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1 Biographical Background

The article, Zur Quantentheorie der Molekeln (On the Quantum Theory of
Molecules) [4], discussed in this review was initially published in 1927 by Max
Born and his student at the time Robert Oppenheimer. Born worked at Univer-
sity of Gottingen in Germany and was an important figure in the development
of Quantum Mechanics. Along with Heisenberg, Born developed the matrix
representation of quantum mechanics and won the noble prize in 1954 for point-
ing out the now ubiquitous interpretation of Ψ∗Ψ as the probability density.
In addition to his role in the development of quantum mechanics, Born also
made many important contributions to our understanding of nuclear physics,
atomic and molecular physics, and the physics of solids. Robert Oppenheimer
became a faculty member in the department of physics at UC Berkeley. He is
arguable most known for his role in the Manhattan project and subsequently
for being very outspoken on the topic of nuclear non-proliferation. In addition
to his early work on Quantum mechanics and nuclear physics, Oppenheimer
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also made important contributions to Quantum Field Theory, and astrophysics
including key papers on neutron stars, black holes, and cosmic rays.

2 Definition of Problem

In Zur Quantentheorie der Molekeln [4], Born and Oppenheimer set out to find
a general method to solve for the energy levels and wave functions describing
the quantum dynamics of electrons and ions in a molecule. The case that Born
and Oppenheimer make here is that because of the large separation in mass
of the electrons, m, and ions (protons and neutrons), M , there will be a large
separation in velocity of the two objects which can be exploited to simplify the
problem of computing molecular energies.

When we take the approximation that the ionic motion is much slower than
the electronic motion we can treat the ionic motion as an adiabatic perturbation
on the electron system which will not shift the electronic states. The Hamil-
tonian can be broken into terms in orders of the small perturbation parameter

κ =
(
m
M

)1/4
. It is shown in the article that only even powers of κ contribute

to the energy of the system. The dominant term of order κ0 is the electronic
energy, the quadratic term describes the ionic vibrations, and the quartic term
describes the ionic rotational energy, higher order vibrational energy and cou-
plings between the rotations and ionic and electronic states.

Because of this adiabatic approximation and this perturbative expansion or-
der naturally separating the electronic and ionic terms we can iteratively solve
the problem in progressively higher orders. The electronic wave functions and
energies will only depend on the mean ionic coordinates through the potential
created by the ions and equivalently the ionic wave functions will only be func-
tions of the ionic coordinates. Since the electronic Hamiltonian has a potential
term that is a function of the ionic mean positions the electronic energies will
be functions of the ionic coordinates. The effect of this is that when one goes to
calculate the quadratic term in the expansion for the ionic motion the eigenval-
ues of the zeroeth order term from the electrons serve as an effective potential
for the ions. As is typical with perturbation theory, as one goes to higher orders
you continue to feed these lower order solutions into the Hamiltonian and wave
functions of the next higher order. It is shown that in order to get the full
zeroeth order wave function for a general molecular system you must continue
with the perturbation up to the fourth order in the Hamiltonian.

3 Initial Formulation

Here we step through the formulation of the approximation given by Born and
Oppenheimer in the original 1927 paper.
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3.1 Definition of Coordinates and General Terms

The coordinates (and mass) for the electrons in the molecule are given by lower
case letters m, xk, yk, zk and by capital letters for the nuclei, Ml, Xl, Yl, Zl.
The parameter which will be shown to be the perturbation parameter is given
by:

κ =
(m
M

)1/4
(1)

Where M is the average value of Ml. Since the electron and ion masses are
separated by ∼ 103 this is indeed a small number good for perturbation. The
potential, U, is left as a general function of x, and X, and to form the Hamilto-
nian we also need the kinetic terms. We take the kinetic energy for the electron
as

TE = − ~2

2m

∑
x

∑
k

∂2

∂x2k
(2)

and for the nuclei as

TN = −κ4 ~2

2m

∑
X

∑
l

µl
∂2

∂X2
l

(3)

where µl = M/Ml is a factor of order unity. Given the potential and two kinetic
terms the total energy for the system is given by

H = H0 + κ4H1 (4)

Where H0

(
x, ∂∂x ;X

)
= TE + U is the unperturbed Hamiltonian describing the

electronic system assuming fixed nuclei and κ4H1

(
∂
∂X

)
= TN is the perturba-

tion due to the motion of the nuclei. The coordinates, X, for the nuclei can
then be tranformed to further separate the Hamiltonian. We can take 3N − 6
functions that define the relative positions of the nuclei, ξi(X) and 6 additional
functions that define the position (translation) and orientation (rotation) of the
total configuration in space, θi(X). One can translate between the rectilinear
coordinates, Xl and these new coordinates by appropriate translations and ro-
tations. This transformation now allows us to rewrite the nuclear part of the
Hamiltonian as:

H1 = Hξξ +Hξθ +Hθθ (5)

where the subscript denotes that the function is linear homogenous in the partial

derivatives of the substripts (i.e. Hξξ contains terms ∂2

∂ξi∂ξj
). An important

point here is that the coefficient of ∂2

∂ξi∂ξj
is independent of the position in space

(θi) while the there will be spatial dependence in the coefficents of ∂
∂ξi

in Hξθ

and in the coefficients of ∂2

∂θi∂θj
in Hθθ. This fact is exploited in the perturbation

expansion in later steps. This is all we need to set up the Schrodinger Equation
eigenvalue problem:

(H0 + κ4H1 −W )ψ = 0 (6)
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3.2 Electronic Motion for Stationary Nuclei: the Poten-
tial Energy Surface

The unperturbed Hamiltonian (κ = 0) gives a differential equation only in
the electron coordinates, xk, and the eigenvalues of this system are only
functions of the mean nuclear coordinates, Xl. The eigenvalue problem
for this system becomes:{

H0

(
x,

∂

∂x
; ξ, θ

)
− Vn(ξ)

}
φn(x; ξ, θ) = 0 (7)

The eigenvalues, Vn(ξ) define a potential energy surface for the nuclear motion.
For the perturbation expansion we need to show the relation between derivatives
of the Hamiltonian and derivatives of this potential. To do this we can take
ξi → ξi+κζi so that we can differentiate with respect to κ. This makes explicit
the small deviations, ζ, of the nuclei from their mean positions, ξ. Now
we can expand in κ

Vn(ξ + κζ) = V (0)
n + κV (1)

n + κ2V (2)
n + . . . (8)

The superscript denotes the order of partial derivatives so V
(1)
n will be linear in

ζ and have a first derivative of V
(0)
n while V

(2)
n will be quadratic in ζ and have

a second derivative of V
(0)
n as:

V (2)
n =

1

2

∑
ij

ζiζj
∂2Vn
∂ξi∂ξj

(9)

The Hamiltonian and wave functions can also be expanded in the same way
such that we arrive at:

H0 = H
(0)
0 + κH

(1)
0 + κ2H

(2)
0 + . . . (10)

φn = φ(0)n + κφ(1)n + κ2φ(2)n + . . . (11)

The higher order wave functions can be recast into expansions of the unper-
turbed Hamiltonian wave functions by:

φ(r)n =
∑
n′

u
(r)
nn′φ

(0)
n′ (12)

Where u
(r)
nn′ is a polynomial of that contains ζi to the rth power u

(2)
nn′ for instance

is given by:

u
(2)
nn′ =

∑
ij

ζiζj

∫
φ
(0)∗
n′

∂2φ
(0)
n

∂ξi∂ξj
(13)

Any derivatives on operators, F, can be recast in the same way following:

F
(r)
nn′ =

∑
n′′

u
(r)
nn′′Fn′′n′ (14)
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With this laid out we can substitute eq. 8 and eq. 10 into eq. 7 then multiply

by φ
(0)∗
n′ , and integrate over x to enforce orthogonality. Then by exploiting eq.

14 we arrive at the following relations:

u
(1)
nn′(V

(0)
n′ − V (0)

n ) + (H
(1)
0 )nn′ − V (1)

n δnn′ = 0 (15a)

u
(2)
nn′(V

(0)
n′ − V (0)

n ) + (H
(1)
0 − V (1)

n )nn′ + (H
(2)
0 )nn′ − V (2)

n δnn′ = 0 (15b)

. . . . . . . . .

This gives the prescription for calculating successively higher order terms in
the perturbation in terms of the lower order terms which we can employ to set
up the approximation for molecular problem explicitly.

Since ∂
∂ξ = 1

κ
∂
∂ζ we can expand the nuclear Hamiltonian from eq. 4 as:

κ4H1(X,
∂

∂X
) = κ4

(
1

κ2
Hζζ +

1

κ
Hζθ +Hθθ

)
= κ2H

(0)
ζζ + κ3

(
H

(0)
ζθ +H

(1)
ζζ

)
+ κ4

(
H

(0)
θθ +H

(1)
ζθ +H

(2)
ζζ

)
+ . . .

(16)

Combining eq. 10 and eq. 16 the total energy operator is:

H = H0 + κH
(1)
0 + κ2(H

(2)
0 +H

(0)
ζζ ) + κ3

(
H

(3)
0 +H

(0)
ζθ +H

(1)
ζζ

)
+ κ4

(
H

(4)
0 +H

(0)
θθ +H

(1)
ζθ +H

(2)
ζζ

)
+ . . . (17)

The total system energy, W , and eigenfunction, ψ can be expanded in the
same way. Through the expansion we will show that in order to get all of the
quantum numbers and the zeroeth order eigenfunction we need equations up to
the fourth order for the energy. These equations are:

(H
(0)
0 −W (0))ψ(0) = 0 (18a)

(H
(0)
0 −W (0))ψ(1) = (W (1) −H(1)

0 )ψ(0) (18b)

(H
(0)
0 −W (0))ψ(2) = (W (2) −H(2)

0 −H(0)
ζζ )ψ(0) + (W (1) −H(1)

0 )ψ(1) (18c)

(H
(0)
0 −W (0))ψ(3) = (W (3) −H(3)

0 −H(1)
ζζ −H

(0)
ζθ )ψ(0)

+(W (2) −H(2)
0 −H(0)

ζζ )ψ(1) + (W (1) −H(1)
0 )ψ(2)

(18d)

(H
(0)
0 −W (0))ψ(4) = (W (4) −H(4)

0 −H(0)
θθ −H

(1)
ζθ −H

(2)
ζζ )ψ(0)

+(W (3) −H(3)
0 −H(0)

ζθ −H
(1)
ζζ ψ

(1)

+(W (2) −H(2)
0 −H(0)

ζθ )ψ(2) + (W (1) −H(1)
0 )ψ(3)

(18e)

. . . . . . . . .
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3.3 Zeroth to Fourth Order Approximate Solutions

In section 3.2 we found that for fixed nuclei the electronic eigenvalues and eigen-

vectors are V
(0)
n and φ

(0)
n respectively. We can then write the general solution

for the zeroeth order wave function as

ψ(0)
n = χ(0)

n (ζ, θ)φ(0)n (x; ξ, θ) (19)

Where χ
(0)
n (ζ, θ) is a function of the nuclear coordinates which will be deter-

mined from the higher order equations. We can now move to the first order
equation (eq. 18b) and point out that it is only solvable when the RHS is

orthogonal to ψ
(0)
n which leads to the condition{(

H
(1)
0

)
nn
−W (1)

}
χ(0)
n (ζ, θ) = 0 (20)

The curly brackets must be a constant so W (1) =
(
H

(1)
0

)
nn

= 0 from this and

eq. 15a and eq. 10 we find that

∂Vm
∂ξi

= 0 (21)

This puts another constraint on this method, namely the coordinates ξi must
be chosen to be at extrema of of the electronic energy surface. The
first order equation (eq. 18b) then reduces to

(H
(0)
0 − V (0)

n )ψ(1) = −H(1)
0 χ(0)

n φ(0)n (22)

The general solution to this is

ψ(1)
n = χ(0)

n φ(1)n + χ(1)
n φ(0)n (23)

Where χ
(1)
n is a new function of ξ and θ that needs to be determined from the

higher order equations. So we now move on to the second order equation (eq.
18c) which after substituting the lower order solutions is:

(H
(0)
0 −W (0))ψ(2) = (W (2) −H(2)

0 −H(0)
ζζ )χ(0)

n φ(0)n

−H(1)
0 (χ(0)

n φ(1)n + χ(1)
n φ(0)n )

(24)

From eq. 15b and the condition from the first order approximation that V
(1)
n = 0

we get that (
H

(2)
0

)
nn

+
(
H

(1)
0

)(1)
nn

= V (2)
n (25)

So including this and again insisting that the RHS of eq. 18c is orthogonal to

φ
(0)
n we arrive at the condition{

H
(0)
ζζ

(
ξ,

∂2

∂ζi∂ζj

)
+

1

2

∑
ij

ζiζj
∂2Vn
∂ζi∂ζj

−W (2)
n

}
χ(0)
n = 0 (26)
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This is the equation for harmonic motion of the nuclei. Here we note two
important points, 1) it is clear here that the second derivative of the
electronic eigenvalues Vn(ξ) play the role of a potential function for
the nuclei and 2) for this to be a stable oscillation the condition from
eq. 21 must be strengthened to insist that the ξi are chosen to be on
minima not just extrema of Vn.

Eq. 26 is separable by transforming ζi to normal coordinates of the oscilla-

tions, ηi. The eigenvalues of this system defined by Eq. 26 are σ
(0)
ns (ζ) where the

index s is a new quantum number indexing the vibrational modes. The general
solution is then

W (2) = W (2)
ns (27a)

χ(0)
n = χ(0)

ns = ρ(0)ns (θ)σ(0)
ns (ζ) (27b)

Where ρ
(0)
ns (θ) is a new function only of the coordinate θ that defines the ori-

entation of the arrangement of nuclei which is left to be determined from the
higher order approximations.

It should be noted here that from the PDE eq. 26 it is known that σ
(0)
ns (ζ)

consists of orthogonal Hermite functions for the normal coordinates. These
functions oscillate in the classically allowed region and go to zero exponentially
outside of the classically allowed region. This corroborates the assertion from 3.2
that the nuclear displacement is small, O(κ), about the mean nuclear positions.

With this new quantum number, s, we can now construct operators on ζ in
the orthogonal basis including the vibrational quantum number of the form

Φnn′

ss′
=

∫
σ
(0)∗
n′s′ Φσ

(0)
ns dζ (28)

Like the procedure followed for the lower orders we can substitute eq. 26 in eq.
24 which will lead us to the general solution for the second order wave function:

ψ(2)
n = χ(0)

ns φ
(2)
n + χ(1)

ns φ
(1)
n + χ(2)

ns φ
(0)
n (29)

Here again we have a new function χ
(2)
ns (ζi, θi) which is determined from the

higher order equations. We now proceed in the same way to the third and
higher order approximate solution these get notationally and pratically more
cumbersome to solve and they are spelled out explicitly in the original text.
Here I will just state the resultant eigenvalues and wave functions for these
higher terms and discuss their implications. The third order equation yields a

differential equation for ρ
(0)
ns(

F
(3,3)
nn
ss
−W (3)

)
ρ(0)ns = 0 (30)

With the F
(3)
nn′ is given by

Fnn′ = F
(3,1)
nn′ χ

(2)
ns + F

(3,2)
nn′ χ

(1)
ns + F

(3,3)
nn′ χ

(0)
ns (31)
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With the terms of F given by matching terms in eq. 18d. Because F
(3,3)
nn
ss

is a

polynomial of odd order all terms in the ζ matrix vanishes meaning that there
is no contribution from the third order equation to the total energy

(W (3) = 0) and ρ
(0)
ns remains undetermined. The general solution for the

third order wave function then becomes:

ψ(3)
n =

∑′

n′

(
G

(3,1)
nn′ χ

(2)
ns φ

(0)
n′ +G

(3,2)
nn′ χ

(1)
ns φ

(0)
n′ +G

(3,3)
nn′ χ

(0)
ns φ

(0)
n′

)
(32)

Where G is the common matrix element of higher order pertubation theory
which contains a division by the difference in the energy states that the operator
is connecting:

G
(3,i)
nn′ =

F
(3,i)
nn′

V
(0)
n − V (0)

n′

(33)

The fourth order equation finally yields an equation for ρ
(0)
ns namely:(

F
(4,4)
nn
ss

+
(
F (4,3)
nn

)(1)
ss
−W (3)

)
ρ(0)ns = 0 (34)

Where the functions F
(4,i)
nn are defined the same was as F

(3,i)
nn but by matching

terms in eq. 18e instead of eq. 18d. This equation contains terms that cor-
respond to asymmetric top-like rotational modes including terms that couple
the top motion and the electronic motion, terms that couple the top motion
and angular momentum associated with the nuclear vibrations and terms that
correspond to additional vibrational modes with energy O(κ4). Separating out
the vibrational part, eq. 34 yields

W (4) = W (4)
nsr (35a)

ρ(0)ns = ρ(0)nsr(0) (35b)

Where r is the final quantum number we need to describe the system cor-
responding to the indices of the rotational modes. The higher order equations
yield couplings between the different modes but do not introduce any new quan-
tum numbers. We now have enough information to construct the zeroeth order
wave function

ψnsr(x, ζ, θ) = φ(0)n (x, ξ, θ)σ(0)
ns (ζ)ρ(0)nsr(θ) + . . . (36)

And the energy to the fourth order

Wnsr = V (0)
n + κ2W (2)

ns + κ4W (4)
nsr + . . . (37)

Here we see that this somewhat laborious iterative approximation has given us
an elegant solution which includes corrections in the energy up to fourth order
in κ (O(10−3)), has illuminated the electronic system energies as a potential
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energy surface (PES) for the nuclear motion, additionally we have shown that
relative nuclear coordinates must be chosen at minima of this PES and at least
up to this order we have separated the electronic, nuclear vibrational, and nu-
clear rotational wave functions. This concludes the derivation, the remainder of
the original article includes application of these results to calculate transition
probabilities and solve the particular example of a diatomic molecule instead of
reviewing that we will look at applying this to solids.

4 Further Development: Translation from Molecules
to Solids

Nearly 30 years after the publication of the Born Oppenheimer approxima-
tion, Born along with Kun Huang published the book Dynamical Theory of
Crystal Lattices [3] in which the Born Oppenheimer approximation is carried
out and discussed in the context of solids. Everything essentially follows the
method laid out in sec. 3 because all of the terms in the Hamiltonian were left
general so this is essentially extending that treatment by treating a solid as a
molecule with a very large number of ions and electrons to sum over.

They again start with the assumption that the nuclear motion is much slower
than the electron motion to solve the zeroth order equation for the electronic en-
ergies and wave functions at fixed nuclear positions. This is treated as a solved
problem in this text but can be solved with one of the standard methods such
as tight binding, weak periodic potential, or any of the more accurate methods
discussed in chapter 11 of A&M [1]. For solids the approximation is typically
broken off at the second order equation, since this is where the harmonic equa-
tion for the ionic motion is introduced as seen in eq. 26 this is typically referred
to as the harmonic approximation. In the harmonic approximation the wave
function is determined up to the zeroth order and is the product of the elec-
tronic wave function, φ0n(x; ξ0), and the ionic motion, χ(0)(ζ).

The 6 coordinates describing the net translation and rotation of the total
configuration, θi, don’t contribute in a solid because total system translations
don’t effect the result and the rotational terms are proportional to the moment
of inertia of the ionic system so with the number of ions in a solid very large
these terms become negligibly small. It is mentioned that if parts of the solid
(i.e. the system of basis atoms in a unit cell) are allowed to rotate then these
terms can’t be ignored and will produce degeneracies but this possibility isn’t
covered here.

The harmonic approximation breaks down for higher order terms but the
method can continue to be used up to the second order in the wave function
namely:

ψn(x, ζ) =
(
χ(0)(ζ) + κχ(1)(ζ) + κ2χ(2)(ζ)

)
φn(x, ξ0) (38)

If you extend the approximation beyond this to the third order in the wave
function or fifth order in the Hamiltonian the wave functions contain terms of
the form F (x, ξ) which no longer depend on x solely through functions of φ

(r)
n so
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the electronic motion is no longer separable from the nuclear motion. Because
of this the expansion is truncated to the second order or below in the wave
function and fourth order or below in the Hamiltonian is considered the adiabatic
approximation which we will discuss some implications of it’s breakdown and
ways to extend its validity in sec. 5.

4.1 Harmonic Approximation from B-O in Solids

For the harmonic approximation described in the preceding sections we will
follow the notation from Born and Huang [3] where the potential function for

the nuclei defined by a specific electronic state is given by Φ (given by V
(2)
n in

sec. 3.3) and a new notation for derivatives is introduced:

Φα(k) =

(
∂Φ

∂xα(k)

)
0

(39)

and

Φαβ(k, k′) =

(
∂2Φ

∂xα(k)∂xβ(k′)

)
0

(40)

Where k indexes the ion with mass mk and α = 1,2,3 indexes the three rect-
angular coordinates. The subscript 0 denotes that these are evaluated at the
mean nuclear location x0α(k) (upper and lower case distinction has been dropped
since we are just concerning ourselves with nuclear motions here) which are
determined by the condition found from the first order equation in the B-O
approximation, Φα(k) = 0. With this notation the effective potential function
is

Φ =
1

2

∑
kk′

∑
αβ

Φαβ(k, k′)uα(k)uβ(k′) (41)

Where u is the small displacement from the mean nuclear positions (previously
denoted by ζ). We can redefine Φ and u to remove the mass dependence by
constructing the new matrix, called the dynamical matrix defined as

Dαβ(k, k′) =
1

(mkmk′)
1
2

Φαβ(k, k′) (42)

and by constructing the new displacements

ωα(k) = m
1
2

k uα(k) (43)

The Hamiltonian is now:

H =
1

2

∑
k

∑
α

P 2
α(k) +

1

2

∑
kk′

∑
αβ

Dαβ(k, k′)ωα(k)ωβ(k′) (44)

Where Pα(k) is the conjugate momentum to the ωa(k) displacements. The
dynamical matrix couples the coordinates, ωa(k), so we can transform to normal
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coordinates that form an orthogonal set for this Hamiltonian, qj . These are
defined by

qj =
∑
k

∑
α

eα(k|j)ωα(k) (45)

One can look in the original reference for the details on how to determine the
transformation coefficients eα(k|j) but once you’ve converted to these coordi-
nates you are left with a Schrodinger equation of the form:

1

2

∑
j

(P 2
j + ω2

j q
2
j − εj)χ = 0 (46)

Where again Pj is the conjugate momentum to the normal coordinates, qj .
Transforming to normal coordinates has left us with a Hamiltonian that is just
a sum of terms each dependent on only one coordinate so the nuclear wave
function can be separated as:

χ = χ1(q1)χ2(q2) . . . χ3N (q3N ) (47)

And the total energy, ε, is just

ε =

3N∑
j=1

εj (48)

This is just the equation for 3N quantum harmonic oscillators which have ener-
gies:

εi = ~ωj(νj +
1

2
) (49)

From this we see that the harmonic approximation that came from truncating
the Born-Oppenheimer approximation in solids at the second order in the Hamil-
tonian gives us a formalism for determining the phonon spectrum and dispersion
relation in a solid. This is a useful treatment but in practice there are many
cases in which you need to include anharmonic terms in order to accurately de-
termine properties of a solid. I will also show that the adiabatic approximation
can be extended further than the harmonic approximation but that there are
also some important cases in which even this approximation breaks down and
the simplicity that follows from these key assumption in the Born-Oppenheimer
approximation is lost.

5 Further Development: Extensions and Fail-
ures of the Harmonic Adiabatic Approxima-
tion

The adiabatic approximation requires that κ is small which is always true but
it also assumes that the electron-phonon coupling coefficient is also small. This
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latter assumption is not as obvious and requires more careful treatment. Born
and Huang [3] point this out without going into any real detail in appendix
VII but a number of others [6][5][7] have followed up this problem and have
given methods for extending the adiabatic approximation including terms in
the Hamiltonian for the electron-phonon coupling. Here we will follow some of
these papers and show some of the repercussions.

Important conclusions are that the key parameter for the validity of these
adapted expansions will be ωmax/εF or similarly Vk/εF where ωmax is the max-
imum phonon frequency, VK are the fourier components of the new effective
potential including the electron-phonon coupling at the points of the reciprocal
lattice K. Physically the main conclusion is that this method does not do a good
job of describing the dynamics of the electronic system in a shell of states around
the fermi energy so quantities that rely on the dynamics of these electrons such
as specific heat and spin magnetic susceptibility will not be well described by
this approximation while quantities that rely on the bulk dynamics of all of the
electrons and ions in the system such as cohesive energy and the normal modes
can be determined to good accuracy with this method.

The Born Oppenheimer approximation takes the electrons and ions as de-
coupled but if these were truly decoupled in metals the resistance would tend to
be very large because of the long range of the ionic coulomb potentials and the
longitudinal lattice vibrations would tend toward the plasma frequency instead
of to 0 for small k. Both of these are not observed for normal metals so a more
accurate picture would be to expect that the majority of the electrons tend
to follow the ions and effectively screen the electron-electron and electron-ion
coulomb potential.

To demonstrate this we will explicitly break out the adiabatic and non-
adiabatic terms to see how large they are relative to one another and determine
which electrons in the system contribute dominantly to each of these terms.
For this we add to the Schrodinger equation for the ionic motion electron-ion
coupling terms:

(TN + Φn(X)− E)ψn(X) +
∑
n′

Cnn′(X,P )ψn′(X) (50)

where Φn(X) can be taken as the function determined from the electronic
Hamiltonian at fixed ion positions and can include the ion-ion potential and
the electron-ion interaction Cnn′ is the electron phonon coupling matrix and is
given by:

Cnn′ =
∑
k

1

Mk
(A

(k)
nn′Pk +B

(k)
nn′) (51a)

A
(k)
nn′(X) =

∫
φ∗n(x,X)Pkφn′(x,X)dx (51b)

B
(k)
nn′(X) =

1

2

∫
φ∗n(x,X)P 2

kφn′(x,X)dx (51c)
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Noting that the diagonal components of Ann′ integrate to zero, the Hamiltonian
can be written to separate the adiabatic and nonadiabatic terms as

Hnn′ = (TN + Φn(X) +Bnn)δnn′ + Cnn′ (52)

We can take only the diagonal terms which give us an adiabatic eigensystem
for which we can treat the non-adiabatic terms as a small perturbation. The
leading order correction in the ionic wave function is

δχmn =
∑
n′

Cnn′χ
(0)
mn′

En − E′n
(53)

It can be shown ([7] Appendix 1) that the order of Cnn′ is ∼ ~v̄/l where v̄ is
the average ionic velocity and l is the ionic displacement required to produce
a change in the electronic wave function. Since Cnn′ only connects states n to
states n ± 1 and pauli exclusion restricts the available states to those near the
fermi energy so that the denominator will be of order εF . The states the we
need to be careful about here are those just above and below the fermi energy
because although there are not many of these states the nonadiabatic terms
for these states do produce important contributions to some key properties of
solids such as spin paramagnetism and specific heat. These states that we need
to treat nonadiabatically live in the shell about the fermi energy of approximate
thickness:

|En − En′ | ∼ ~v̄/l ≤ ~ωmax (54)

To find the change in energy δE due to the nonadiabatic terms we recast
using second quantization notation and apply second order perturbation theory
for A and first order perturbation theory for B then renormalize. The methods
at this point starts to dip into field theoretical methods that surpass my math
and physics training so I will avoid going into detail but I will try to capture
some of the key results discussed after following this procedure.

The cohesive energy which we have said isn’t strongly dependent solely on
the states around the fermi energy can be written as

E0 = E0 +
∑ 1

2
~ωf + ∆E (55)

Where E0 is the lowest electronic energy for the fixed ion problem,
∑

1
2~ωf is the

zero point energy for the lattice and ∆E is the correction from the nonadiabatic
terms. This term is on the order of

∆E ∼ (m/M)1/2
∑
F

1

2
~ωf (56)

which is indeed small.
Next we look at the specific heat, a quantity that we believe should be more

sensitive to electrons near the Fermi surface. We get the lowest order correction
to the temperature dependence of the free energy by only including the electrons
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in a shell withing kT of the Fermi energy.This gives a correction approximately
proportional to:

FC '
∑
k

n̄k(1− n̄k−f )

(~ω̄)2
|vf |2 (57)

where n is the standard occupation number and ω̄ is an average value of ω
the phonon frequencies. Because the denominator can be quite small this term
can be quite large. Roughly this term is of the magnitude C(kT/εF )2, some
reasonable electron phonon coupling strengths are ∼ ( 1

8 − 1)εF so this term is
roughly the same order as the unperturbed free energy ∼ εF (kT/εF )2.

Additionally, we can look for evidence of the importance of electron phonon
coupling outside of calculating terms through this expansion framework. We
can look to experiment and more realistic calculation methods that don’t re-
quire adiabatic approximations. In these cases it is shown that electron phonon
coupling is significant in describing ballistic transport [10], low temperature su-
perconductivity [2], high temperature superconductivity [9], and key physical
parameters in carbon structures (graphene, nanotubes). A particularly nice
case to look at is that of graphene where electron phonon coupling has been
shown to produce kinks in the phonon dispersion due to Kohn anomalies (cou-
pling of electron states k1 and k2 = k1 + q both on the fermi surface with
phonon wavevector q) and line broadening in the raman spectra due to optical
phonon coupling. These give experimental methods for determining the elec-
tron phonon coupling strength. Using this method Ferrari [8] reports electron
phonon coupling strength in graphene ∼(39-47 eV/Å)2, clearly demonstrating
the importance of including nonadiabatic interactions in this system.
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