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Introduction  

Hans Bethe was a German-American physicist who made seminal contributions to nuclear 

physics, astrophysics and solid-state physics and won the Nobel Prize in physics for his work on the 

theory of stellar nucleosynthesis.  

His other works include Bethe formula which involves treatment of collision problems using a 

Fourier transform. His biggest contribution to solid-state physics is Bethe Ansatz, a method for finding 

the exact solutions for the eigenvalues for the eigenvalues and eigenvectors of certain one-dimensional 

quantum many-body models. This is the celebrated paper titled “On the Theory of Metals” on which I am 

writing my special topic paper. This paper, although mathematically very rigorous, gives us a clear idea 

about incorporating many body physics into solid-state physics and subsequently extracts all the exact 

solutions for a system of linear atomic chains. This marked an amazing development in understanding the 

metals in the sense that in previous model, the calculations were mainly single conduction, while 

electron-electron interactions were hardly taken into account. But Bethe resolved all these issues in this 

paper. I will mainly give a brief discussion some of the mathematical formulations and their results in this 

paper. Next, I will talk some of the developments in this field and report some of the future directions as 

well.  



Theory of Metals: Other Theories and Issues 

 Metals have been always at the center of interest of physicists because of the wide use in many 

aspects of condensed matter physics. The theory of metal is by far, one of the most intriguing topics. In 

the previous theories given by Sommerfeld or Bloch, only the movement of single conduction has been 

taken into account while electron-electron interaction has been ignored. In other words, it has not been 

treated as a many-body physics problem. Although, the single conduction treatment has been effective in 

describing various phenomena in metals, yet it cannot completely describe ferromagnetism and 

superconductivity [1]. In addition, the calculation of cohesion forces has been impossible in this scheme. 

This is why, a new theory was needed to resolve all these theoretical obstacles and give us a clear view 

about the physics of metals.  

 As we know that the exchange forces between electrons are relevant for the size of the first of the 

first-order terms in the perturbation series for the energy. And order of magnitudes of these forces are 

same as the zero-point energy of the electron gas. This phenomenon is anomalous in the sense that here 

the movement of individual electrons is considered to be more important than the interaction energy. As a 

solution, Slater and Bloch considered the interaction as perturbation, same as London-Heitler 

approximation for molecules [2][3]. But the difference is that while Slater calculated for non-

ferromagnetic materials, where interaction term  𝐽 < 0 (antiferromagnetic) in London-Heitler method [4]. 

Slater’s technique gives us an effective insight about calculation of the ground states of such metals. On 

the contrary, Bloch took  𝐽 > 0 (ferromagnetic). The problem with this method was that he found too 

many eigenvalues. That is where Bethe’s calculation comes handy to find all the eigenstates and 

eigenvalues correctly. 

 

Bethe’s Method to Find Eigenstates of Metals 

 Basically, Bethe’s method is an upgrade of Bloch’s calculations. His aim was to demonstrate a 

method for the calculation for all the eigenvalues of the metals with arbitrary precision in a linear chain of 

atoms. In this method, he obtained solutions of a different type in a way that total number of eigenvalues 

is the exactly correct one. 

 Let us consider a linear chain of N identical atoms. Each atom has, apart from closed shells, one 

conduction electron in s-orbit. Also, we disregard the interaction between them for the simplicity of the 

problem. We consider the spins to be either pointing to right or left directions. As by simple math, we that 



if we have N identical atoms with spins either in right or left directions, then the degeneracy of the system 

is 2𝑁. To describe the problem, we describe the state of the atom by indicating for which atoms, the spin 

points to the right. We assume that atoms with numbers 𝑚1, 𝑚2, … , 𝑚𝑟 are pointing to the right. Let the 

corresponding eigenfunction is 𝜓(𝑚1, … , 𝑚𝑟).  The correct eigenfunction is  

Ψ = ∑ 𝑎(𝑚1, … , 𝑚𝑟) 𝜓(𝑚1, … , 𝑚𝑟)

𝑚1,…,𝑚𝑟

 

Here,  1 ≤ 𝑚1, 𝑚2, … , 𝑚𝑟 ≤ 𝑁 and 𝑚1 < 𝑚2 < ⋯ < 𝑚𝑟 

 Calculating the matrix elements of the interaction energy with respect to the states defined by 

𝑚1, 𝑚2, … , 𝑚𝑟 we find the diagonal elements and off-diagonal elements. If the spin distribution 

𝑚1, 𝑚2, … , 𝑚𝑟 has 𝑁′ neighboring pairs of parallel spins, then 

    𝑊𝑚1,𝑚2,…,𝑚𝑟
= 𝐸0 − 𝑁′𝐽  

Here, 𝐸0 = interaction due to the charged clouds of atoms. 𝐽 is the London-Heitler exchange integral 

between neighboring atoms which is ignored for non-neighboring atoms. 

 Also, the off-diagonal elements occur between two states which can be obtained from one-

another by exchanging two nearest-neighbor spins with opposite spins. All these integrals give −𝐽. 

 We acquire the following equations in this mechanism, 

2𝜖𝑎(𝑚1, … , 𝑚𝑟) + ∑ [𝑎(𝑚1
′ , … , 𝑚𝑟

′ ) − 𝑎(𝑚1, … , 𝑚𝑟)] = 0                                   (1)

𝑚1
′ ,…,𝑚𝑟

′

 

Where 

                                               2𝜖𝐽 = 𝑒 − 𝐸0 + 𝑁𝐽                                                                                 (2) 

e is the total perturbed energy to first approximation and 𝑚1
′ , … , 𝑚𝑟

′  is the new distribution after 

exchanging neighboring spins. This must satisfy the periodic boundary condition  

𝑎(𝑚1, … , 𝑚𝑖, … , 𝑚𝑟) =  𝑎(𝑚1, … , 𝑚𝑖 + 𝑁, … , 𝑚𝑟) 

We can verify this for the case where r = 1 in the following paragraph,  

 Consider the N atom atomic chain where only the m-th atom spin is oriented to the right. As it 

must satisfy the periodic boundary condition mentioned above. Then we have from (1) 

2𝜖𝑎(𝑚) + 𝑎(𝑚 − 1) + 𝑎(𝑚 + 1) − 2𝑎(𝑚) = 0 



If, 

𝑎(𝑚) = 𝑒𝑖𝑘𝑚 

Then we obtain, 

2𝜖 + 𝑒𝑖𝑘 + 𝑒−𝑖𝑘 − 2 = 0 

𝜖 = 1 − cos 𝑘 

From periodicity, we have  

𝑘 =
2𝜋

𝑁
𝜆 , where 𝜆 is an integer  

 

                           Fig 1: N-atom linear chain with only one opposite spin at m-th place 

 

For r = 2, we have two distinguished cases, either the two right-spins are separate from each other in 

which case the same calculation gives  

−2𝜖𝑎(𝑚1𝑚2) = 𝑎(𝑚1 + 1, 𝑚2) + 𝑎(𝑚1 − 1, 𝑚2) + 𝑎(𝑚1, 𝑚2 + 1) + 𝑎(𝑚1, 𝑚2 − 1)

− 4𝑎(𝑚1, 𝑚2)                                                                                                 (3) 

If they are nearest neighbors, we have 



−2𝜖𝑎(𝑚1, 𝑚1 + 1) = 𝑎(𝑚1 − 1, 𝑚1 + 1) + 𝑎(𝑚1, 𝑚1 + 2) − 2𝑎(𝑚1, 𝑚1 + 1)        (4) 

Using constants 𝑐1, 𝑐2, 𝑓1, 𝑓2 we have, 

𝑎(𝑚1𝑚2) = 𝑐1 𝑒
𝑖(𝑓1𝑚1+𝑓2𝑚2) + 𝑐2 𝑒

𝑖(𝑓2𝑚1+𝑓1𝑚2) 

                                           𝜖 = 2 − cos 𝑓1 − cos 𝑓2                                                             (5) 

Setting 𝑐1 = 𝑒
𝑖𝜑

2 , 𝑐2 = 𝑒−
𝑖𝜑

2  and using the same periodic boundary condition, we have 

𝑁𝑓1 − 𝜑 = 2𝜋𝜆1 

𝑁𝑓2 + 𝜑 = 2𝜋𝜆2 

Where 0 ≤ 𝜆1, 𝜆2 ≤ 𝑁 − 1 and we have 𝑘 = 𝑓1 + 𝑓2 =
2𝜋

𝑁
(𝜆1 + 𝜆2). But this method does not yield 

sufficiently many solutions, contrary to Bloch’s suggestion. If the wave numbers 𝑓1, 𝑓𝟐 are complex 

conjugate to each other the there can be N-1 solutions. Let 𝑓1 = 𝑢 − 𝑖 𝑣, 𝑓2 = 𝑢 + 𝑖 𝑣. Then we have also 

𝜑 = 𝜓 + 𝑖𝜒 where 𝜓 = 𝜋(𝜆2 − 𝜆1) and 𝜒 = 𝑁𝑣. 

From first approximation we have,  𝑒−𝑣 = cos 𝑢 and 𝜖 =
1

2
(1 − cos 2𝑢)                                      (6) 

From second approximation,               𝑣 = 𝑣0 + 𝜖  and 𝜖 = tan2 𝑢𝑒−𝜒+𝑖𝜓                                       (7) 

 In the end we have,                       𝜖 = ± tan2 𝑢𝑒−(𝑁𝑣0)                                                            (8) 

If 𝑢 ≪ 1, then cos 𝑢 ∼ 1, 𝑣0 ≪ 1 and 𝑣0 =
1

2
𝑢2 

But if 𝑢 ∼ Ο (
1

√𝑁
), then 𝑁𝑣0 is finite and 𝑣 = 𝑣0 + 𝜖 < 0 and the scheme diverges. As a result, there is 

no solution with two complex conjugate wave numbers. 

 To obtain this solution, in the same scheme where for small k, 𝑓1 does not increase, we get some 

additional solution with real or complex wave numbers. 

                                       𝑎(𝑚1, 𝑚2) = {
0, 𝑚2 ≠ 𝑚1 + 1

(−1)𝑚1 , 𝑚2 = 𝑚1 + 1
                                  (9) 

Here, all the eigenvalues 𝜖 with two complex conjugate wave numbers are smaller than all eigenvalues 

with the same wave number k and real wave numbers. The corresponding energy to first order lies deeper 

than all solutions with real wave numbers in ferromagnetic case and higher in antiferromagnetic case. 

 For the generalized case, with r spins in right direction, we assume 



             𝑎(𝑚1, … , 𝑚𝑟) =  ∑ exp (𝑖 ∑ 𝑓𝑃𝑘𝑚𝑘 +
1

2
∑ 𝜑𝑃𝑘,𝑃𝑙

𝑟

𝑘<𝑙

𝑟

𝑘=1

)

𝑟!

𝑃=1

                    (10) 

𝜖 = ∑(1 − cos(𝑓𝑘) 

𝑟

𝑘=1

 

P is some permutation of numbers 1, 2, …, r and Pk denotes the number that this permutation puts n place 

of k. Proceeding with this scheme, we find the number of solutions with real 𝑓𝑖 is found to be (𝑁−𝑟+1
𝑟

) 

which is much smaller than the required number of solutions (𝑁
𝑟

). 

 As a resolution to tackle this problem we assume that there are two wave complexes with n and p 

(>n) where 𝑝 = 𝑟 − 𝑛. Hence, we investigate what number of solutions can be obtained this way. Then 

phase 𝜑 becomes very important. If we go ahead with this assumption and do the calculations as we did 

for all the aforementioned cases, we find the total number of solutions to be,  

                                                              𝑧(𝑁, 𝑟) =
𝑁−2𝑟+1

𝑁−𝑟+1
 (𝑁

𝑟
)                               (11) 

As we see that this indeed gives all the solutions of the problem. 

 

Applications and Developments 

 Bethe ansatz has played a major role in many developments of modern solid-state physics. One 

application of it is the mean-field theory treatment of ferromagnetic Ising model. Bethe-Peierls 

approximation reduces the problem of computing partition functions and expectation values. It is an 

improvement over Bragg-Williams method. Bethe-Peiers approximation takes into account specific short-

range orders, which gives more correct values of specific heat and furthermore, the critical exponents [5]. 

Thus, Bethe’s solution has been instrumental in the rise of modern condensed matter physics. Also, from 

the experimental point of view, there has been many experiments involving ferromagnetism which are 

directly connected to Bethe’s theory [6]. As I work on optics experiments at Richard Averitt’s lab, my 

main topic of interest is light matter interaction which I probe using various time-resolved techniques 

such as THz time-domain spectroscopy, optical pump-THz probe, mid-IR pump-broadband plasma THz 

probe, high field THz pump-THz probe spectroscopies. I will report a previous THz control of magnon in 

antiferromagnetic NiO. In NiO, there lies a magnon mode at 1 THz which can be probed by a magneto-



optic Kerr effect (MOKE) probe. Basically, Kerr effect is the change of light polarization due to the 

magnetism in a material when a light pulse is passed through it [8]. 

 

Fig 2: Ultrafast coherent control of magnons in NiO 

 

In figure 2, we can see that the magnon mode is at 1 THz for a single-cycle pulse which creates 

the oscillation of the Faraday rotation angle 𝜃𝐹. 𝜃𝐹 denotes the change of polarization which is a signature 

of the magnetism in the material. Now, if we send multi-cycle pulses with a time-delay between them, 



then as per the principle of constructive and destructive interference, the magnon mode can be switched 

on/off or enhanced/suppressed. This paves the way to the ultrafast photocontrol and switching of 

magnetism.  

Previously, THz induced metal-insulator transition has been reported in 𝑉2𝑂3 metamaterial [7]. 

Strongly correlated transition metal oxide 𝐿𝑎0.67𝐶𝑎0.33𝑀𝑛𝑂3 has been reported to have shown 

photoinduced hidden metallic phases [9]. Here, a single-shot pulse initiates this metallic phase by 

activating local charge excitons that mediates magnetic-lattice couplings and this phase stabilizes the 

metallic phases. As a continuation of this work, in Averitt group, I am trying to explore some of the 

hidden photo-switchable magnetic phase in the thin-film samples of the same material. For this, I am 

using the resonant soft X-ray scattering facilities of Advanced Photon Source (APS) of Argonne National 

Lab. Some new exciting data are on the way.  

Fig 3: Photoinduced hidden metallic phases in LCMO. When sample is heated, the THz conductivity decreases 

smoothly while with decreasing temperature, the conductivity increases in a step-like fashion. 
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