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1/f noise

Our research is related to the 1/f noise problem and long-range
processes.

1/f noise
a type of noise whose power spectral density S(f ) behaves like

S(f ) ∼ 1/f β , β is close to 1

Fluctuations of signals exhibiting 1/f behavior of the power spectral
density at low frequencies have been observed in a wide variety of
physical, geophysical, biological, financial, traffic, Internet,
astrophysical and other systems.
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Example of 1/f noise
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Notes about 1/f noise

A pure 1/f power spectrum is physically impossible because the
total power would be infinity.
We search for a model where the spectrum of signal has 1/f β

behavior only in some intermediate region of frequencies,
fmin � f � fmax, whereas for small frequencies f � fmin the
spectrum is bounded.
The behavior of spectrum at frequencies fmin � f � fmax is
connected with the behavior of the autocorrelation function at
times 1/fmax � t � 1/fmin.
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Notes about 1/f noise

Often 1/f noise is defined by a long-memory process,
characterized by S(f ) ∼ 1/f β as f → 0.
This long-range dependence property is equivalent to similar
behavior of autocorrelation function C(t) as t →∞
This behavior of the autocorrelation function is not necessary for
obtaining required form of the power spectrum in a finite interval of
the frequencies which does not include zero
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1/f noise

1/f noise is intermediate between white noise, S(f ) ∼ 1/f 0 and
Brownian motion S(f ) ∼ 1/f 2

In contrast to the Brownian motion generated by the linear
stochastic equations, the signals and processes with 1/f
spectrum cannot be understood and modeled in such a way.

Goal
to find a simple nonlinear stochastic differential equation (SDE)
generating signals exibiting 1/f noise
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Application to the description of trading

Time series of financial data exhibit highly nontrivial statistical
properties. Many of these properties appear to be universal.
Trading activity, trading volume, and volatility are stochastic
variables with the long-range correlation. The autocorrelation of
the volatility decays only slowly as a power law.
Probability distribution functions (PDFs) of return and trading
activity have fat tails exhibiting power-law decay.
Proposed equations can exhibit both power-law PDF and
power-law spectrum.
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Justification of SDE

If S(f ) ∼ f−β then power spectral density has a scaling property

S(af ) = a−βS(f )

Wiener-Khintchine theorem

C(t) =
∫ +∞

−∞
S(f ) cos(2πft) df

Autocorrelation function C(t) has scaling property

C(at) ∼ aβ−1C(t)
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Justification of SDE

Autocorrelation function can be written as

C(t) =
∫

dx
∫

dx ′ xx ′P0(x)Px(x ′, t |x ,0)

P0(x) is the steady state PDF
Px(x ′, t |x ,0) is the transition probability
The transition probability can be obtained from the solution of the
Fokker-Planck equation with the initial condition
Px(x ′,0|x ,0) = δ(x ′ − x).
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Justification of SDE

Let us assume that
Steady state PDF has power-law form

P0(x) ∼ x−ν

Trasnsition probability has a scaling property

P(ax ′, t |ax ,0) = a−1P(x ′,a2(η−1)t |x ,0)

Then the autocorrelation function will have the required scaling
with

β = 1 +
ν − 3

2(η − 1)
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Justification of SDE

To get the required scaling of transition probability:
SDE will contain only powers of x
The diffusion coefficient will be of the form x2η

The drift term is fixed by the requirement that the steady-state
PDF should be x−ν

Proposed SDE

dx = σ2(η − ν/2)x2η−1dt + σxηdWt

B. Kaulakys and J. Ruseckas, Phys. Rev. E 70, 020101(R) (2004).

B. Kaulakys and J. Ruseckas, V. Gontis, and M. Alaburda, Physica A 365, 217 (2006).
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Restriction of diffusion

Because of the divergence of the power-law distribution and the
requirement of the stationarity of the process, the SDE should be
analyzed together with the appropriate restrictions of the diffusion
in some finite interval.
When diffusion is restricted, scaling properties are only
approximate, but 1/f spectrum remains in a wide interval of
frequencies.
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Restriction of diffusion

Possible forms of restriction:
Reflective boundary conditions at x = xmin and x = xmax

Exponential restriction of the diffusion

dx = σ2
(
η − ν

2
+

m
2

(xmin

x

)m
− m

2

(
x

xmax

)m)
x2η−1dt + σxηdWt

Steady state PDF:

P0(x) ∼ x−ν exp
(
−
(xmin

x

)m
−
(

x
xmax

)m)
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Restriction of diffusion

q-exponential steady-state PDF

dx = σ2(η − ν/2)(x + x0)
2η−1dt + σ(x + x0)

ηdWt

P0(x) ∼ exp1+1/ν(−νx/x0)

Reflective boundary condition at x = 0
B. Kaulakys and M. Alaburda, J. Stat. Mech. 2009, P02051 (2009).

q-Gaussian steady-state PDF

dx = σ2(η − ν/2)(x2 + x2
0 )
η−1xdt + σ(x2 + x2

0 )
η/2dWt

P0(x) ∼ exp1+2/ν(−νx2/2x2
0 )

B. Kaulakys, M. Alaburda, and V. Gontis, AIP Conf. Proc. 1129, 13 (2009).

V. Gontis, B. Kaulakys, and J. Ruseckas, AIP Conf. Proc. 1129, 563 (2009).

V. Gontis, J. Ruseckas, and A. Kononovičius, Physica A, 389, 100 (2010).

q-exponential function: expq(x) ≡ (1 + (1− q)x)1/(1−q)
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Trading return

The distribution of normalized return r per 1 min is close to q-Gaussian.
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Connection with other equations

For some choces of parameters our SDE takes the form of well-known
SDE’s considered in econopysics and finance.

η = 0 and σ = 1 corresponds to the Bessel process

dx =
δ − 1

2
1
x

dt + dWt

of dimension δ = 1− ν
η = 1/2, σ = 2 corresponds to the squared Bessel process

dx = δdt + 2
√

x dWt

of dimension δ = 2(1− ν)
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Connection with other equations

SDE with exponential restriction with η = 1/2, xmin = 0 and m = 1
gives Cox-Ingersoll-Ross (CIR) process

dx = k(θ − x)dt + σ
√

x dWt

where k = σ2/2xmax, θ = xmax(1− ν)
When ν = 2η, xmax =∞ and m = 2η − 2 then we get the Constant
Elasticity of Variance (CEV) process

dx = µxdt + σxηdWt

where µ = σ2(η − 1)x2(η−1)
min
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Numerical simulation
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Analytically solvable case

A CEV process:
dx = µxdt + σx

3
2 dWt

where µ = σ2xmin/2, η = 3/2, ν = 3 and xmax =∞
Transition probability is

Px(x ′, t |x ,0) =
xmin

(1− e−µt)

√
x

x ′5
exp

(
1
2
µt − xmin

(1− e−µt)

(
1
x ′

+
1
x

e−µt
))

× I1

(
xmin

sinh
(1

2µt
) 1√

xx ′

)

The steady-state probability distribution has the form

P0(x) = x2
minx−3 exp(−xmin/x)
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Analytically solvable case

The autocorrelation function

C(t) = −x2
mineµt ln

(
1− e−µt)

When µt � 1 we get C(t) ≈ −x2
min ln(µt)

The power spectral density

S(f ) = −4x2
min Re

[
γ + ψ(iω/µ)
µ− iω

]
where γ is the Euler’s constant and ψ(·) is the digamma function.
When ω � µ then the power spectral density is S(f ) ≈ x2

min/f

J. Ruseckas et al. (Lithuania) Nonlinear stochastic differential equations March 17, 2011 20 / 26



Analytically solvable case
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1/f noise and eigenvalues of the F-P equation

Solutions of the Fokker-Planck equation having the form
P(x , t) = Pλ(x)e−λt determine eigenfunctions Pλ(x) and
eigenvalues λ
The power spectral density

S(f ) = 4
∑
λ

λ

λ2 + ω2 X 2
λ , Xλ =

∫ xmax

xmin

xPλ(x) dx

The shape of the power spectral density depends on the behavior
of the eigenfunctions and the eigenvalues
Expression for the power spectral density resembles the models of
1/f noise using the sum of the Lorentzian spectra. The
Lorentzians can arise from the single nonlinear stochastic
differential equation
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1/f noise and eigenvalues of the F-P equation

S(f ) ≈ 4
∫

λ

λ2 + ω2 X 2
λD(λ) dλ ∼

∫ λmax

λmin

1
λβ−1

1
λ2 + ω2 dλ

The largest contribution make the terms corresponding to the
eigenvalues λ obeying the condition λmin � λ� λmax, where

λmin = σ2x2(η−1)
min , λmax = σ2x2(η−1)

max , η > 1

λmin = σ2x2(η−1)
max , λmax = σ2x2(η−1)

min , η < 1

When λmin � ω � λmax then the leading term in the expansion in the
power series of ω is

S(f ) ∼ ω−β , β < 2
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1/f noise and eigenvalues of the F-P equation

The shape of the power spectral density depends on the behavior
of the eigenfunctions and the eigenvalues in terms of the function
X 2
λD(λ).

One obtains 1/f β behavior of the power spectral density when
function X 2

λD(λ) is proportional to λ−β for a wide range of
eigenvalues λ

J. Ruseckas and B. Kaulakys, Phys. Rev. E 81, 031105 (2010).
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Summary

We obtain a class of nonlinear SDEs, giving the power-law
behavior of the power spectral density in any desirably wide range
of frequencies
and power-law steady state distribution of the signal intensity.
The equations, as special cases, contain the well-known SDEs in
economics and finance.
One of the reasons for the appearance of the 1/f spectrum is the
scaling property of the SDE.
The power spectral density may be represented as a sum of the
Lorentzian spectra.
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Thank you for your attention!
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