brillouin’s derivation. He also pointed out that the change of Hall coefficient, from large 

positive to large negative, is due to the distortion of Fermi surface close to the boundary 

of Brillouin Zone and the large diamagnetic susceptibilities can also be expected for 

alloys in this phase. Published in the same year, Johns’ another paper10 explained the 

difference of intensity difference in bands beryllium and magnesium9, which has similar 

structure with two valence electrons, also based on the distortion of Fermi surface near 

the boundary of Brillouin Zone. 

Besides its application in explaining X-ray experiments, the analysis of Brillouin Zone is 

developed further by L. Bouckaert under the view of group theory in 1936.13 In the case 

of Brillouin Zone, the representations of a space group forms a continuous manifold, 

characterizing by continuous parameters. The analysis leads to the conclusion that the 

energy is a continuous function of the reduced wave vector.  

 

 

Recent work 

Since its development, the concept of Brillouin Zone has been widely used in describing 

the properties of electronic system with band diagram. Even after eighty-years, the 

investigation and application of Brillouin Zone is still active and open.   
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Fig. 2 (a) A tight-binding model with Lieb lattice. A unit cell is enclosed by the red 

rectangle. Nearest Neighbor hopping, and Next-Nearest Neighbor spin-orbital coupling is 

considered in this model (b) A supercell with 10 unit cells in y-direction and infinity cells 

in x-direction (c) Band diagram for structure in (b) with spin-orbital coupling amplitude 

𝜆 = 0.2𝑡. Four conducting edge states inside the topological bandgap is observed. 

 

In the recent research of topological insulator, which is material with symmetry-protected 

topological order, behaving as insulator in bulk but conductor along the edge (surface), 

the topological invariant can be identified by studying the first Brillouin Zone. As an 

example, a simple tight-binding model with similar structure as the homework problem 

of planar 𝐶𝑢𝑂2 is analyzed following Ref. 14 The Bravais unit consists of three sites, with 

nearest neighbor hopping amplitude t. The Quantum Spin Hall effect appears by 

introducing an additional spin-orbital Next-Nearest Neighbor(NNN) coupling term to the 

Hamiltonian and the momentum-space Hamiltonian now becomes  
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In the following discussion, the Hamiltonian is considered for spin-up electrons only, 

corresponding to the plus sign for the spin-orbital Hamiltonian.  

The topological property embedded in the additional as 2πC Berry phase as the system 

adiabatically changes along the band.  C is an invariant integer under perturbation if the 

symmetry is not broken and the bandgap is not closed. Following the TKNN invariant 

calculation proposed in Ref.15,  
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, where the integration is over the first Brillouin Zone for specific band and u is the 

eigenmode corresponding to (kx, ky) in the BZ. I calculate the topological number for the 

upper band and obtain C = 4. The details of the numerical calculation is provided in 
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Supplementary Material with Mathematica following Ref. 16 The topological invariant 

obtained indicates the existence of four different conducting modes propagating along the 

edge with their energy inside the topological bandgap. To verify this, the band structure 

for strip of Ny = 10 unit cells with open boundary conditions along the y direction and 

periodic along x is simulated in Figure 2(c). Four modes with positive dE/dk for spin-up 

electrons is predicted by C = 4. Two of them are clearly shown within the topological 

bandgap while the other two is in range 𝑘𝑥 ∈ [−𝜋, 0]  by symmetry. In sum, the 

topological property of the material can be obtained by studying the band structure inside 

the first Brillouin Zone. 

Beside solid-state physics, Brillouin Zone has been transplanted into other fields, for 

example, photonic crystal. The concept of photonic crystal, a periodic nanostructure 

designed to manipulate the propagation of light, was proposed in 1987, based on the 

similar behavior as electrons in solids. Shortly afterwards, Eli Yablonovitch draw the 

band diagram in Brillouin Zone of a fcc dielectric photonic crystal for the first time in 

history, with its photonic band gap indicating a forbidden band of energy in any incident 

directions.17 With the development of nanofabrication technology, the material properties 

and geometric structure of such photonic crystals have more options, hence researchers 

are trying to extend the concept of Brillouin to make it useful in more scenarios. For 

example, the definition of Brillouin Zone has also been extended for anisotropic material, 

where the material’s optical properties are different along different axis. For anisotropic 

material, the Brillouin Zone no longer conforms the original definition as bounded by 

Bragg planes.18 The new Brillouin Zone can be obtained by applying Wigner-Seitz 

method to a stretched or compressed reciprocal lattice for material without dispersion and 

its boundary becomes curved for dispersive material. The theoretically proposed 

Brillouin Zone boundary is also confirmed experimentally by sending femtosecond laser 

pulses to excite polaritons and image their propagation in lithium niobate. In this method, 

the band diagram can be observed and the BZ boundary is identified at the lowest 

bandgap, following the similar idea in Brillouin’s derivation. 

In conclusion, Brillouin’s derivation of energy gap and his visualization of Brillouin 

Zone is a significant step in understanding the properties of solid. Researchers 

successfully applied Brillouin’s work to explain the observation from X-ray experiments 

of alloy in 1930s. Brillouin Zone also remains a developmental tool over time. The 

analysis inside the first Brillouin Zone can be used to classify the Hamiltonian with 

topological invariants and predict the number of edge modes. Brillouin Zone can be 

applied to other periodic structures like photonic crystals and/or anisotropic materials, 

which proves it as a simple and adaptable tool in analyzing different kinds of periodic 

structures.  
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