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1 Introduction
Setting the agenda for many active areas of research in condensed matter physics, Philip Warren
Anderson is arguably one of the most influential physicists of our time. He has completed ground-
breaking, foundational work in disordered systems, beginning with single-particle localization (the
subject of this paper); particle physics, through his introduction of spontaneous symmetry break-
ing; and superconductivity. He did much of this work at the famed Bell Labs institute, from 1949
to 1984. He was a professor of theoretical physics at Cambridge from 1967 to 1975 before moving
to Princeton, where he is currently the Joseph Henry Professor of Physics, Emeritus.

In 1958, Anderson pioneered the first substantial work on transport in disordered lattices. He
initially was trying to understand Feher’s experiments, which were also done at Bell labs, that
indicated abnormally slow electron spin relaxation times in phosphorous doped silicon semi-
conductors [1]. Semi-conductor doping is the intentional addition of impurities into a semi-
conductor to change its electrical properties. In particular, doping a semi-conductor can increase
its conductivity by introducing more carriers into the metal, called donors. The donors’ hyperfine
interaction with the surrounding nuclei resembles something like a random field and the energy
of the carrier at that site can therefore be viewed as a stochastic variable. Recognizing the signif-
icance of the randomness, Anderson set out to develop a theory for describing transport in such
a disordered system. Interestingly, Anderson found that, for a large class of systems, there was a
critical disorder strength at which transport ceases to occur [2].
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2 Foundational work on transport in disordered lattices
The stated purpose of [2] was to provide a foundation for the theory of transport in disordered
lattices, and so Anderson considers a simple, ubiquitous model: a lattice where each site can be
occupied by a single spin with an on-site random disorder potential, and each pair of sites has
an isotropic interaction potential. Physically, the sites could represent impurity sites, the random
energies could be the hyperfine interactions with surrounding nuclei, so that, for example, a spin
occupying site j has a random energy E j, and there is an interaction Vjk(r jk) between sites that al-
lows spins to “move” through the lattice by means of swapping opposite spins on neighboring sites.
Note that there is no external reservoir or heat bath in this problem–we will find the system fails
to act as one for any subsystem. Indeed, for low enough densities and short-ranged interactions,
there is no transport.

The Schrodinger equation for this model is

iȧ j = E ja j + ∑
k 6= j

Vjkak (1)

We are interested in the long time behavior of a j when the particle begins localized at j = 0 i.e.
a0(0) = 1,a j(0) = 0, j 6= 0. Accordingly, it will be easier to consider the corresponding Laplace
variables

f j(s) =
∫

∞

0
e−sta j(t)dt (2)

because of the following observation:

lim
s→0+

s f j(s) = lim
s→0+

∫
∞

0
se−sta j(t)dt = lim

s→0+
−e−sta j(t)|∞0 +

∫
∞

0
e−st ȧ j(t)dt = a j(∞) (3)

Thus, studying the small s behavior of the conjugate variable f j(s) reveals the large t behavior
of a j(t). Thus we begin by taking the Laplace transform of the Schrodinger equation. We can then
plug in the initial values and get a relation between the different conjugate variables.

i (s f j(s)−a j(0)) = E j f j + ∑
k 6= j

Vjk fk (4)

f j(s) =
iδ0 j

is−E j
+ ∑

k 6= j

Vjk

is−E j
fk(s) (5)

We can then solve the equation for f0(s) by repeatedly plugging in the above equation, getting
a series Vc(0) summing over closed paths at 0 weighted at each edge by the interaction coefficients
Vjk.
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f0(s) =
i

is−E0
+ ∑

k 6=0

V0k

is−E0
∑
l 6=k

Vkl

is−Ek
(

iδ0l

is−El
+ ∑

m6=l

Vlm

is−El
(...)) (6)

=
i

is−E0

(
1− i

(
∑
k

V 2
0k

is−Ek
+∑

k,l

V0kVklVl0

(is−Ek)(is−El)
+ ...

)
f0(s)

)
(7)

≡ i
is−E0

(1− iVc(0) f0(s)) (8)

f0(s) =
1

s+ iVc(0)+ iE0
(9)

The series Vc(0) represents the interference between the wave-function and itself. In the limit
s→ 0, we are interested in the lowest order terms. We can rewrite it in terms of its real and imag-
inary parts. Unsurprisingly, since Vc(0) is a series in the interaction strength, the real part gives
the second order perturbation to the random disorder potential ∆E(2) as s→ 0. The imaginary
part carries an extra factor of s, and will therefore be subdominant unless the real part vanishes, in
which case we must include it. It can be rewritten in terms of the usual transition probability for-
mula using a property of the Lorentzian distribution, and an additional term for sites with nonzero
random potential.

Vc(0) ∼∑
k

V 2
0k

(
−Ek

s2 +E2
k
− i

s
s2 +E2

k

)
= −∆E(2)− i∑

k
V 2

0kδ (Ek)− is ∑
k,Ek 6=0

V 2
0k

E2
k

(10)

Vc(0) ∼−∆E(2)− i
τ
− isK (11)

The last relation defines K and τ . Of course, since we are only interested in the leading behav-
ior, if τ is finite, we can drop the K term, and if τ is infinite, we can keep the K term.

f0(s) =
i

is(1+K)+ (i/τ)− (E0−∆E(2))
(12)

In order to understand the behavior at large t, it is necessary to understand Vc as a probability
variable. The imaginary part of Vc is the most relevant since the real part just shifts the mean
of the random energies. We will define X(s), a quantity which describes the “spreading” of the
wave-function at infinity1. A finite value of X(s) as s→ 0 suggests that no real transport occurs.

Im{Vc}= −s∑
k

|V0k|2

s2 +E2
k
≡−sX(s) = −s

(
∑
j 6=0

| f j(s)|2

| f0(s)|2
+O

(
s2)) (13)

Thus, the theorem at hand hinges on the convergence of X(s). In evaluating X(s), we will
assume a uniform number density n.

1This relationship can be seen by rewriting it using a simple relation derived from the Laplace-transformed equation
of motion.
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X(s) = ∑
k

V 2
0k

s2 +E2
k
= n

∫
d3r

V (r)2

s2 +E(r)2 (14)

X(s) is a probability variable in the distribution of random on-site potentials. It will be helpful
to label it with the letter E, to indicate a particular value of X(s) for a particular distribution of
{E j}. It will be helpful to know P(X), the probability that X(s) takes some value X . Towards this
end, we will also define an integration measure dΩE for the probability distribution on {E j}.

P(X) =
∫

dΩEδ (X−XE(s)) =
∫

dΩE
1

2π

∫
∞

−∞

dxeix(X−XE (s)) (15)

=
1

2π

∫
∞

−∞

dxeixX
∫

dΩEe
−ixn

∫
d3r V (r)2

s2+E(r)2 =
1

2π

∫
∞

−∞

dxeixX < e
−ixn

∫
d3r V (r)2

s2+E(r)2 > (16)

=
1

2π

∫
∞

−∞

dxeixX e
−n<

∫(
1−exp

(
−ix V (r)2

s2+E(r)2

))
d3r>

(17)

In the last step we used the Holtsmark-Markoff method result. The integral I in the exponent
above can be understood asymptotically using the stationary phase approximation. Considering
the case where s = 0 first, and expanding around x = 0, we see that only small values of E are
important, and the variation of P(E) can be neglected, replacing it by 1/W where W is the width
of the distribution P(E).

I =
∫

dΩE

∫
dr4πr2 (1− exp

(
−ixV (r)2/(E2 + s2)

))
(18)

∼ 4π

W

∫
∞

0
r2dr

∫
∞

−∞

dE
(
1− exp

(
−ixV (r)2/(E2)

))
(19)

= 2
(x

i

)1/2
Γ(1/2)

<V (r) >
W

(20)

The convergence depends on how V (r) depends on r. For V (r) ∝ r−(3+ε), for large values of
X , P(X) falls off as X−3/2, with a finite most probable value (though the mean in divergent). For
V (r) = Ar−3, we see a logarithmic singularity in the most probable value as s→ 0. This is harder
to evaluate. For a boxed distribution of width W , i.e. E ∈ [−W /2,W /2] and P(E) = 1

W , we find
the most probable value of X goes as

[X(s)]M.P. ∼
(

nA
W

sinh−1(W /2s)
)2

(21)

Although for V (r) ∈O
(
r3+ε

)
we found a finite most probable value for X(s) to first order in s,

the full series might still diverge, and so it will be necessary to evaluate the sum. [2] goes through
significant effort to remove terms in the sum that cause it to blow up. This will change the sum
slightly, so that no single term contains any repeating indices.

4



Vc(0) = ∑
j,k,l,...m6=0

V0 j
1

is−E j
Vjk

1
is−Ek

Vkl
1

is−El
...

1
is−Em

Vm0
1

is−E0
(22)

We first focus on products of L terms which corresponds to paths of length L through the lattice.
How many of the products of L terms take a value between T and T +dT ? Let n(T )dT denote the
answer to the previous question. Anderson is able to find n(T ) explicitly in some cases.

In the first case, suppose we use a box distribution of width W like the one described earlier
and that the potential is nearest neighbor, with a constant value V between neighbors. Then each
term takes the form

1
e1

1
e2

1
e3

...
1
eL

(23)

where ei is the amended propagator from the definition of Vc(0). Each one is a random variable
that depends on the values of the {Ei}. Let P(Π)dΠ denote the probability that the product takes
value Π.

It is well known that for a lattice with coordination number Z, the number of non-repeating
paths of length L leading from any given atom scales like KL where K is of the same order as Z.
Then we get the result

n(T )dT = KLP(T /V L)dT /V L = (K/V )LP(T /V L)dT (24)

More generally, [2] finds

n(T )dT = [F(K,W /V )]LL(T )dT /T 2 (25)

The probability of the sum is then2

P(Σ)dΣ ∼ FL(K,W /V )L(Σ)dΣ/Σ (26)

Localization is when the most probable value of Σ is of order one, or FL(K, (W /V )0)L(Σ) = 1,
for appropriate (W /V )0. We see that this series will converge so long as (W /V )> (W /V )0, which
is the desired result.

Let us summarize what we’ve found: There is a critical value for the ratio between the disorder
potential to the bandwidth, above which all solutions to Schrodinger’s equation are (unlike Bloch
states) localized3. Evaluating this critical disorder strength is difficult, though later numerical and
experimental estimates suggest that a value of two is typical for s states (in three dimensions),
around one for d states4, and about four thirds for two dimensional systems [3].

For the nearest neighbor or tight-binding model, we obtain that if the dimension of the lattice
d ≤ 2, then the states are localized for arbitrary disorder strength. This result is reinforced through

2Here we are using that we approximate the sum by its largest terms.
3Though electrons can still be mobile via thermally activated hopping.[3]
4Reasonable since d states share fewer neighbors than s states.
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the scaling theory of localization, developed later by Anderson and others. For d ≥ 3, we have that
the states are localized provided that the disorder strength exceeds its critical value [2].

Another remarkable consequence of this theorem is that it gives a concrete example of a ther-
modynamically large system that fails to come to equilibrium. The model itself has no external
bath and fails to act as one for any sub-system. The introduction of an external bath would likely
lead to transport in this model. The result reiterates that we cannot just assume thermal equilibrium
in any large system.

3 Further theoretical work
Mott showed that some states can still remain localized even below this critical disorder strength
[4]. Even in low disorder regimes, there exists an energy εc below which the states are localized
and above which the states are extended. This energy came to be referred to later as “the mobility
edge”. If the Fermi energy ε f exceeds the mobility edge, then the system is metallic. On the other
hand, if ε f < εc, the system is insulating, and the conductivity σ is zero [3].

For concreteness, the way the Fermi level is controlled experimentally is through the addition of
donors in the doped semiconductor. As we add impurities, the density of free carriers increases, and
with it the Fermi energy. Thus, a precondition to Anderson’s theorem is that we are at sufficiently
low carrier density. At high enough densities, the Fermi level may exceed the mobility edge, and
so extended states will appear.

The nature of the transition between the insulating and conducting phases of the material as
we vary ε ≡ ε f − εc was highly contentious. Whether the transition is first or second order was
a source of fierce debate between Anderson, who (with others) predicted that the conductivity
vanished continuously, and Mott, who suggested that it was discontinuous. The argument given
by the infamous gang of four, of which Anderson was a member, settled the argument for most of
the physics community. Using scaling theory, it found that in d = 2 dimensions, there is no true
metallic conductivity [5], agreeing with earlier experiments and numerical simulations. Indeed,
this result is even robust to adding weak interactions between the electrons [6].

The essence of the argument goes as follows: we know from elementary classical electro-
dynamics that the dimensionless conductance g = h̄

e2 G ≡ h̄
e2R (where R is the resistance) scales

like g(L) ∼ σLd−2 for conducting materials, where L is the characteristic length scale. For small
g, localization is valid and the conductance drops off exponentially g(L) ∼ e−L/ξ . We can thus
compute the flow under the RG scheme5 and find that

β (g) ≡ L
g

dg
dL

=

{
D−2+ ... g >> 1
logg+ ... g << 1

(27)

The resulting flow diagram, found in [5], shows no critical points for d = 2 and flows always
to g = 0, the insulating phase.

A natural generalization of the phenomena of disorder induced localization is what happens
when we introduce interactions to the system. When localization persists with the addition of in-
teractions between the mobile entities, we have many-body localization, and it is an active area of

5The RG step consists of gluing together hypercubes of the material at their boundaries.
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Figure 1: The flow diagram for the scaling theory of localization provided in [5]. Notice the
absence of a critical point in d = 2 dimensions.

research even today. Many-body localization (MBL) is interesting not only because of its connec-
tion to Anderson localized systems, but also because many-body localized systems defy the eigen-
state thermalization hypothesis, which is often used to justify statistical mechanics from quantum
mechanics. Thus, it is of extreme relevance for the foundations of quantum statistical mechanics.
MBL is one half of a phase diagram, the other being the thermalized phase, where the order pa-
rameter, the entanglement entropy, goes continuously from area law to volume law as we vary the
disorder strength. Furthermore, many-body localization is promising for realizing finite tempera-
ture quantum memory [7]. A rigorous proof of a metal-insulator transition in a weakly-interacting
many-body system at finite temperature was done in [8].

4 Experimental confirmations of localization
Electron localization was the concern of Anderson’s original argument, though it seemed for
decades to be particularly difficult to verify. By 1982, the variation of the conductivity σ with
carrier density n was reliably measured for uncompensated samples. It was found that the tran-
sition was very sharp and but that σ follows a power law in (n− nc)/nc as predicted by scaling
theory, though with a different exponent. Earlier work also found that samples with larger com-
pensation seemed to agree with scaling theory more, suggesting that Coulomb interaction effects
between the carriers are non-negligible [9].

In 1982, [10] studied low temperature phosphorous-doped silicon semiconductors in three di-
mensions near the metal-insulator transition at the critical carrier density. They were able to con-
firm that the transition is indeed continuous and highly sensitive to n−nc, obeying power law. The
detailed results can be glimpsed at in fig. 2.

In 1988, Pruisken established that further experimental confirmation can be found in, unexpect-
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(a). (b).

Figure 2: (a). Here, resistivity ρ is plotted as a function of temperature for several values of the
carrier density n near the critical value. The bottom most curve (with the greatest density n) is
clearly metallic, as the resistivity decreases with decreasing T and approaches a small finite value
as T goes to zero. The next one above is a insulator-like, with conductivity above Mott’s supposed
minimum conductivity σM ≈ 20[Ω · cm]−1. The one above that one is very near the transition and
has a conductivity below Mott’s theoretical minimum. It is also insulator-like, though we refrain
from calling it an insulator because it has non-zero conductivity when extrapolated to T = 0.
The upper-most curve is evidently at the insulating side of the transition. Note the sensitivity to
carrier density. (b) We will focus on the right hand side, which presents the T = 0 conductivity
in the metallic phase. The solid line is the conductivity suggested by scaling theory at T = 0 with
σ(0) = σc((n/nc)− 1)ν and ν = 0.55± 0.1. Note the samples with conductivity less than σM.
The findings also hold for non-zero T [10].

edly, the integer quantum hall effect (QHE). In the QHE, the conductivity increases like a staircase
as a function of the magnetic field. The jumps in conductivity occur when the Fermi level of the
conducting electrons approaches the Landau level. Using scaling theory, Pruisken shows that the
electrons are localized at energies away from the Landau levels and extended near them [11].

A plethora of examples of localization have been discovered in recent years using classical
waves. Unlike electrons, photons are non-interacting and also easier to control. By manufacturing
materials that strongly scatter light, for example certain powders that high refractive indices and
tiny grain sizes, experimentalists have been able to disrupt the normal diffusion of light and lo-
calize waves. The goal is to minimize the mean free path of the photons without absorbing them,
for example by using light whose frequency is smaller than the bandgap of the semi-conducting
powder but that still has a high refractive index. This was done in [12], the results of which can be
seen in fig. 3 below.

Since Anderson’s 1958 paper, localization has remained an active area of research with many
remaining open problems. The nature of the many-body localization transition still remains a
mystery, and no analytic derivations of the critical exponents yet exist. Localization is continuing
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Figure 3: Coherent backscattering from the GaAs powder sample. The sharp peak in intensity
shows the localization of light in the medium. The sample was illuminated with “a mode-locked
Nd:YAG laser operating at 76 MHz, with a wavelength of 1,064 nm, pulse duration 100 ps, beam
diameter 6mm and incident power 100mW” [12].

to be discovered in ubiquitous theoretical models and disparate experimental contexts. It still
challenges our understanding of the foundations of quantum statistical mechanics and the approach
to thermodynamic equilibrium. It may hold the key to realizing quantum computers. Anderson
laid the groundwork for the rich world of localization physics, and, in a way, brought order from
disorder.
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