Statistical Theory: Introduction

Statistical Theory
Victor Panaretos
Ecole polytechnique fédérale de Lausanne

ÉCOLE POLYTECHNIQUE fédérale de lausanne

1 What is This Course About?Elements of a Statistical ModelParameters and ParametrizationsSome Motivating Examples

What is This Course About

Statistics \longrightarrow Extracting Information from Data

- Age of Universe (Astrophysics)
- Microarrays (Genetics)
- Stock Markets (Finance)
- Pattern Recognition (Artificial Intelligence)
- Climate Reconstruction (Paleoclimatology)
- Quality Control (Mass Production)
- Variety of different forms of data are bewildering
- But concepts involved in their analysis show fundamental similarities
- Imbed and rigorously study in a framework

Statistical Theory (Week 1)
- Random Networks (Internet)
- Inflation (Economics)
- Phylogenetics (Evolution)
- Molecular Structure (Structural Biology)
- Seal Tracking (Marine Biology)
- Disease Transmission (Epidemics)

What is This Course About?

We may at once admit that any inference from the particular to the general must be attended with some degree of uncertainty, but this is not the same as to admit that such inference cannot be absolutely rigorous, for the nature and degree of the uncertainty may itself be capable of rigorous expression.

Ronald A. Fisher
The object of rigor is to sanction and legitimize the the conquests of intuition, and there was never any other object for it.

What is This Course About?

What is This Course About?

Statistical Theory: What and How?

What? The rigorous study of the procedure of extracting information from data using the formalism and machinery of mathematics.
How? Thinking of data as outcomes of probability experiments

- Probability offers a natural language to describe uncertainty or partial knowledge
- Deep connections between probability and formal logic
- Can break down phenomenon into systematic and random parts.

What can Data be?

To do probability we simply need a measurable space (Ω, \mathcal{F}). Hence, almost anything that can be mathematically expressed can be thought as data (numbers, functions, graphs, shapes,...)
Statistical Theory (Week 1) Introduction

A Probabilist and a Statistician Flip a Coin

Example

Let X_{1}, \ldots, X_{10} denote the results of flipping a coin ten times, with

$$
X_{i}=\left\{\begin{array}{ll}
0 & \text { if heads }, \\
1 & \text { if tails }
\end{array}, \quad i=1, \ldots, 10\right.
$$

A plausible model is $X_{i} \stackrel{i i d}{\sim} \operatorname{Bernoulli}(\theta)$. We record the outcome

$$
\mathbf{X}=(0,0,0,1,0,1,1,1,1,1) .
$$

Probabilist Asks:

- Probability of outcome as function of θ ?
- Probability of k-long run?
- If keep tossing, how many k-long runs? How long until k-long run?

The Job of the Probabilist

Given a probability model \mathbb{P} on a measurable space (Ω, \mathcal{F}) find the probability $\mathbb{P}[A]$ that the outcome of the experiment is $A \in \mathcal{F}$.

The Job of the Statistician

Given an outcome of $A \in \mathcal{F}$ (the data) of a probability experiment on (Ω, \mathcal{F}), tell me something interesting* about the (uknown) probability model \mathbb{P} that generated the outcome.
(*something in addition to what I knew before observing the outcome A)
Such questions can be:
(1) Are the data consistent with a certain model?
(2) Given a family of models, can we determine which model generated the data?
These give birth to more questions: how can we answer 1,2? is there a best way? how much "off" is our answer?

A Probabilist and a Statistician Flip a Coin

Example (cont'd)

Statistician Asks:

- Is the coin fair?
- What is the true value of θ given \mathbf{X} ?
- How much error do we make when trying to decide the above from \mathbf{X} ?
- How does our answer change if \mathbf{X} is perturbed?
- Is there a "best" solution to the above problems?
- How sensitive are our answers to departures from $X_{i} \stackrel{i i d}{\sim} \operatorname{Bernoulli}(\theta)$
- How do our "answers" behave as \# tosses $\longrightarrow \infty$?
- How many tosses would we need until we can get "accurate answers"?
- Does our model agree with the data?

The Basic Setup

The Basic Setup: An llustration

Elements of a Statistical Model:

- Have a random experiment with sample space Ω.
- $\mathbf{X}: \Omega \rightarrow \mathbb{R}^{n}$ is a random variable, $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$, defined on Ω
- When outcome of experiment is $\omega \in \Omega$, we observe $\mathbf{X}(\omega)$ and call it the data (usually ω omitted).
- Probability experiment of observing a realisation of \mathbf{X} completely determined by distribution F of \mathbf{X}.
- F assumed to be member of family \mathcal{F} of distributions on \mathbb{R}^{n}

Goal
 Learn about $F \in \mathcal{F}$ given data \mathbf{X}.

Describing Families of Distributions: Parametric Models

Definition (Parametrization)

Let Θ be a set, \mathcal{F} be a family of distributions and $g: \Theta \rightarrow \mathcal{F}$ an onto mapping. The pair (Θ, g) is called a parametrization of \mathcal{F}.

Definition (Parametric Model)

A parametric model with parameter space $\Theta \subseteq \mathbb{R}^{d}$ is a family of probability models \mathcal{F} parametrized by $\Theta, \mathcal{F}=\left\{F_{\theta}: \theta \in \Theta\right\}$.

Example (IID Normal Model)

$$
\mathcal{F}=\left\{\prod_{i=1}^{n} \int_{-\infty}^{x_{i}} \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2 \sigma}\left(y_{i}-\mu\right)^{2}} d y_{i}:\left(\mu, \sigma^{2}\right) \in \mathbb{R} \times \mathbb{R}_{+}\right\}
$$

- When Θ is not Euclidean, we call \mathcal{F} non-parametric
- When Θ is a product of a Euclidean and a non-Eucidean space, we call \mathcal{F} semi-parametric

Example (Coin Tossing)

Consider the following probability space:

- $\Omega=[0,1]^{n}$ with elements $\omega=\left(\omega_{1}, \ldots, \omega_{n}\right) \in \Omega$
- \mathcal{F} are Borel subsets of Ω (product σ-algebra)
- \mathbb{P} is the uniform probability measure (Lebesge measure) on $[0,1]^{n}$ Now we can define the experiment of n coin tosses as follows:
- Let $\theta \in(0,1)$ be a constant
- For $i=1, \ldots, n$ let $X_{i}=\mathbf{1}\left\{\omega_{i}>\theta\right\}$
- Let $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$, so that $\mathbf{X}: \Omega \rightarrow\{0,1\}^{n}$
- Then $F_{X_{i}}\left(\mathbf{x}_{i}\right)=\mathbb{P}\left[X_{i} \leq x_{i}\right]= \begin{cases}0 & \text { if } x_{i} \in(-\infty, 0), \\ \theta & \text { if } x_{i} \in[0,1), \\ 1 & \text { if } x_{i} \in[1,+\infty) .\end{cases}$
- And $F_{\mathbf{X}}(\mathbf{x})=\prod_{i=1}^{n} F_{X_{i}}\left(x_{i}\right)$

Statistical Theory (Week 1)

Parametric Models

Example (Geometric Distribution)

Let X_{1}, \ldots, X_{n} be iid geometric (p) distributed: $\mathbb{P}\left[X_{i}=k\right]=p(1-p)^{k}$, $k \in \mathbb{N} \cup\{0\}$. Two possible parametrizations are:
(1) $[0,1] \ni p \mapsto \operatorname{geometric}(p)$
(2) $[0, \infty) \ni \mu \mapsto$ geometric with mean μ

Example (Poisson Distribution)

Let X_{1}, \ldots, X_{n} be Poisson (λ) distributed: $\mathbb{P}\left[X_{i}=k\right]=e^{-\lambda} \frac{\lambda^{k}}{k!}, k \in \mathbb{N} \cup\{0\}$. Three possible parametrizations are:
(1) $[0, \infty) \ni \lambda \mapsto \operatorname{Poisson}(\lambda)$
(2 $[0, \infty) \ni \mu \mapsto$ Poisson with mean μ
(3) $[0, \infty) \ni \sigma^{2} \mapsto$ Poisson with variance σ^{2}

Identifiability

- Parametrization often suggested from phenomenon we are modelling
- But any set Θ and surjection $g: \Theta \rightarrow \mathcal{F}$ give a parametrization.
- Many parametrizations possible! Is any parametrization sensible?

Definition (Identifiability)

A parametrization (Θ, g) of a family of models \mathcal{F} is called identifiable if $g: \Theta \rightarrow \mathcal{F}$ is a bijection (i.e. if g is injective on top of being surjective).

When a parametrization is not identifiable:

- Have $\theta_{1} \neq \theta_{2}$ but $F_{\theta_{1}}=F_{\theta_{2}}$.
- Even with ∞ amounts of data we could not distinguish θ_{1} from θ_{2}.

Definition (Parameter)

A parameter is a function $\nu: F_{\theta} \rightarrow \mathcal{N}$, where \mathcal{N} is arbitrary.

- A parameter is a feature of the distribution F_{θ}
- When $\theta \mapsto F_{\theta}$ is identifiable, then $\nu\left(F_{\theta}\right)=q(\theta)$ for some $q: \Theta \xrightarrow{\rightarrow} \mathcal{N}$. Statistical Theory (Week 1) Introduction $13 / 16$

Parametric Inference for Regular Models

Will focus on parametric families \mathcal{F}. The aspects we will wish to learn about will be parameters of $F \in \mathcal{F}$.

Regular Models

Assume from now on that in any parametric model we consider either:
(1) All of the F_{θ} are continuous with densities $f(\mathbf{x}, \theta)$
(2) All of the F_{θ} are discrete with frequency functions $p(\mathbf{x}, \theta)$ and there exists a countable set A that is independent of θ such that $\sum_{\mathbf{x} \in A} p(\mathbf{x}, \theta)=1$ for all $\theta \in \Theta$.

Will be considering the mathematical aspects of problems such as:
(1) Estimating which $\theta \in \Theta$ (i.e. which $F_{\theta} \in \mathcal{F}$) generated \mathbf{X}
(2) Deciding whether some hypothesized values of θ are consistent with \mathbf{X}
(3) The performance of methods and the existence of optimal methods
(0) What happens when our model is wrong?

Identifiability

Example (Binomial Thinning)

Let $\left\{B_{i, j}\right\}$ be an infinite iid array of $\operatorname{Bernoulli}(\psi)$ variables and ξ_{1}, \ldots, ξ_{n} be an iid sequence of geometric (p) random variables with probability mass function $\mathbb{P}\left[\xi_{i}=k\right]=p(1-p)^{k}, k \in \mathbb{N} \cup\{0\}$. Let X_{1}, \ldots, X_{n} be iid random variables defined by

$$
X_{j}=\sum_{i=1}^{\xi_{j}} B_{i, j}, \quad j=1, . ., n
$$

Any $F_{X} \in \mathcal{F}$ is completely determined by (ψ, p), so $[0,1]^{2} \ni(\psi, q) \mapsto F_{X}$ is a parametrization of \mathcal{F}. Can show (how?)

$$
X \sim \text { geometric }\left(\frac{p}{\psi(1-p)+p}\right)
$$

However (ψ, p) is not identifiable (why?).
Statistical Theory (Week 1) Introduction

Examples

Example (Five Examples)

- Sampling Inspection (Hypergeometric Distribution)
- Problem of Location (Location-Scale Families)
- Regression Models (Non-identically distributed data)
- Autoregressive Measurement Error Model (Dependent data)
- Random Projections of Triangles (Shape Theory)

Overview of Stochastic Convergence

Statistical Theory

Victor Panaretos
Ecole Polytechnique Fédérale de Lausanne

ÉCOLE POLYTECHNIQUE fédérale de lausanne

Stochastic Convergence

- How does a R.V. "Converge"?
- Convergence in Probability and in Distribution
(3) Useful Theorems
- Weak Convergence of Random Vectors

Stronger Notions of Convergence

The Two "Big" Theorems

Functions of Random Variables

Let X_{1}, \ldots, X_{n} be i.i.d. with $\mathbb{E} X_{i}=\mu$ and $\operatorname{var}\left[X_{i}\right]=\sigma^{2}$. Consider:

$$
\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

- If $X_{i} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ or $X_{i} \sim \exp (1 / \mu)$ then know $\operatorname{dist}\left[\bar{X}_{n}\right]$.
- But X_{i} may be from some more general distribution
- Joint distribution of X_{i} may not even be completely understood

Would like to be able to say something about \bar{X}_{n} even in those cases!
Perhaps this is not easy for fixed n, but what about letting $n \rightarrow \infty$? $\hookrightarrow($ a very common approach in mathematics)

Functions of Random Variables

Once we assume that $n \rightarrow \infty$ we start understanding $\operatorname{dist}\left[\bar{X}_{n}\right]$ more:

- At a crude level \bar{X}_{n} becomes concentrated around μ

$$
\mathbb{P}\left[\left|\bar{X}_{n}-\mu\right|<\epsilon\right] \approx 1, \quad \forall \epsilon>0, \text { as } n \rightarrow \infty
$$

- Perhaps more informative is to look at the "magnified difference"

$$
\mathbb{P}\left[\sqrt{n}\left(\bar{X}_{n}-\mu\right) \leq x\right] \stackrel{n \rightarrow \infty}{\approx} \text { ? could yield } \mathbb{P}\left[\bar{X}_{n} \leq x\right]
$$

More generally \longrightarrow Want to understand distribution of $Y=g\left(X_{1}, \ldots, X_{n}\right)$ for some general g :

- Often intractable
- Resort to asymptotic approximations to understand behaviour of Y

Warning: While lots known about asymptotics, often they are misused (n small!!

Convergence of Random Variables

Need to make precise what we mean by:

- Y_{n} is "concentrated" around μ as $n \rightarrow \infty$
- More generally what " Y_{n} behaves like Y " for large n means
- $\operatorname{dist}\left[g\left(X_{1}, \ldots, X_{n}\right)\right] \stackrel{n \rightarrow \infty}{\approx}$?
\hookrightarrow Need appropriate notions of convergence for random variables
Recall: random variables are functions between measurable spaces
\Longrightarrow Convergence of random variables can be defined in various ways:
- Convergence in probability (convergence in measure)
- Convergence in distribution (weak convergence)
- Convergence with probability 1 (almost sure convergence)
- Convergence in L^{p} (convergence in the p-th moment)

Each of these is qualitatively different - Some notions stronger than others

| Statistical Theory (Week 2) Stochastic Convergence | 5/21 |
| :--- | :--- | :--- |

Convergence in Distribution

Definition (Convergence in Distribution)

Let $\left\{X_{n}\right\}$ and X be random variables (not necessarily defined on the same probability space). We say that X_{n} converges in distribution to X as $n \rightarrow \infty$ (and write $X_{n} \xrightarrow{d} X$) if

$$
\mathbb{P}\left[X_{n} \leq x\right] \xrightarrow{n \rightarrow \infty} \mathbb{P}[X \leq x],
$$

at every continuity point of $F_{X}(x)=\mathbb{P}[X \leq x]$.

Example

Let $X_{1}, \ldots, X_{n} \stackrel{\text { iid }}{\sim} \mathcal{U}[0,1], M_{n}=\max \left\{X_{1}, \ldots, X_{n}\right\}$, and $Q_{n}=n\left(1-M_{n}\right)$.

$$
\mathbb{P}\left[Q_{n} \leq x\right]=\mathbb{P}\left[M_{n} \geq 1-x / n\right]=1-\left(1-\frac{x}{n}\right)^{n} \xrightarrow{n \rightarrow \infty} 1-e^{-x}
$$

for all $x \geq 0$. Hence $Q_{n} \xrightarrow{d} Q$, with $Q \sim \exp (1)$.

Convergence in Probability

Definition (Convergence in Probability)

Let $\left\{X_{n}\right\}_{n \geq 1}$ and X be random variables defined on the same probability space. We say that X_{n} converges in probability to X as $n \rightarrow \infty$ (and write $\left.X_{n} \xrightarrow{p} X\right)$ if for any $\epsilon>0$,

$$
\mathbb{P}\left[\left|X_{n}-X\right|>\epsilon\right] \xrightarrow{n \rightarrow \infty} 0 .
$$

Intuitively, if $X_{n} \xrightarrow{p} X$, then with high probability $X_{n} \approx X$ for large n.

Example

Let $X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} \mathcal{U}[0,1]$, and define $M_{n}=\max \left\{X_{1}, \ldots, X_{n}\right\}$. Then,

$$
\begin{aligned}
F_{M_{n}}(x)=x^{n} \Longrightarrow \mathbb{P}\left[\left|M_{n}-1\right|>\epsilon\right] & =\mathbb{P}\left[M_{n}<1-\varepsilon\right] \\
& =(1-\epsilon)^{n} \xrightarrow{n \rightarrow \infty} 0
\end{aligned}
$$

for any $0<\epsilon<1$. Hence $M_{n} \xrightarrow{p} 1$.
Statistical Theory (Week 2)
Some Comments on " $\xrightarrow{\rho}$ " and " \xrightarrow{d} "

- Convergence in probability implies convergence in distribution.
- Convergence in distribution does NOT imply convergence in probability
\hookrightarrow Consider $X \sim \mathcal{N}(0,1),-X+\frac{1}{n} \xrightarrow{d} X$ but $-X+\frac{1}{n} \xrightarrow{p}-X$.
- " \xrightarrow{d} " relates distribution functions
\hookrightarrow Can use to approximate distributions (approximation error?).
- Both notions of convergence are metrizable
\hookrightarrow i.e. there exist metrics on the space of random variables and distribution functions that are compatible with the notion of convergence.
\hookrightarrow Hence can use things such as the triangle inequality etc.
- " \xrightarrow{d} " is also known as "weak convergence" (will see why).

[^0]
Some Basic Results

Theorem

(a) $X_{n} \xrightarrow{p} X \Longrightarrow X_{n} \xrightarrow{d} X$
(b) $X_{n} \xrightarrow{d} c \Longrightarrow X_{n} \xrightarrow{p} c, c \in \mathbb{R}$.

Proof

(a)Let x be a continuity point of F_{X} and $\epsilon>0$. Then,

$$
\begin{aligned}
\mathbb{P}\left[X_{n} \leq x\right] & =\mathbb{P}\left[X_{n} \leq x,\left|X_{n}-X\right| \leq \epsilon\right]+\mathbb{P}\left[X_{n} \leq x,\left|X_{n}-X\right|>\epsilon\right] \\
& \leq \mathbb{P}[X \leq x+\epsilon]+\mathbb{P}\left[\left|X_{n}-X\right|>\epsilon\right]
\end{aligned}
$$

since $\{X \leq x+\epsilon\}$ contains $\left\{X_{n} \leq x,\left|X_{n}-X\right| \leq \epsilon\right\}$. Similarly,
$\mathbb{P}[X \leq x-\epsilon]=\mathbb{P}\left[X \leq x-\epsilon,\left|X_{n}-X\right| \leq \epsilon\right]+\mathbb{P}\left[X \leq x-\epsilon,\left|X_{n}-X\right|>\epsilon\right]$

$$
\leq \mathbb{P}\left[X_{n} \leq x\right]+\mathbb{P}\left[\left|X_{n}-X\right|>\epsilon\right]
$$

Statistical Theory (Week 2)

Theorem (Continuous Mapping Theorem)

Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. Then,
(a) $X_{n} \xrightarrow{p} X \Longrightarrow g\left(X_{n}\right) \xrightarrow{p} g(X)$
(b) $Y_{n} \xrightarrow{d} Y \Longrightarrow g\left(Y_{n}\right) \xrightarrow{d} g(Y)$

Exercise

Prove part (a). You may assume without proof the Subsequence Lemma: $X_{n} \xrightarrow{p} X$ if and only if every subsequence $X_{n_{m}}$ of X_{n}, has a further subsequence $X_{n_{m(k)}}$ such that $\mathbb{P}\left[X_{n_{m(k)}} \xrightarrow{k \rightarrow \infty} X\right]=1$.

Theorem (Slutsky's Theorem)

Let $X_{n} \xrightarrow{d} X$ and $Y_{n} \xrightarrow{d} c \in \mathbb{R}$. Then
(a) $X_{n}+Y_{n} \xrightarrow{d} X+c$
(b) $X_{n} Y_{n} \xrightarrow{d} c X$

(proof cont'd).

which yields $\quad \mathbb{P}[X \leq x-\epsilon]-\mathbb{P}\left[\left|X_{n}-X\right|>\epsilon\right] \leq \mathbb{P}\left[X_{n} \leq x\right]$.
Combining the two inequalities and "sandwitching" yields the result.
(b) Let F be the distribution function of a constant r.v. c,

$$
F(x)=\mathbb{P}[c \leq x]= \begin{cases}1 & \text { if } x \geq c \\ 0 & \text { if } x<c\end{cases}
$$

$$
\begin{aligned}
\mathbb{P}\left[\left|X_{n}-c\right|>\epsilon\right] & =\mathbb{P}\left[\left\{X_{n}-c>\epsilon\right\} \cup\left\{c-X_{n}>\epsilon\right\}\right] \\
& =\mathbb{P}\left[X_{n}>c+\epsilon\right]+\mathbb{P}\left[X_{n}<c-\epsilon\right] \\
\leq & 1-\mathbb{P}\left[X_{n} \leq c+\epsilon\right]+\mathbb{P}\left[X_{n} \leq c-\epsilon\right] \\
& \xrightarrow{n \rightarrow \infty} \\
& 1-F(\underbrace{c+\epsilon}_{\geq c})+F(\underbrace{c-\epsilon}_{<c})=0
\end{aligned}
$$

Since $X_{n} \xrightarrow{d} c$.

Proof of Slutsky's Theorem.

(a) We may assume $c=0$. Let x be a continuity point of F_{X}. We have

$$
\begin{aligned}
\mathbb{P}\left[X_{n}+Y_{n} \leq x\right] & =\mathbb{P}\left[X_{n}+Y_{n} \leq x,\left|Y_{n}\right| \leq \epsilon\right]+\mathbb{P}\left[X_{n}+Y_{n} \leq x,\left|Y_{n}\right|>\epsilon\right] \\
& \leq \mathbb{P}\left[X_{n} \leq x+\epsilon\right]+\mathbb{P}\left[\left|Y_{n}\right|>\epsilon\right]
\end{aligned}
$$

$$
\text { Similarly, } \quad \mathbb{P}\left[X_{n} \leq x-\epsilon\right] \leq \mathbb{P}\left[X_{n}+Y_{n} \leq x\right]+\mathbb{P}\left[\left|Y_{n}\right|>\epsilon\right]
$$

Therefore,
$\mathbb{P}\left[X_{n} \leq x-\epsilon\right]-\mathbb{P}\left[\left|Y_{n}\right|>\epsilon\right] \leq \mathbb{P}\left[X_{n}+Y_{n} \leq x\right] \leq \mathbb{P}\left[X_{n} \leq x+\epsilon\right]+\mathbb{P}\left[\left|Y_{n}\right|>\epsilon\right]$ Taking $n \rightarrow \infty$, and then $\epsilon \rightarrow 0$ proves (a).
(b) By (a) we may assume that $c=0$ (check). Let $\epsilon, M>0$:

$$
\begin{aligned}
\mathbb{P}\left[\left|X_{n} Y_{n}\right|>\epsilon\right] & \leq \mathbb{P}\left[\left|X_{n} Y_{n}\right|>\epsilon,\left|Y_{n}\right| \leq 1 / M\right]+\mathbb{P}\left[\left|Y_{n}\right| \geq 1 / M\right] \\
& \xrightarrow{n \rightarrow \infty} \mathbb{P}\left[\left|X_{n}\right|>\epsilon M\right]+\mathbb{P}\left[\left|Y_{n}\right| \geq 1 / M\right] \\
& \mathbb{P}[|X|>\epsilon M]+0
\end{aligned}
$$

The first term can be made arbitrarily small by letting $M \rightarrow \infty$.

Theorem（General Version of Slutsky＇s Theorem）

Let $g: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ be continuous and suppose that $X_{n} \xrightarrow{d} X$ and $Y_{n} \xrightarrow{d} c \in \mathbb{R}$ ．Then，$g\left(X_{n}, Y_{n}\right) \rightarrow g(X, c)$ as $n \rightarrow \infty$ ．
\hookrightarrow Notice that the general version of Slutsky＇s theorem does not follow immediately from the continuous mapping theorem．
－The continuous mapping theorem would be applicable if $\left(X_{n}, Y_{n}\right)$ weakly converged jointly（i．e．their joint distribution）to (X, c) ．
－But here we assume only marginal convergence（i．e．$X_{n} \xrightarrow{d} X$ and $Y_{n} \xrightarrow{d} c$ separately，but their joint behaviour is unspecified）．
－The key of the proof is that in the special case where $Y_{n} \xrightarrow{d} c$ where c is a constant，then marginal convergence \Longleftrightarrow joint convergence．
－However if $X_{n} \xrightarrow{d} X$ where X is non－degenerate，and $Y_{n} \xrightarrow{d} Y$ where Y is non－degenerate，then the theorem fails．
－Notice that even the special cases（addition and multiplication）of Slutsky＇s theorem fail of both X and Y are non－degenerate．

Exercise：Give a counterexample to show that neither of $X_{n} \xrightarrow{p} X$ or $X_{n} \xrightarrow{d} X$ ensures that $\mathbb{E} X_{n} \rightarrow \mathbb{E} X$ as $n \rightarrow \infty$ ．

Theorem（Convergence of Expecations）

If $\left|X_{n}\right|<M<\infty$ and $X_{n} \xrightarrow{d} X$ ，then $\mathbb{E} X$ exists and $\mathbb{E} X_{n} \xrightarrow{n \rightarrow \infty} \mathbb{E} X$ ．

Proof

Assume first that X_{n} are non－negative $\forall n$ ．Then，

$$
\begin{aligned}
\left|\mathbb{E} X_{n}-\mathbb{E} X\right| & =\left|\int_{0}^{M} \mathbb{P}\left[X_{n}>x\right]-\mathbb{P}[X>x] d x\right| \\
& \leq \int_{0}^{M}\left|\mathbb{P}\left[X_{n}>x\right]-\mathbb{P}[X>x]\right| d x \xrightarrow{n \rightarrow \infty} 0
\end{aligned}
$$

since $M<\infty$ and the integration domain is bounded．

[^1]
Theorem（The Delta Method）

Let $Z_{n}:=a_{n}\left(X_{n}-\theta\right) \xrightarrow{d} Z$ where $a_{n}, \theta \in \mathbb{R}$ for all n and $a_{n} \uparrow \infty$ ．Let $g(\cdot)$ be continuously differentiable at θ ．Then，$a_{n}\left(g\left(X_{n}\right)-g(\theta)\right) \xrightarrow{d} g^{\prime}(\theta) Z$ ．

Proof

Taylor expanding around θ gives：

$$
g\left(X_{n}\right)=g(\theta)+g^{\prime}\left(\theta_{n}^{*}\right)\left(X_{n}-\theta\right), \quad \theta_{n}^{*} \text { between } X_{n}, \theta
$$

Thus $\left|\theta_{n}^{*}-\theta\right|<\left|X_{n}-\theta\right|=a_{n}^{-1} \cdot\left|a_{n}\left(X_{n}-\theta\right)\right|=a_{n}^{-1} Z_{n} \xrightarrow{p} 0 \quad$［by Slutsky］ Therefore，$\theta_{n}^{*} \xrightarrow{p} \theta$ ．By the continuous mapping theorem $g^{\prime}\left(\theta_{n}^{*}\right) \xrightarrow{p} g^{\prime}(\theta)$ ．

$$
\text { Thus } \quad \begin{aligned}
a_{n}\left(g\left(X_{n}\right)-g(\theta)\right) & =a_{n}\left(g(\theta)+g^{\prime}\left(\theta_{n}^{*}\right)\left(X_{n}-\theta\right)-g(\theta)\right) \\
& =g^{\prime}\left(\theta_{n}^{*}\right) a_{n}(X-\theta) \xrightarrow{d} g^{\prime}(\theta) Z
\end{aligned}
$$

The delta method actually applies even when $g^{\prime}(\theta)$ is not continuous （proof uses Skorokhod representation）．

Statistical Theory（Week 2）

Stochastic Convergence

Remarks on Weak Convergence

－Often difficult to establish weak convergence directly（from definition）
－Indeed，if F_{n} known，establishing weak convergence is＂useless＂
－Need other more＂handy＂sufficient conditions

Scheffé＇s Theorem

Let X_{n} have density functions（or probability functions）f_{n} ，and let X have density function（or probability function）f ．Then

$$
f_{n} \xrightarrow{n \rightarrow \infty} f(\text { a.e. }) \Longrightarrow X_{n} \xrightarrow{d} X
$$

－The converse to Scheffé＇s theorem is NOT true（why？）．

Continuity Theorem

Let X_{n} and X have characteristic functions $\varphi_{n}(t)=\mathbb{E}\left[e^{i t X_{n}}\right]$ ，and $\varphi(t)=\mathbb{E}\left[e^{i t X}\right]$ ，respectively．Then，
（a）$X_{n} \xrightarrow{d} X \Leftrightarrow \phi_{n} \rightarrow \phi$ pointwise
（b）If $\phi_{n}(t)$ converges pointwise to some limit function $\psi(t)$ that is continuous at zero，then：
（i）\exists a measure ν with c．f．ψ
（ii）$F_{X_{n}} \xrightarrow{w} \nu$ ．

Weak Convergence of Random Vectors

Definition

Let $\left\{\mathbf{X}_{n}\right\}$ be a sequence of random vectors of \mathbb{R}^{d}, and \mathbf{X} a random vector of \mathbb{R}^{d} with $\mathbf{X}_{n}=\left(X_{n}^{(1)}, \ldots, X_{n}^{(d)}\right)^{\top}$ and $\mathbf{X}=\left(X^{(1)}, \ldots, X^{(d)}\right)^{\top}$. Define the distribution functions $F_{X_{n}}(\mathbf{x})=\mathbb{P}\left[X_{n}^{(1)} \leq x^{(1)}, \ldots, X_{n}^{(d)} \leq x^{(d)}\right]$ and $F_{\mathbf{X}}(\mathbf{x})=\mathbb{P}\left[X^{(1)} \leq x^{(1)}, \ldots, X^{(d)} \leq x^{(d)}\right]$, for $\mathbf{x}=\left(x^{(1)}, \ldots, x^{(d)}\right)^{\top} \in \mathbb{R}^{d}$. We say that \mathbf{X}_{n} converges in distribution to \mathbf{X} as $n \rightarrow \infty$ (and write $\mathbf{X}_{n} \xrightarrow{d} \mathbf{X}$) if for every continuity point of $F_{\mathbf{X}}$ we have

$$
F_{\mathbf{X}_{n}}(\mathbf{X}) \xrightarrow{n \rightarrow \infty} F_{\mathbf{X}}(\mathbf{x}) .
$$

There is a link between univariate and multivariate weak convergence:

Theorem (Cramér-Wold Device)

Let $\left\{\mathbf{X}_{n}\right\}$ be a sequence of random vectors of \mathbb{R}^{d}, and \mathbf{X} a random vector of \mathbb{R}^{d}. Then,

$$
\mathbf{X}_{n} \xrightarrow{d} \mathbf{X} \Leftrightarrow \boldsymbol{\theta}^{\top} \mathbf{X}_{n} \xrightarrow{d} \boldsymbol{\theta}^{\top} \mathbf{X}, \forall \boldsymbol{\theta} \in \mathbb{R}^{d} .
$$

Statistical Theory (Week 2) Stochastic Convergence

Relationship Between Different Types of Convergence

- $X_{n} \xrightarrow{\text { a.s. }} X \Longrightarrow X_{n} \xrightarrow{p} X \Longrightarrow X_{n} \xrightarrow{d} X$
- $X_{n} \xrightarrow{L^{p}} X$, for $p>0 \Longrightarrow X_{n} \xrightarrow{p} X \Longrightarrow X_{n} \xrightarrow{d} X$
- for $p \geq q, X_{n} \xrightarrow{L^{p}} X \Longrightarrow X_{n} \xrightarrow{L^{q}} X$
- There is no implicative relationship between " $\xrightarrow{\text { a.s. }}$ " and " $\xrightarrow{L^{p}}$ "

Theorem (Skorokhod's Representation Theorem)

Let $\left\{X_{n}\right\}_{n \geq 1}, X$ be random variables defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with $X_{n} \xrightarrow{d} X$. Then, there exist random variables $\left\{Y_{n}\right\}_{n \geq 1}, Y$ defined on some probability space $\left(\Omega^{\prime}, \mathcal{G}, \mathbb{Q}\right)$ such that:
(i) $Y \stackrel{d}{=} X \& Y_{n} \stackrel{d}{=} X_{n}, \forall n \geq 1$,
(ii) $Y_{n} \xrightarrow{\text { a.s. }} Y$

Exercise

Prove part (b) of the continuous mapping theorem.

Almost Sure Convergence and Convergence in L^{p}

There are also two stronger convergence concepts (that do not compare)

Definition (Almost Sure Convergence)

Let $\left\{X_{n}\right\}_{n \geq 1}$ and X be random variables defined on the same probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Let $A:=\left\{\omega \in \Omega: X_{n}(\omega) \xrightarrow{n \rightarrow \infty} X(\omega)\right\}$. We say that X_{n} converges almost surely to X as $n \rightarrow \infty$ (and write $X_{n} \xrightarrow{\text { a.s. }} X$) if $\mathbb{P}[A]=1$.

More plainly, we say $X_{n} \xrightarrow{\text { a.s. }} X$ if $\mathbb{P}\left[X_{n} \rightarrow X\right]=1$.

Definition (Convergence in L^{p})

Let $\left\{X_{n}\right\}_{n \geq 1}$ and X be random variables defined on the same probability space. We say that X_{n} converges to X in L^{p} as $n \rightarrow \infty$ (and write $\left.X_{n} \xrightarrow{L^{P}} X\right)$ if

$$
\mathbb{E}\left|X_{n}-X\right|^{p} \xrightarrow{n \rightarrow \infty} 0 .
$$

Note that $\|X\|_{L^{p}}:=\left(\mathbb{E}|X|^{p}\right)^{1 / p}$ defines a complete norm (when finite)
Statistical Theory (Week 2)
Stochastic Convergence
18 / 21

Recalling two basic Theorems

Multivariate Random Variables \rightarrow " \xrightarrow{d} " defined coordinatewise

Theorem (Strong Law of Large Numbers)

Let $\left\{X_{n}\right\}$ be pairwise iid random variables with $\mathbb{E} X_{k}=\mu$ and $\mathbb{E}\left|X_{k}\right|<\infty$, for all $k \geq 1$. Then,

$$
\frac{1}{n} \sum_{k=1}^{n} X_{k} \xrightarrow{\text { a.s. }} \mu
$$

- "Strong" is as opposed to the "weak" law which requires $\mathbb{E} X_{k}^{2}<\infty$ instead of $\mathbb{E}\left|X_{k}\right|<\infty$ and gives " $\xrightarrow{p_{"} \text { " instead of "a.s. } "}$

Theorem (Central Limit Theorem)

Let $\left\{\mathbf{X}_{n}\right\}$ be an iid sequence of random vectors in \mathbb{R}^{d} with mean $\boldsymbol{\mu}$ and covariance Σ and define $\overline{\mathbf{X}}_{n}:=\sum_{m=1}^{n} \mathbf{X}_{m} / n$. Then,

$$
\sqrt{n} \Sigma^{-\frac{1}{2}}(\overline{\mathbf{X}}-\boldsymbol{\mu}) \xrightarrow{d} \mathbf{Z} \sim \mathcal{N}_{d}\left(0, I_{d}\right) .
$$

Convergence Rates

Often convergence not enough \longrightarrow How fast?

$$
\hookrightarrow \text { [quality of approximation] }
$$

- Law of Large Numbers: assuming finite variance, L^{2} rate of $n^{-1 / 2}$
- What about Central Limit Theorem?

Theorem (Berry-Essen)

Let $\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}$ be iid random vectors taking values in \mathbb{R}^{d} and such that $\mathbb{E}\left[\mathbf{X}_{i}\right]=0, \operatorname{cov}\left[\mathbf{X}_{i}\right]=I_{d}$. Define,

$$
\mathbf{S}_{n}=\frac{1}{\sqrt{n}}\left(\mathbf{X}_{1}+\ldots+\mathbf{X}_{n}\right)
$$

If \mathcal{A} denotes the class of convex subsets of \mathbb{R}^{d}, then for $\mathbf{Z} \sim \mathcal{N}_{d}\left(\mathbf{0}, I_{d}\right)$, $\sup _{A \in \mathcal{A}}\left|\mathbb{P}\left[\mathbf{S}_{n} \in A\right]-\mathbb{P}[\mathbf{Z} \in A]\right| \leq C \frac{d^{1 / 4} \mathbb{E}\left\|\mathbf{X}_{i}\right\|^{3}}{\sqrt{n}}$.

Principles of Data Reduction

Statistical Theory

Victor Panaretos
Ecole Polytechnique Fédérale de Lausanne

FÉDÉRALE DE LAUSANNE
(2)

Ancillarity
(3) Sufficiency

- Sufficient Statistics
- Establishing Sufficiency

4) Minimal Sufficiency

- Establishing Minimal Sufficiency

Completeness

- Relationship between Ancillary and Sufficient Statistics
- Relationship between completeness and minimal sufficiency

Statistical Models and The Problem of Inference

Recall our setup:

- Collection of r.v.'s (a random vector) $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$
- $\mathbf{X} \sim F_{\theta} \in \mathcal{F}$
- F a parametric class with parameter $\theta \in \Theta \subseteq \mathbb{R}^{d}$

The Problem of Point Estimation

(1) Assume that F_{θ} is known up to the parameter θ which is unknown
(2) Let $\left(x_{1}, \ldots, x_{n}\right)$ be a realization of $\mathbf{X} \sim F_{\theta}$ which is available to us
(3) Estimate the value of θ that generated the sample given $\left(x_{1}, \ldots, x_{n}\right)$

The only guide (apart from knowledge of \mathcal{F}) at hand is the data:
\hookrightarrow Anything we "do" will be a function of the data $g\left(x_{1}, \ldots, x_{n}\right)$
\hookrightarrow Need to study properties of such functions and information loss incurred (any function of ($x_{1}, . ., x_{n}$) will carry at most the same information but usually less)

Statistical Theory (Week 3)

Statistics

Definition (Statistic)

Let \mathbf{X} be a random sample from F_{θ}. A statistic is a (measurable) function T that maps \mathbf{X} into \mathbb{R}^{d} and does not depend on θ.
\hookrightarrow Intuitively, any function of the sample alone is a statistic.
\hookrightarrow Any statistics is itself a r.v. with its own distribution.

Example

$t(\mathbf{X})=n^{-1} \sum_{i=1}^{n} X_{i}$ is a statistic (since n, the sample size, is known).

Example

$T(\mathbf{X})=\left(X_{(1)}, \ldots, X_{(n)}\right)$ where $X_{(1)} \leq X_{(2)} \leq \ldots X_{(n)}$ are the order statistics of \mathbf{X}. Since T depends only on the values of \mathbf{X}, T is a statistic.

Example

Let $T(\mathbf{X})=c$, where c is a known constant. Then T is a statistic

Statistics and Information About θ

Statistics and Information about θ

- Evident from previous examples: some statistics are more informative and others are less informative regarding the true value of θ
- Any $T(\mathbf{X})$ that is not "1-1" carries less information about θ than \mathbf{X}
- Which are "good" and which are "bad" statistics?

Definition (Ancillary Statistic)

A statistic T is an ancillary statistic (for θ) if its distribution does not functionally depend θ
\hookrightarrow So an ancillary statistic has the same distribution $\forall \theta \in \Theta$.

Example

Suppose that $X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} \mathcal{N}\left(\mu, \sigma^{2}\right)$ (where μ unknown but σ^{2} known). Let $T\left(X_{1}, \ldots, X_{n}\right)=X_{1}-X_{2}$; then T has a Normal distribution with mean 0 and variance $2 \sigma^{2}$. Thus T is ancillary for the unknown parameter μ. If both μ and σ^{2} were unknown, T would not be ancillary for $\theta=\left(\mu, \sigma^{2}\right)$.

- If T is ancillary for θ then T contains no information about θ
- In order to contain any useful information about θ, the $\operatorname{dist}(T)$ must depend explicitly on θ.
- Intuitively, the amount of information T gives on θ increases as the dependence of $\operatorname{dist}(T)$ on θ increases

Example

Let $X_{1}, \ldots, X_{n} \stackrel{\text { iid }}{\sim} \mathcal{U}[0, \theta], S=\min \left(X_{1}, \ldots, X_{n}\right)$ and $T=\max \left(X_{1}, \ldots, X_{n}\right)$.

- $f_{S}(x ; \theta)=\frac{n}{\theta}\left(1-\frac{x}{\theta}\right)^{n-1}, \quad 0 \leq x \leq \theta$
- $f_{T}(x ; \theta)=\frac{n}{\theta}\left(\frac{x}{\theta}\right)^{n-1}, \quad 0 \leq x \leq \theta$
\hookrightarrow Neither S nor T are ancillary for θ
\hookrightarrow As $n \uparrow \infty, f_{S}$ becomes concentrated around 0
\hookrightarrow As $n \uparrow \infty, f_{T}$ becomes concentrated around θ while
\hookrightarrow Indicates that T provides more information about θ than does S.
Statistical Theory (Week 3)

Statistics and Information about θ

- Look at the $\operatorname{dist}(\mathbf{X})$ on an fibre $A_{t}: f_{\mathbf{X} \mid T=t}(\mathbf{x})$
- Suppose $f_{\mathbf{X} \mid T=t}$ is independent of θ
\Longrightarrow Then \mathbf{X} contains no information about θ on the set A_{t} \Longrightarrow In other words, \mathbf{X} is ancillary for θ on A_{t}
- The fibres or level sets or contours of T are the sets

$$
A_{t}=\left\{\mathbf{x} \in \mathbb{R}^{n}: T(\mathbf{x})=t\right\} .
$$

$\hookrightarrow T$ is constant when restricted to an fibre.

- Any realization of \mathbf{X} that falls in a given fibre is equivalent as far as T is concerned

If this is true for each $t \in \operatorname{Range}(T)$ then $T(\mathbf{X})$ contains the same information about θ as \mathbf{X} does.
$\hookrightarrow \mathrm{It}$ does not matter whether we observe $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ or just $T(\mathbf{X})$.
\hookrightarrow Knowing the exact value \mathbf{X} in addition to knowing $T(\mathbf{X})$ does not give us any additional information - \mathbf{X} is irrelevant if we already know $T(\mathbf{X})$.

Definition (Sufficient Statistic)

A statistic $T=T(\mathbf{X})$ is said to be sufficient for the parameter θ if for all (Borel) sets B the probability $\mathbb{P}[\mathbf{X} \in B \mid T(\mathbf{X})=t]$ does not depend on θ.

Sufficient Statistics

Example (Bernoulli Trials)

Let $X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} \operatorname{Bernoulli}(\theta)$ and $T(\mathbf{X})=\sum_{i=1}^{n} X_{i}$. Given $\mathbf{x} \in\{0,1\}^{n}$,

$$
\begin{aligned}
\mathbb{P}[\mathbf{X}=\mathbf{x} \mid T=t] & =\frac{\mathbb{P}[\mathbf{X}=\mathbf{x}, T=t]}{\mathbb{P}[T=t]}=\frac{\mathbb{P}[\mathbf{X}=\mathbf{x}]}{\mathbb{P}[T=t]} \mathbf{1}\left\{\sum_{i=1}^{n} x_{i}=t\right\} \\
& =\frac{\theta^{\sum_{i=1}^{n} x_{i}}(1-\theta)^{n-\sum_{i=1}^{n} x_{i}}}{\binom{n}{t} \theta^{t}(1-\theta)^{n-t}} \mathbf{1}\left\{\sum_{i=1}^{n} x_{i}=t\right\} \\
& =\frac{\theta^{t}(1-\theta)^{n-t}}{\binom{n}{t} \theta^{t}(1-\theta)^{n-t}}=\binom{n}{t}^{-1} .
\end{aligned}
$$

- T is sufficient for $\theta \rightarrow$ Given the number of tosses that came heads, knowing which tosses exactly came heads is irrelevant in deciding if the coin is fair:

$$
0011101 \text { VS } 1000111 \text { VS } 1010101
$$

Statistical Theory (Week 3)

Sufficient Statistics

Proof of Neyman-Fisher Theorem - Discrete Case.

Suppose first that T is sufficient. Then

$$
\begin{aligned}
f(x ; \theta) & =\mathbb{P}[\mathbf{X}=\mathbf{x}]=\sum_{t} \mathbb{P}[\mathbf{X}=\mathbf{x}, T=t] \\
& =\mathbb{P}[\mathbf{X}=\mathbf{x}, T=T(\mathbf{x})]=\mathbb{P}[T=T(\mathbf{x})] \mathbb{P}[\mathbf{X}=\mathbf{x} \mid T=T(\mathbf{x})]
\end{aligned}
$$

Since T is sufficient, $\mathbb{P}[\mathbf{X}=\mathbf{x} \mid T=T(\mathbf{x})]$ is independent of θ and so $f(x ; \theta)=g(T(\mathbf{x}) ; \theta) h(\mathbf{x})$. Now suppose that $f(x ; \theta)=g(T(\mathbf{x}) ; \theta) h(\mathbf{x})$. Then if $T(\mathbf{x})=t$,

$$
\begin{aligned}
\mathbb{P}[\mathbf{X}=\mathbf{x} \mid T=t] & =\frac{\mathbb{P}[\mathbf{X}=\mathbf{x}, T=t]}{\mathbb{P}[T=t]}=\frac{\mathbb{P}[\mathbf{X}=\mathbf{x}]}{\mathbb{P}[T=t]} \mathbf{1}\{T(\mathbf{x})=t\} \\
& =\frac{g(T(\mathbf{x}) ; \theta) h(\mathbf{x}) \mathbf{1}\{T(\mathbf{x})=t\}}{\sum_{\mathbf{y}: T(\mathbf{y})=t} g(T(\mathbf{y}) ; \theta) h(\mathbf{y})}=\frac{h(\mathbf{x}) \mathbf{1}\{T(\mathbf{x})=t\}}{\sum_{T(\mathbf{y})=t} h(\mathbf{y})} .
\end{aligned}
$$

- Definition hard to verify (especially for continuous variables)
- Definition does not allow easy identification of sufficient statistics

Theorem (Fisher-Neyman Factorization Theorem)

Suppose that $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ has a joint density or frequency function $f(\mathbf{x} ; \theta), \theta \in \Theta$. A statistic $T=T(\mathbf{X})$ is sufficient for θ if and only if

$$
f(\mathbf{x} ; \theta)=g(T(\mathbf{x}), \theta) h(\mathbf{x}) .
$$

Example

Let $X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} \mathcal{U}[0, \theta]$ with pdf $f(x ; \theta)=\mathbf{1}\{x \in[0, \theta]\} / \theta$. Then,

$$
f_{\mathbf{x}}(\mathbf{x})=\frac{1}{\theta^{n}} \mathbf{1}\left\{\mathbf{x} \in[0, \theta]^{n}\right\}=\frac{\mathbf{1}\left\{\max \left[x_{1}, \ldots, x_{n}\right] \leq \theta\right\} \mathbf{1}\left\{\min \left[x_{1}, \ldots, x_{n}\right] \geq 0\right\}}{\theta^{n}}
$$

Therefore $T(\mathbf{X})=X_{(n)}=\max \left[X_{1}, \ldots, X_{n}\right]$ is sufficient for θ.

Minimally Sufficient Statistics

- Saw that sufficient statistic keeps what is important and leaves out irrelevant information.
- How much info can we through away? Is there a "necessary" statistic?

Definition (Minimally Sufficient Statistic)

A statistic $T=T(\mathbf{X})$ is said to be minimally sufficient for the parameter θ if for any sufficient statistic $S=S(\mathbf{X})$ there exists a function $g(\cdot)$ with

$$
T(\mathbf{X})=g(S(\mathbf{X}))
$$

Lemma

If T and S are minimaly sufficient statistics for a parameter θ, then there exists injective functions g and h such that $S=g(T)$ and $T=h(S)$.

Theorem
Let $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ have joint density or frequency function $f(\mathbf{x} ; \theta)$ and $T=T(\mathbf{X})$ be a statistic. Suppose that $f(\mathbf{x} ; \theta) / f(\mathbf{y} ; \theta)$ is independent of θ if and only if $T(\mathbf{x})=T(\mathbf{y})$. Then T is minimally sufficient for θ.

Proof.

Assume for simplicity that $f(\mathbf{x} ; \theta)>0$ for all $\mathbf{x} \in \mathbb{R}^{n}$ and $\theta \in \Theta$. [sufficiency part] Let $\mathcal{T}=\left\{T(\mathbf{y}): y \in \mathbb{R}^{n}\right\}$ be the image of \mathbb{R}^{n} under T and let A_{t} be the level sets of T. For each t, choose an element $\mathbf{y}_{t} \in A_{t}$. Notice that for any $\mathbf{x}, \mathbf{y}_{T(\mathbf{x})}$ is in the same level set as \mathbf{x}, so that

$$
f(\mathbf{x} ; \theta) / f\left(\mathbf{y}_{T(\mathbf{x})} ; \theta\right)
$$

does not depend on θ by assumption. Let $g(t, \theta):=f\left(\mathbf{y}_{t} ; \theta\right)$ and notice

$$
f(\mathbf{x} ; \theta)=\frac{f\left(\mathbf{x}_{T(\mathbf{x})} ; \theta\right) f(\mathbf{x} ; \theta)}{\left.f\left(\mathbf{x}_{T(\mathbf{x}}\right) ; \theta\right)}=g(T(\mathbf{x}), \theta) h(\mathbf{x})
$$

and the claim follows from the factorization theorem.
Statistical Theory (Week 3) Data Reduction
$13 / 19$

Complete Statistics

- Ancillary Statistic \rightarrow Contains no info on θ
- Minimally Sufficient Statistic \rightarrow Contains all relevant info and as little irrelevant as possible.
- Should they be mutually independent?

Definition (Complete Statistic)

Let $\{g(t ; \theta): \theta \in \Theta\}$ be a family of densities of frequencies corresponding to a statistic $T(\mathbf{X})$. The statistic T is called complete if

$$
\int h(t) g(t ; \theta) d t=0 \quad \forall \theta \in \Theta \Longrightarrow \mathbb{P}[h(T)=0]=1 \quad \forall \theta \in \Theta
$$

Example

If $\hat{\theta}=T(\mathbf{X})$ is an unbiased estimator of θ (i.e. $\mathbb{E} \hat{\theta}=\theta$) which can be written as a function of a complete sufficient statistic, then it is the unique such estimator.
[minimality part] Suppose that T^{\prime} is another sufficient statistic. By the factorization thm: $\exists g^{\prime}, h^{\prime}: \quad f(\mathbf{x} ; \theta)=g^{\prime}\left(T^{\prime}(\mathbf{x}) ; \theta\right) h^{\prime}(\mathbf{x})$. Let \mathbf{x}, \mathbf{y} be such that $T^{\prime}(\mathbf{x})=T^{\prime}(\mathbf{y})$. Then

$$
\frac{f(\mathbf{x} ; \theta)}{f(\mathbf{y} ; \theta)}=\frac{g^{\prime}\left(T^{\prime}(\mathbf{x}) ; \theta\right) h^{\prime}(\mathbf{x})}{g^{\prime}\left(T^{\prime}(\mathbf{y}) ; \theta\right) h^{\prime}(\mathbf{y})}=\frac{h^{\prime}(\mathbf{x})}{h^{\prime}(\mathbf{y})} .
$$

Since ratio does not depend on θ, we have by assumption $T(\mathbf{x})=T(\mathbf{y})$. Hence T is a function of T^{\prime}; so is minimal by arbitrary choice of T^{\prime}.

Example (Bernoulli Trials)

Let $X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim}$ Bernoulli (θ). Let $\mathbf{x}, \mathbf{y} \in\{0,1\}^{n}$ be two possible outcomes. Then

$$
\frac{f(\mathbf{x} ; \theta)}{f(\mathbf{y} ; \theta)}=\frac{\theta^{\Sigma x_{i}}(1-\theta)^{n-\sum x_{i}}}{\theta^{\Sigma y_{i}}(1-\theta)^{n-\sum y_{i}}}
$$

which is constant if and only if $T(\mathbf{x})=\sum x_{i}=\sum y_{i}=T(\mathbf{y})$, so that T is minimally sufficient.

Statistical Theory (Week 3)
Data Reduction
14 / 19

Complete Statistics

Theorem (Basu's Theorem)

A complete sufficient statistic is independent of every ancillary statistic.

Proof.

We consider the discrete case only. It suffices to show that,

$$
\begin{gathered}
\qquad \mathbb{P}[S(\mathbf{X})=s \mid T(\mathbf{X})=t]=\mathbb{P}[S(\mathbf{X})=s] \\
\text { Define: } h(t)=\mathbb{P}[S(\mathbf{X})=s \mid T(\mathbf{X})=t]-\mathbb{P}[S(\mathbf{X})=s]
\end{gathered}
$$

and observe that:
(1) $\mathbb{P}[S(\mathbf{x})=s]$ does not depend on θ (ancillarity)
(2) $\mathbb{P}[S(\mathbf{X})=s \mid T(\mathbf{X})=t]=\mathbb{P}[\mathbf{X} \in\{\mathbf{x}: S(\mathbf{x})=s\} \mid T=t]$ does not depend on θ (sufficiency)
and so h does not depend on θ.

Therefore, for any $\theta \in \Theta$,

$$
\begin{aligned}
\mathbb{E} h(T)= & \sum_{t}(\mathbb{P}[S(\mathbf{X})=s \mid T(\mathbf{X})=t]-\mathbb{P}[S(\mathbf{X})=s]) \mathbb{P}[T(\mathbf{X})=t] \\
= & \sum_{t} \mathbb{P}[S(\mathbf{X})=s \mid T(\mathbf{X})=t] \mathbb{P}[T(\mathbf{X})=t]+ \\
& +\mathbb{P}[S(\mathbf{X})=s] \sum_{t} \mathbb{P}[T(\mathbf{X})=t] \\
= & \mathbb{P}[S(\mathbf{X})=s]-\mathbb{P}[S(\mathbf{X})=s]=0
\end{aligned}
$$

But T is complete so it follows that $h(t)=0$ for all t. QED.

Basu's Theorem is useful for deducing independence of two statistics:

- No need to determine their joint distribution
- Needs showing completeness (usually hard analytical problem)
- Will see models in which completeness is easy to check

Statistical Theory (Week 3)

(proof cont'd).

By completeness of T, it follows that $g_{2}(S)=T$ a.s. In fact, g_{2} has to be injective, or otherwise we would contradict minimal sufficiency of S. But then T is $1-1$ a function of S and S is a $1-1$ function of T. Invoking our previous lemma proves that T is minimally sufficient.

One can also prove:

Theorem

If a minimal sufficient statistic exists, then any complete statistic is also a minimal sufficient statistic.

Completeness and Minimal Sufficiency

Theorem (Lehmann-Scheffé)

Let \mathbf{X} have density $f(\mathbf{x} ; \theta)$. If $T(\mathbf{X})$ is sufficient and complete for θ then T is minimally sufficient.

Proof.

First of all we show that a minimally sufficient statistic exists. Define an equivalence relation as $\mathbf{x} \equiv \mathbf{x}^{\prime}$ if and only if $f(\mathbf{x} ; \theta) / f\left(\mathbf{x}^{\prime} ; \theta\right)$ is independent of θ. If S is any function such that $S=c$ on these equivalent classes, then S is a minimally sufficient, establishing existence (rigorous proof by Lehmann-Scheffé (1950)).
Therefore, it must be the case that $S=g_{1}(T)$, for some g_{1}. Let $g_{2}(S)=\mathbb{E}[T \mid S]$ (does not depend on θ since S sufficient). Consider:

$$
g(T)=T-g_{2}(S)
$$

Write $\mathbb{E}[g(T)]=\mathbb{E}[T]-\mathbb{E}\{\mathbb{E}[T \mid S]\}=\mathbb{E} T-\mathbb{E} T=0$ for all θ.

Special Families of Models

Statistical Theory

Victor Panaretos
Ecole Polytechnique Fédérale de Lausanne

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNEThe Exponential Family of DistributionsTransformation Families

Focus on Parametric Families

Recall our setup:

- Collection of r.v.'s (a random vector) $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$
- $\mathbf{X} \sim F_{\theta} \in \mathcal{F}$
- F a parametric class with parameter $\theta \in \Theta \subseteq \mathbb{R}^{d}$

The Problem of Point Estimation

(1) Assume that F_{θ} is known up to the parameter θ which is unknown
(2) Let $\left(x_{1}, \ldots, x_{n}\right)$ be a realization of $\mathbf{X} \sim F_{\theta}$ which is available to us
(3) Estimate the value of θ that generated the sample given $\left(x_{1}, \ldots, x_{n}\right)$

The only guide (apart from knowledge of \mathcal{F}) at hand is the data:
\hookrightarrow Anything we "do" will be a function of the data $g\left(x_{1}, \ldots, x_{n}\right)$
So far have concentrated on aspects of data: approximate distributions + data reduction...... But what about \mathcal{F} ?

Focus on Parametric Families

Focus on Parametric Families

We describe \mathcal{F} by a parametrization $\Theta \ni \theta \mapsto F_{\theta}$:

Definition (Parametrization)

Let Θ be a set, \mathcal{F} be a family of distributions and $g: \Theta \rightarrow \mathcal{F}$ an onto mapping. The pair (Θ, g) is called a parametrization of \mathcal{F}.
\hookrightarrow assigns a label $\theta \in \Theta$ to each member of \mathcal{F}

Definition (Parametric Model)

A parametric model with parameter space $\Theta \subseteq \mathbb{R}^{d}$ is a family of probability models \mathcal{F} parametrized by $\Theta, \mathcal{F}=\left\{F_{\theta}: \theta \in \Theta\right\}$.

So far have seen a number of examples of distributions...
.have worked out certain properties individually

Question

Are there more general families that contain the standard ones as special cases and for which a general and abstract study can be pursued?

Definition (Exponential Family)

Let $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ have joint distribution F_{θ} with parameter $\theta \in \mathbb{R}^{p}$. We say that the family ofdistributions F_{θ} is a k-parameter exponential family if the joint density or joint frequency function of $\left(X_{1}, \ldots, X_{n}\right)$ admits the form

$$
f(\mathbf{x} ; \theta)=\exp \left\{\sum_{i=1}^{k} c_{i}(\theta) T_{i}(\mathbf{x})-d(\theta)+S(\mathbf{x})\right\}, \quad \mathbf{x} \in \mathcal{X}, \theta \in \Theta,
$$

with $\operatorname{supp}\{f(\cdot ; \theta)\}=\mathcal{X}$ is independent of θ.

- k need not be equal to p, although they often coincide.
- The value of k may be reduced if c or T satisfy linear constraints.
- We will assume that the representation above is minimal.
\hookrightarrow Can re-parametrize via $\phi_{i}=c_{i}(\theta)$, the natural parameter.

Statistical Theory (Week 4)
Special Models

Proposition.

The unique solution of the constrained optimisation problem has the form

$$
f(\mathbf{x})=Q\left(\lambda_{1}, \ldots, \lambda_{k}\right) \exp \left\{\sum_{i=1}^{k} \lambda_{i} T_{i}(\mathbf{x})\right\}
$$

Proof.

Let $g(\mathbf{x})$ be a density also satisfying the constraints. Then,

$$
\begin{aligned}
H(g) & =-\int_{\mathcal{X}} g(\mathbf{x}) \log g(\mathbf{x}) d \mathbf{x}=-\int_{\mathcal{X}} g(\mathbf{x}) \log \left[\frac{g(\mathbf{x})}{f(\mathbf{x})} f(\mathbf{x})\right] d \mathbf{x} \\
& =-K L(g \| f)-\int_{\mathcal{X}} g(\mathbf{x}) \log f(\mathbf{x}) d \mathbf{x} \\
& \leq-\log Q \underbrace{\int_{\mathcal{X}} g(\mathbf{x}) d x}_{=1}-\int_{\mathcal{X}} g(\mathbf{x})\left(\sum_{i=1}^{k} \lambda_{i} T_{i}(\mathbf{x})\right) d \mathbf{x}
\end{aligned}
$$

Consider the following variational problem:
Determine the probability distribution f supported on \mathcal{X} with maximum entropy

$$
H(f)=-\int_{\mathcal{X}} f(\mathbf{x}) \log f(\mathbf{x}) d \mathbf{x}
$$

subject to the linear constraints

$$
\int_{\mathcal{X}} T_{i}(\mathbf{x}) f(\mathbf{x}) d x=\alpha_{i}, \quad i=1, \ldots, k
$$

Philosophy: How to choose a probability model for a given situation? Maximum entropy approach:

- In any given situation, choose the distribution that gives highest uncertainty while satisfying situation-specific required constraints.

Statistical Theory (Week 4) Special Models

But g also satisfies the moment constraints, so the last term is

$$
\begin{aligned}
& =-\log Q-\int_{\mathcal{X}} f(\mathbf{x})\left(\sum_{i=1}^{k} \lambda_{i} T_{i}(\mathbf{x})\right) d \mathbf{x}=\int_{\mathcal{X}} f(\mathbf{x}) \log f(\mathbf{x}) d \mathbf{x} \\
& =H(f)
\end{aligned}
$$

Uniqueness of the solution follows from the fact that strict equality can only follow when $K L(g \| f)=0$, which happens if and only if $g=f$.

- The λ 's are the Lagrange multipliers derived by the Lagrange form of the optimisation problem.
- These are derived so that the constraints are satisfied.
- They give us the $c_{i}(\theta)$ in our definition of exponential families.
- Note that the presence of $S(\mathbf{x})$ in our definition is compatible: $S(\mathbf{x})=c_{k+1} T_{k+1}(\mathbf{x})$, where c_{k+1} does not depend on θ. (provision for a multiplier that may not depend on parameter)

Example (Binomial Distribution)

Let $X \sim \operatorname{Binomial}(n, \theta)$ with n known. Then
$f(x ; \theta)=\binom{n}{x} \theta^{x}(1-\theta)^{n-x}=\exp \left[\log \left(\frac{\theta}{1-\theta}\right) x+n \ln (1-\theta)+\log \binom{n}{x}\right]$

Example (Gamma Distribution)

Let $X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim}$ Gamma with unknown shape parameter α and unknown scale parameter λ. Then,

$$
\begin{aligned}
f_{\mathbf{x}}(\mathbf{x} ; \alpha, \lambda) & =\prod_{i=1}^{n} \frac{\lambda^{\alpha} x_{i}^{\alpha-1} \exp \left(-\lambda x_{i}\right)}{\Gamma(\alpha)} \\
& =\exp \left[(\alpha-1) \sum_{i=1}^{n} \log x_{i}-\lambda \sum_{i=1}^{n} x_{i}+n \alpha \log \lambda-n \log \Gamma(\alpha)\right]
\end{aligned}
$$

Statistical Theory (Week 4)

The Exponential Family of Distributions

Proposition

Suppose that $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ has a one-parameter exponential family distribution with density or frequency function

$$
f(\mathbf{x} ; \theta)=\exp [c(\theta) T(\mathbf{x})-d(\theta)+S(\mathbf{x})]
$$

for $x \in \mathcal{X}$ where
(a) the parameter space Θ is open,
(b) $c(\theta)$ is a one-to-one function on Θ,
(c) $c(\theta), c^{-1}(\theta), d(\theta)$ are twice differentiable functions on Θ.

Then,

$$
\mathbb{E} T(\mathbf{X})=\frac{d^{\prime}(\theta)}{c^{\prime}(\theta)} \quad \& \quad \operatorname{Var}[T(\mathbf{X})]=\frac{d^{\prime \prime}(\theta) c^{\prime}(\theta)-d^{\prime}(\theta) c^{\prime \prime}(\theta)}{\left[c^{\prime}(\theta)\right]^{3}}
$$

Example (Heteroskedastic Gaussian Distribution)

Let $X_{1}, \ldots, X_{n} \stackrel{\text { iid }}{\sim} \mathcal{N}\left(\theta, \theta^{2}\right)$. Then,

$$
\begin{aligned}
f_{\mathbf{x}}(\mathbf{x} ; \theta) & =\prod_{i=1}^{n} \frac{1}{\theta \sqrt{2 \pi}} \exp \left[-\frac{1}{2 \theta^{2}}\left(x_{i}-\theta\right)^{2}\right] \\
& =\exp \left[-\frac{1}{2 \theta^{2}} \sum_{i=1}^{n} x_{i}^{2}+\frac{1}{\theta} \sum_{i=1}^{n} x_{i}-\frac{n}{2}(1+2 \log \theta)+\log (2 \pi)\right]
\end{aligned}
$$

Notice that even though $k=2$ here, the dimension of the parameter space is 1 . This is an example of a curved exponential family.

Example (Uniform Distribution)

Let $X \sim \mathcal{U}[0, \theta]$. Then, $f_{X}(x ; \theta)=\frac{\mathbf{1}\{x \in[0, \theta]\}}{\theta}$. Since the support of f, \mathcal{X}, depends on θ, we do not have an exponential family.

Statistical Theory (Week 4)

Special Models
$10 / 26$

Proof.

Define $\phi=c(\theta)$ the natural parameter of the exponential family. Let $d_{0}(\phi)=d\left(c^{-1}(\phi)\right)$, where c^{-1} is well-defined since c is $1-1$. Since c is a homeomorphism, $\Phi=c(\Theta)$ is open. Choose s sufficiently small so that $\phi+s \in \Phi$, and observe that the m.g.f. of T is

$$
\begin{aligned}
\mathbb{E} \exp [s T(\mathbf{X})] & =\int e^{s T(\mathbf{x})} e^{\phi T(\mathrm{x})-d_{0}(\phi)+S(\mathrm{x})} d \mathbf{x} \\
& =e^{d_{0}(\phi+s)-d_{0}(\phi)} \underbrace{\int e^{(\phi+s) T(\mathbf{x})-d_{0}(\phi+s)+S(\mathbf{x})} d \mathbf{x}}_{=1} \\
& =\exp \left[d_{0}(\phi+s)-d_{0}(\phi)\right],
\end{aligned}
$$

By our assumptions we may differentiate w.r.t. s, and, setting $s=0$, we get $\mathbb{E}[T(\mathbf{X})]=d_{0}^{\prime}(\phi)$ and $\operatorname{Var}[T(\mathbf{X})]=d_{0}^{\prime \prime}(\phi)$. But

$$
d_{0}^{\prime}(\phi)=d^{\prime}(\theta) / c^{\prime}(\theta) \text { and } d_{0}^{\prime \prime}(\phi)=\left[d^{\prime \prime}(\theta) c^{\prime}(\theta)-d^{\prime}(\theta) c^{\prime \prime}(\theta)\right] /\left[c^{\prime}(\theta)\right]^{3}
$$

and so the conclusion follows.

Exponential Families and Sufficiency

Exercise

Extend the result to the the means, variances and covariances of the random variables $T_{1}(\mathbf{X}), \ldots, T_{k}(\mathbf{X})$ in a k-parameter exponential family

Lemma

Suppose that $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ has a k-parameter exponential family distribution with density or frequency function

$$
f(\mathbf{x} ; \theta)=\exp \left[\sum_{i=1}^{k} c_{i}(\theta) T_{i}(\mathbf{x})-d(\theta)+S(\mathbf{x})\right]
$$

for $x \in \mathcal{X}$. Then, the statistic $\left(T_{1}(\mathbf{x}), \ldots, T_{k}(\mathbf{x})\right)$ is sufficient for θ

Proof.

Set $g(\mathbf{T}(\mathbf{x}) ; \boldsymbol{\theta})=\exp \left\{\sum_{i} T_{i}(\mathbf{x}) c_{i}(\boldsymbol{\theta})+d(\theta)\right\}$ and $h(\mathbf{x})=e^{S(\mathbf{x})} \mathbf{1}\{\mathbf{x} \in \mathcal{X}\}$, and apply the factorization theorem.

Statistical Theory (Week 4) Special Models

Sampling Exponential Families

- The families of distributions obtained by sampling from exponential families are themselves exponential families.
- Let X_{1}, \ldots, X_{n} be iid distributed according to a k-parameter exponential family. Consider the density (or frequency function) of $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$,

$$
\begin{aligned}
f(\mathbf{x} ; \theta) & =\prod_{j=1}^{n} \exp \left[\sum_{i=1}^{k} c_{i}(\theta) T_{i}\left(x_{j}\right)-d(\theta)+S\left(x_{j}\right)\right] \\
& =\exp \left[\sum_{i=1}^{k} c_{i}(\theta) \tau_{i}(\mathbf{x})-n d(\theta)+\sum_{j=1}^{n} S\left(x_{j}\right)\right]
\end{aligned}
$$

for $\tau_{i}(\mathbf{X})=\sum_{j=1}^{n} T_{i}\left(X_{j}\right)$ the natural statistics, $i=1, \ldots, k$.

- Note that the natural sufficient statistic is k-dimensional $\forall n$.
- What about the distribution of $\boldsymbol{\tau}=\left(\tau_{1}(\mathbf{X}), \ldots, \tau_{k}(\mathbf{X})\right)$?

Exponential Families and Completeness

Theorem

Suppose that $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ has a k-parameter exponential family distribution with density or frequency function

$$
f(\mathbf{x} ; \theta)=\exp \left[\sum_{i=1}^{k} c_{i}(\theta) T_{i}(\mathbf{x})-d(\theta)+S(\mathbf{x})\right]
$$

for $x \in \mathcal{X}$. Define $C=\left\{\left(c_{1}(\theta), \ldots, c_{k}(\theta)\right): \theta \in \Theta\right\}$. If the set C contains an open set (rectangle) of the form $\left(a_{1}, b_{1}\right) \times \ldots \times\left(a_{k}, b_{k}\right)$ then the statistic $\left(T_{1}(\mathbf{X}), \ldots, T_{k}(\mathbf{X})\right)$ is complete for θ, and so minimally sufficient.

- The result is essentially a consequence of the uniqueness of characteristic functions.
- Intuitively, result says that a k-dimensional sufficient statistic in a k-parameter exponential family will also be complete provided that the effective dimension of the natural parameter space is k.

The Natural Statistics

Lemma

The joint distribution of $\boldsymbol{\tau}=\left(\tau_{1}(\mathbf{X}), \ldots, \tau_{k}(\mathbf{X})\right)$ is of exponential family form with natural parameters $c_{1}(\theta), \ldots, c_{k}(\theta)$.

Proof. (discrete case)

Let $\mathcal{T}_{\mathbf{y}}=\left(\mathbf{x}: \tau_{1}(\mathbf{x})=y_{1}, \ldots, \tau_{k}(\mathbf{x})=y_{k}\right)$ be the level set of $\mathbf{y} \in \mathbb{R}^{k}$.

$$
\begin{aligned}
\mathbb{P}[\boldsymbol{\tau}(\mathbf{X})=\mathbf{y}] & =\sum_{\mathbf{x} \in \mathcal{T}_{\mathbf{y}}} \mathbb{P}[\mathbf{X}=\mathbf{x}]=\delta(\theta) \sum_{\mathbf{x} \in \mathcal{T}_{\mathbf{y}}} \exp \left[\sum_{i=1}^{k} c_{i}(\theta) \tau_{i}(\mathbf{x})+\sum_{j=1}^{n} S\left(x_{j}\right)\right. \\
& =\delta(\theta) \mathcal{S}(\mathbf{y}) \exp \left[\sum_{i=1}^{k} c_{i}(\theta) y_{i}\right] .
\end{aligned}
$$

The Natural Statistics

The Natural Statistics and Sufficiency

Lemma

For any $A \subseteq\{1, \ldots, k\}$, the joint distribution of $\left\{\tau_{i}(\mathbf{X}) ; i \in A\right\}$ conditional on $\left\{\tau_{i}(\mathbf{X}) ; i \in A^{c}\right\}$ is of exponential family form, and depends only on $\left\{c_{i}(\theta) ; i \in A\right\}$.

Proof. (discrete case)

Let $\mathcal{T}_{i}=\tau_{i}(\mathbf{X})$. Have $\mathbb{P}[\mathcal{T}=\mathbf{y}]=\delta(\theta) S(\mathbf{y}) \exp \left[\sum_{i=1}^{k} c_{i}(\theta) y_{i}\right]$, so

$$
\begin{gathered}
\mathbb{P}\left[\mathcal{T}_{A}=\mathbf{y}_{A} \mid \mathcal{T}_{A^{c}}=\mathbf{y}_{A^{c}}\right]=\frac{\mathbb{P}\left[\mathcal{T}_{A}=\mathbf{y}_{A}, \mathcal{T}_{A^{c}}=\mathbf{y}_{A^{c}}\right]}{\sum_{\mathbf{w} \in \mathbb{R}^{\prime}} \mathbb{P}\left[\mathcal{T}_{A}=\mathbf{w}, \mathcal{T}_{A^{c}}=\mathbf{y}_{A^{c}}\right]} \\
=\frac{\delta(\theta) \mathcal{S}\left(\left(\mathbf{y}_{A}, \mathbf{y}_{A^{c}}\right)\right) \exp \left[\sum_{i \in A} c_{i}(\theta) y_{i}\right] \exp \left[\sum_{i \in A^{c}} c_{i}(\theta) y_{i}\right]}{\delta(\theta) \exp \left[\sum_{i \in A^{c}} c_{i}(\theta) y_{i}\right] \sum_{\mathbf{w} \in \mathbb{R}^{\prime}} \mathcal{S}\left(\left(\mathbf{w}, \mathbf{y}_{A^{c}}\right)\right) \exp \left[\sum_{i \in A} c_{i}(\theta) w_{i}\right]}
\end{gathered}
$$

$=\Delta\left(\left\{c_{i}(\theta): i \in A\right\}\right) h\left(\mathbf{y}_{A}\right) \exp \left[\sum_{i \in A} c_{i}(\theta) y_{i}\right]$

Groups Acting on the Sample Space

Basic Idea

Often can generate a family of distributions of the same form (but with different parameters) by letting a group act on our data space \mathcal{X}.

Recall: a group is a set G along with a binary operator o such that:
(1) $g, g^{\prime} \in G \Longrightarrow g \circ g^{\prime} \in G$
(2) $\left(g \circ g^{\prime}\right) \circ g^{\prime \prime}=g \circ\left(g^{\prime} \circ g^{\prime \prime}\right), \forall g, g^{\prime}, g^{\prime \prime} \in G$
(3) $\exists e \in G: e \circ g=g \circ e=g, \forall g \in G$
(4) $\forall g \in G \exists g^{-1} \in G: g \circ g^{-1}=g^{-1} \circ g=e$

Often groups are sets of transformations and the binary operator is the composition operator (e.g. $S O(2)$ the group of rotations of \mathbb{R}^{2}):
$\left[\begin{array}{cc}\cos \phi & -\sin \phi \\ \sin \phi & \cos \phi\end{array}\right]\left[\begin{array}{cc}\cos \psi & -\sin \psi \\ \sin \psi & \cos \psi\end{array}\right]=\left[\begin{array}{cc}\cos (\phi+\psi) & -\sin (\phi+\psi) \\ \sin (\phi+\psi) & \cos (\phi+\psi)\end{array}\right]$

Look at the previous results through the prism of the canonical parametrisation:

- Already know that $\boldsymbol{\tau}$ is sufficient for $\phi=c(\theta)$.
- But result tells us something even stronger:

$$
\text { that each } \tau_{i} \text { is sufficient for } \phi_{i}=c_{i}(\theta)
$$

- In fact any τ_{A} is sufficient for $\phi_{A}, \forall A \subseteq\{1, \ldots, k\}$
- Therefore, each natural statistic contains the relevant information for each natural parameter
- A useful result that is by no means true for any distribution.

Statistical Theory (Week 4)
 Special Models

Groups Acting on the Sample Space

- Have a group of transformations G, with $G \ni g: \mathcal{X} \rightarrow \mathcal{X}$
- $g X:=g(X)$ and $\left(g_{2} \circ g_{1}\right) X:=g_{2}\left(g_{1}(X)\right)$
- Obviously $\operatorname{dist}(g X)$ changes as g ranges in G.
- Is this change completely arbitrary or are there situations where it has a simple structure?

Definition (Transformation Family)

Let G be a group of transformations acting on \mathcal{X} and let $\left\{f_{\theta}(x) ; \theta \in \Theta\right\}$ be a parametric family of densities on \mathcal{X}. If there exists a bijection $h: G \rightarrow \Theta$ then the family $\left\{f_{\theta}\right\}_{\theta \in \Theta}$ will be called a (group) transformation family.

Hence Θ admits a group structure $\bar{G}:=(\Theta, *)$ via:

$$
\theta_{1} * \theta_{2}:=h\left(h^{-1}\left(\theta_{1}\right) \circ h^{-1}\left(\theta_{2}\right)\right)
$$

Usually write $g_{\theta}=h^{-1}(\theta)$, so $g_{\theta} \circ g_{\theta^{\prime}}=g_{\theta * \theta^{\prime}}$

Invariance and Equivariance

Invariance and Equivariance

Define an equivalence relation on \mathcal{X} via G :

$$
x \stackrel{G}{\equiv} x^{\prime} \Longleftrightarrow \exists g \in G: x^{\prime}=g(x)
$$

Partitions \mathcal{X} into equivalence classes called the orbits of \mathcal{X} under G

Definition (Invariant Statistic)

A statistic T that is constant on the orbits of \mathcal{X} under G is called an invariant statistic. That is, T is invariant with respect to G if, for any arbitrary $x \in \mathcal{X}$, we have $T(x)=T(g x) \forall g \in G$.

Notice that it may be that $T(x)=T(y)$ but x, y are not in the same orbit, i.e. in general the orbits under G are subsets of the level sets of an invariant statistic T. When orbits and level sets coincide, we have:

Definition (Maximal Invariant)

A statistic T will be called a maximal invariant for G when
Statistical Theory (Week 4) $T(x)=\underset{\text { Special Modeds }}{\Longleftrightarrow}(y) x$

Invariance and Equivariance

$21 / 26$

Lemma (Constructing Maximal Invariants)

Let $S: \mathcal{X} \rightarrow \Theta$ be an equivariant statistic for a transformation family with parameter space Θ and transformation group G. Then, $T(X)=g_{S(X)}^{-1} X$ defines a maximally invariant statistic.

Proof.

$T\left(g_{\theta} x\right) \stackrel{\text { def }}{=}\left(g_{S\left(g_{\theta} x\right)}^{-1} \circ g_{\theta}\right) x \stackrel{e q v}{=}\left(g_{\theta * S(x)}^{-1} \circ g_{\theta}\right) x=\left[\left(g_{S(x)}^{-1} \circ g_{\theta}^{-1}\right) \circ g_{\theta}\right] x=T(x)$
so that T is invariant. To show maximality, notice that

$$
T(x)=T(y) \Longrightarrow g_{S(x)}^{-1} x=g_{S(y)}^{-1} y \Longrightarrow y=\underbrace{g_{S(y)} \circ g_{S(x)}^{-1} x}_{=g \in G}
$$

so that $\exists g \in G$ with $y=g x$ which completes the proof.

- Intuitively, a maximal invariant is a reduced version of the data that represent it as closely as possible, under the requirement of remaining invariant with respect to G.
- If T is an invariant statistic with respect to the group defining a transformation family, then it is ancillary

Definition (Equivariance)

A statistic $S: \mathcal{X} \rightarrow \Theta$ will be called equivariant for a transformation family if $S\left(g_{\theta} x\right)=\theta * s(x), \quad \forall g_{\theta} \in G \& x \in \mathcal{X}$.

- Equivariance may be a natural property to require if S is used as an estimator of the true parameter $\theta \in \Theta$, as it suggests that a transformation of a sample by g_{ψ} would yield an estimator that is the original one transformed by ψ.

Statistical Theory (Week 4)
Special Models

Location-Scale Families

An important transformation family is the location-scale model:

- Let $X=\eta+\tau \varepsilon$ with $\varepsilon \sim f$ completely known.
- Parameter is $\theta=(\eta, \tau) \in \Theta=\mathbb{R} \times \mathbb{R}_{+}$.
- Define set of transformations on \mathcal{X} by $g_{\theta} x=g_{(\eta, \tau)^{x}}=\eta+\tau \times$ so

$$
g_{(\eta, \tau)} \circ g_{(\mu, \sigma)^{x}}=\eta+\tau \mu+\tau \sigma x=g_{(\eta+\tau \mu, \tau \sigma)^{x}}
$$

- set of transformations is closed under composition
- $g_{(0,1)} \circ g_{(\eta, \tau)}=g_{\eta, \tau} \circ g_{(0,1)}=g_{(\eta, \tau)}$ (so \exists identity)
- $g\left(-\eta / \tau, \tau^{-1}\right) \circ g_{(\eta, \tau)}=g_{(\eta, \tau)} \circ g\left(-\eta / \tau, \tau^{-1}\right)=g_{(0,1)}$ (so \exists inverse)
- Hence $G=\left\{g_{\theta}: \theta \in \mathbb{R} \times \mathbb{R}_{+}\right\}$is a group under \circ.
- Action of G on random sample $\mathbf{X}=\left\{X_{i}\right\}_{i=1}^{n}$ is $g_{(\eta, \tau)} \mathbf{X}=\eta \mathbf{1}_{n}+\tau \mathbf{X}$.
- Induced group action on Θ is $(\eta, \tau) *(\mu, \sigma)=(\eta+\tau \mu, \tau \sigma)$.
- The sample mean and sample variance are equivariant, because with $S(\mathbf{X})=\left(\bar{X}, V^{1 / 2}\right)$ where $V=\frac{1}{n-1} \sum\left(X_{j}-\bar{X}\right)^{2}:$

$$
\begin{aligned}
S\left(g_{(\eta, \tau) \mathbf{x}}\right) & =\left(\overline{\eta+\tau \mathbf{X}},\left\{\frac{1}{n-1} \sum\left(\eta+\tau X_{j}-\overline{(\eta+\tau X)}\right)^{2}\right\}^{1 / 2}\right) \\
& =\left(\eta+\tau \bar{X},\left\{\frac{1}{n-1} \sum\left(\eta+\tau X_{j}-\eta-\tau \bar{X}\right)^{2}\right\}^{1 / 2}\right) \\
& =\left(\eta+\tau \bar{X}, \tau V^{1 / 2}\right)=(\eta, \tau) * S(\mathbf{X})
\end{aligned}
$$

- A maximal invariant is given by $A=g_{S(\mathbf{X})}^{-1} \mathbf{X}$ the corresponding parameter being $\left(-\bar{X} / V^{1 / 2}, V^{-1 / 2}\right)$. Hence the vector of residuals is a maximal invariant:

Example (The Multivariate Gaussian Distribution)

- Let $\mathbf{Z} \sim \mathcal{N}_{d}(0, I)$ and consider $\mathbf{X}=\boldsymbol{\mu}+\Omega \mathbf{Z} \sim \mathcal{N}\left(\boldsymbol{\mu}, \Omega \Omega^{\top}\right)$
- Parameter is $(\boldsymbol{\mu}, \Omega) \in \mathbb{R}^{d} \times \mathrm{GL}(d)$
- Set of transformations is closed under o
- $g_{(0, l)} \circ g_{(\mu, \Omega)}=g_{\mu, \Omega} \circ g_{(0, l)}=g_{(\mu, \Omega)}$
- $\left.g_{(}-\Omega^{-1} \boldsymbol{\mu}, \Omega^{-1}\right) \circ g_{(\mu, \Omega)}=g_{(\mu, \Omega)} \circ g\left(-\Omega^{-1} \boldsymbol{\mu}, \Omega^{-1}\right)=g_{(0, l)}$
- Hence $G=\left\{g_{\theta}: \theta \in \mathbb{R} \times \mathbb{R}_{+}\right\}$is a group under \circ (affine group).
- Action of G on \mathbf{X} is $g_{(\mu, \Omega)} \mathbf{X}=\boldsymbol{\mu}+\Omega \mathbf{X}$.
- Induced group action on Θ is $(\boldsymbol{\mu}, \Omega) *(\boldsymbol{\nu}, \Psi)=(\boldsymbol{\nu}+\Psi \mu, \Psi \Omega)$.

$$
A=\frac{\left(\mathbf{X}-\bar{X} \mathbf{1}_{n}\right)}{V^{1 / 2}}=\left(\frac{X_{1}-\bar{X}}{V^{1 / 2}}, \ldots, \frac{X_{n}-\bar{X}}{V^{1 / 2}}\right)
$$

Basic Principles of Point Estimation

Statistical Theory

Victor Panaretos
Ecole Polytechnique Fédérale de Lausanne

fÉDÊRALE DE LAUSANNEThe Problem of Point EstimationBias, Variance and Mean Squared ErrorThe Plug-In PrincipleThe Moment PrincipleThe Likelihood Principle

Point Estimation for Parametric Families

- Collection of r.v.'s (a random vector) $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$
- $\mathbf{X} \sim F_{\theta} \in \mathcal{F}$
- \mathcal{F} a parametric class with parameter $\theta \in \Theta \subseteq \mathbb{R}^{d}$

The Problem of Point Estimation

(1) Assume that F_{θ} is known up to the parameter θ which is unknown
(2) Let $\left(x_{1}, \ldots, x_{n}\right)$ be a realization of $\mathbf{X} \sim F_{\theta}$ which is available to us
(3) Estimate the value of θ that generated the sample given $\left(x_{1}, \ldots, x_{n}\right)$

So far considered aspects related to point estimation:

- Considered approximate distributions of $g\left(X_{1}, \ldots, X_{n}\right)$ as $n \uparrow \infty$
- Studied the information carried by $g\left(X_{1}, . ., X_{n}\right)$ w.r.t θ
- Examined general parametric models

Today: How do we estimate θ in general? Some general recipes?

Point Estimators

Definition (Point Estimator)

Let $\left\{F_{\theta}\right\}$ be a parametric model with parameter space $\Theta \subseteq \mathbb{R}^{d}$ and let $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right) \sim F_{\theta_{0}}$ for some $\theta_{0} \in \Theta$. A point estimator $\hat{\theta}$ of θ_{0} is a statistic $T: \mathbb{R}^{n} \rightarrow \Theta$, whose primary purpose is to estimate θ_{0}

Therefore any statistic $T: \mathbb{R}^{n} \rightarrow \Theta$ is a candidate estimator!
\hookrightarrow Harder to answer what a good estimator is!

- Any estimator is of course a random variable
- Hence as a general principle, good should mean: $\operatorname{dist}(\hat{\theta})$ concentrated around θ
$\hookrightarrow \mathrm{An} \infty$-dimensional description of quality.
- Look at some simpler measures of quality?

Bias and Mean Squared Error

Definition (Bias)

The bias of an estimator $\hat{\theta}$ of $\theta \in \Theta$ is defined to be

$$
\operatorname{bias}(\hat{\theta})=\mathbb{E}_{\theta}[\hat{\theta}]-\theta
$$

Describes how "off" we're from the target on average when employing $\hat{\theta}$.

Definition (Unbiasedness)

An estimator $\hat{\theta}$ of $\theta \in \Theta$ is unbiased if $\mathbb{E}_{\theta}[\hat{\theta}]=\theta$, i.e. $\operatorname{bias}(\hat{\theta})=0$.
Will see that not too much weight should be placed on unbiasedness.

Definition (Mean Squared Error)

The mean squared error of an estimator $\hat{\theta}$ of $\theta \in \Theta \subseteq \mathbb{R}$ is defined to be

$$
\operatorname{MSE}(\hat{\theta})=\mathbb{E}_{\theta}\left[(\hat{\theta}-\theta)^{2}\right]
$$

The Bias-Variance Decomposition of MSE

$$
\begin{aligned}
\mathbb{E}[\hat{\theta}-\theta]^{2} & =\mathbb{E}[\hat{\theta}-\mathbb{E} \hat{\theta}+\mathbb{E} \hat{\theta}-\theta]^{2} \\
& =\mathbb{E}\left\{(\hat{\theta}-\mathbb{E} \hat{\theta})^{2}+(\mathbb{E} \hat{\theta}-\theta)^{2}+2(\hat{\theta}-\mathbb{E} \hat{\theta})(\mathbb{E} \hat{\theta}-\theta)\right\} \\
& =\mathbb{E}(\hat{\theta}-\mathbb{E} \hat{\theta})^{2}+(\mathbb{E} \hat{\theta}-\theta)^{2}
\end{aligned}
$$

Bias-Variance Decomposition for $\Theta \subseteq \mathbb{R}$

$$
\operatorname{MSE}(\hat{\theta})=\operatorname{Var}(\hat{\theta})+\operatorname{bias}^{2}(\hat{\theta})
$$

- A simple yet fundamental relationship
- Requiring a small MSE does not necessarily require unbiasedeness
- Unbiasedeness is a sensible property, but sometimes biased estimators perform better than unbiased ones
- Sometimes have bias/variance tradeoff (e.g. nonparametric regression)

In this case bias and MSE give us a complete description of the concentration of $\operatorname{dist}(\hat{\mu})$ around μ, since $\hat{\mu}$ is Gaussian and so completely determined by mean and variance.

Statistical Theory (Week 5) Point Estimation
Consistency: $X_{1}, \ldots, X_{n} \sim \mathcal{N}(0,1)$, plot \bar{X}_{n} for $n=1,2, \ldots$

Can also consider quality of an estimator not for given sample size, but also as sample size increases.

Consistency

A sequence of estimators $\left\{\hat{\theta}_{n}\right\}_{n \geq 1}$ of $\theta \in \Theta$ is said to be consistent if

$$
\hat{\theta}_{n} \xrightarrow{P} \theta
$$

- A consistent estimator becomes increasingly concentrated around the true value θ as sample size grows (usually have $\hat{\theta_{n}}$ being an estimator based on n iid values).
- Often considered as a "must have" property, but...
- A more detailed understanding of the "asymptotic quality" of $\hat{\theta}$ requires the study of $\operatorname{dist}\left[\hat{\theta}_{n}\right]$ as $n \uparrow \infty$.

Plug-In Estimators

Want to find general procedures for constructing estimators.
\hookrightarrow An idea: $\theta \mapsto F_{\theta}$ is bijection under identifiability.

- Recall that more generally, a parameter is a function $\nu: \mathcal{F} \rightarrow \mathcal{N}$
- Under identifiability $\nu\left(F_{\theta}\right)=q(\theta)$, some q.

The Plug-In Principle

Let $\nu=q(\theta)=\nu\left(F_{\theta}\right)$ be a parameter of interest for a parametric model $\left\{F_{\theta}\right\}_{\theta \in \Theta}$. If we can construct an estimate \hat{F}_{θ} of F_{θ} on the basis of our sample X, then we can use $\nu\left(\hat{F}_{\theta}\right)$ as an estimator of $\nu\left(F_{\theta}\right)$. Such an estimator is called a plug-in estimator.

- Essentially we are "flipping" our point of view: viewing θ as a function of F_{θ} instead of F_{θ} as a function of θ.
- Note here that $\theta=\theta\left(F_{\theta}\right)$ if q is taken to be the identity.
- In practice such a principle is useful when we can explicitly describe the mapping $F_{\theta} \mapsto \nu\left(F_{\theta}\right)$.

Examples of "functional parameters":

- The mean: $\mu(F):=\int_{-\infty}^{+\infty} x d F(x)$
- The variance: $\sigma^{2}(F):=\int_{-\infty}^{+\infty}[x-\mu(F)]^{2} d F(x)$
- The median: $\operatorname{med}(F):=\inf \{x: F(x) \geq 1 / 2\}$
- An indirectly defined parameter $\theta(F)$ such that:

$$
\int_{-\infty}^{+\infty} \psi(x-\theta(F)) d F(x)=0
$$

- The density (when it exists) at $x_{0}: \theta(F):=\left.\frac{d}{d x} F(x)\right|_{x=x_{0}}$

Statistical Theory (Week 5)

Point Estimation

Plug-in Principle

Converts problem of estimating θ into problem of estimating F. But how?
Consider the case when $\mathbf{X}=\left(X_{1}, . ., X_{n}\right)$ has iid coordinates. We may define the empirical version of the distribution function $F_{X_{i}}(\cdot)$ as

$$
\hat{F}_{n}(y)=\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}\left\{X_{i} \leq y\right\}
$$

- Places mass $1 / n$ on each observation
- SLLN $\Longrightarrow \hat{F}_{n}(y) \xrightarrow{\text { a.s. }} F(y) \forall y \in \mathbb{R}$
\hookrightarrow since $\mathbf{1}\left\{X_{i} \leq y\right\}$ are iid Bernoulli $(F(y))$ random variables
Suggests using $\nu\left(\hat{F}_{n}\right)$ as estimator of $\nu(F)$

Statistical Theory (Week 5)
Point Estimation

The Empirical Distribution Function

Seems that we're actually doing better than just pointwise convergence...

Theorem (Glivenko-Cantelli)

Let $X_{1}, . ., X_{n}$ be independent random variables, distributed according to F. Then, $\hat{F}_{n}(y)=n^{-1} \sum_{i=1}^{n} \mathbf{1}\left\{X_{i} \leq y\right\}$ converges uniformly to F with probability 1, i.e.

$$
\sup _{x \in \mathbb{R}}\left|\hat{F}_{n}(x)-F(x)\right| \xrightarrow{\text { a.s. }} 0
$$

Proof.

Assume first that $F(y)=y \mathbf{1}\{y \in[0,1]\}$. Fix a regular finite partition $0=x_{1} \leq x_{2} \leq \ldots \leq x_{m}=1$ of $[0,1]$ (so $\left.x_{k+1}-x_{k}=(m-1)^{-1}\right)$. By monotonicity of F, \hat{F}_{n}

$$
\sup _{x}\left|\hat{F}_{n}(x)-F(x)\right|<\max _{k}\left|\hat{F}_{n}\left(x_{k}\right)-F\left(x_{k+1}\right)\right|+\max _{k}\left|\hat{F}_{n}\left(x_{k}\right)-F\left(x_{k-1}\right)\right|
$$

Adding and subtracting $F\left(x_{k}\right)$ within each term we can bound above by

$$
2 \max _{k}\left|\hat{F}_{n}\left(x_{k}\right)-F\left(x_{k}\right)\right|+\underbrace{\max _{k}\left|F\left(x_{k}\right)-F\left(x_{k+1}\right)\right|+\max _{k}\left|F\left(x_{k}\right)-F\left(x_{k-1}\right)\right|}_{=\max _{k}\left|x_{k}-x_{k+1}\right|+\max _{k}\left|x_{k}-x_{k-1}\right|=\frac{2}{m-1}}
$$

by an application of the triangle inequality to each term. Letting $n \uparrow \infty$, the SSLN implies that the first term vanishes almost surely. Since m is arbitrary we have proven that, given any $\epsilon>0$,

$$
\lim _{n \rightarrow \infty}\left[\sup _{x}\left|\hat{F}_{n}(x)-F(x)\right|\right]<\epsilon \quad \text { a.s. }
$$

which gives the result when the cdf F is uniform.
For a general cdf F, we let $U_{1}, U_{2}, \ldots \stackrel{\text { iid }}{\sim} \mathcal{U}[0,1]$ and define

$$
W_{i}:=F^{-1}\left(U_{i}\right)=\inf \left\{x: F(x) \geq U_{i}\right\}
$$

Example (Mean of a function)

Consider $\theta(F)=\int_{-\infty}^{+\infty} x d F(x)$. A plug-in estimator based on the edf is

$$
\hat{\theta}:=\theta\left(\hat{F}_{n}\right)=\int_{-\infty}^{+\infty} h(x) d \hat{F}_{n}(x)=\frac{1}{n} \sum_{i=1}^{n} h\left(X_{i}\right)
$$

Example (Variance)

Consider now $\sigma^{2}(F)=\int_{-\infty}^{+\infty}(x-\mu(F))^{2} d F(x)$. Plugging in \hat{F}_{n} gives
$\sigma^{2}\left(\hat{F}_{n}\right)=\int_{-\infty}^{+\infty} x^{2} d \hat{F}_{n}(x)-\left(\int_{-\infty}^{+\infty} x d \hat{F}_{n}(x)\right)^{2}=\sum_{i=1}^{n} X_{i}^{2}-\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right)^{2}$

Exercise

Show that $\sigma^{2}\left(\hat{F}_{n}\right)$ is a biased but consistent estimator for any F.

Observe that

$$
W_{i} \leq x \Longleftrightarrow U_{i} \leq F(x)
$$

so that $W_{i} \stackrel{d}{=} X_{i}$. By Skorokhod's representation theorem, we may thus assume that

$$
W_{i}=X_{i} \quad \text { a.s. }
$$

Letting \hat{G}_{n} be the edf of $\left(U_{1}, \ldots, U_{n}\right)$ we note that

$$
\hat{F}_{n}(y)=n^{-1} \sum_{i=1}^{n} \mathbf{1}\left\{W_{i} \leq y\right\}=n^{-1} \sum_{i=1}^{n} \mathbf{1}\left\{U_{i} \leq F(y)\right\}=\hat{G}_{n}(F(y))
$$

in other words

$$
\hat{F}_{n}=\hat{G}_{n} \circ F, \text { a.s. }
$$

Now let $A=F(\mathbb{R}) \subseteq[0,1]$ so that from the first part of the proof

$$
\sup _{x \in \mathbb{R}}\left|\hat{F}_{n}(x)-F(x)\right|=\sup _{t \in A}\left|\hat{G}_{n}(t)-t\right| \leq \sup _{t \in[0,1]}\left|\hat{G}_{n}(t)-t\right| \xrightarrow{\text { a.s. }} 0
$$

since obviously $A \subseteq[0,1]$.
Statistical Theory (Week 5)
Point Estimation
18 / 31

Example (Density Estimation)

Let $\theta(F)=f\left(x_{0}\right)$, where f is the density of F,

$$
F(t)=\int_{-\infty}^{t} f(x) d x
$$

If we tried to plug-in \hat{F}_{n} then our estimator would require differentiation of \hat{F}_{n} at x_{0}. Clearly, the edf plug-in estimator does not exist since \hat{F}_{n} is a step function. We will need a "smoother" estimate of F to plug in, e.g.

$$
\tilde{F}_{n}(x):=\int_{-\infty}^{\infty} G(x-y) d \hat{F}_{n}(y)=\frac{1}{n} \sum_{i=1}^{n} G\left(x-X_{i}\right)
$$

for some continuous G concentrated at 0 .

- Saw that plug-in estimates are usually easy to obtain via \hat{F}_{n}
- But such estimates are not necessarily as "innocent" as they seem.

The Method of Moments

Motivational Diversion: The Moment Problem

Perhaps the oldest estimation method (Karl Pearson, late 1800's).

Method of Moments

Let X_{1}, \ldots, X_{n} be an iid sample from $F_{\theta}, \theta \in \mathbb{R}^{p}$. The method of moments estimator $\hat{\theta}$ of θ is the solution w.r.t θ to the p random equations

$$
\int_{-\infty}^{+\infty} x^{k_{j}} d \hat{F}_{n}(x)=\int_{-\infty}^{+\infty} x^{k_{j}} d F_{\theta}(x), \quad\left\{k_{j}\right\}_{j=1}^{p} \subset \mathbb{N} .
$$

- In some sense this is a plug-in estimator - we estimate the theoretical moments by the sample moments in order to then estimate θ.
- Useful when exact functional form of $\theta(F)$ unavailble
- While the method was introduced by equating moments, it may be generalized to equating p theoretical functionals to their empirical analogues.
\hookrightarrow Choice of equations can be important
Statistical Theory (Week 5)
Point Estimation

Example (Exponential Distribution)

Suppose $X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} \operatorname{Exp}(\lambda)$. Then, $\mathbb{E}\left[X_{i}^{r}\right]=\lambda^{-r} \Gamma(r+1)$. Hence, we may define a class of estimators of λ depending on r,

$$
\hat{\lambda}=\left[\frac{1}{n \Gamma(r+1)} \sum_{i=1}^{n} X_{i}^{r}\right]^{-\frac{1}{r}}
$$

Tune value of r so as to get a "best estimator" (will see later...)

Example (Gamma Distribution)

Let $X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} \operatorname{Gamma}(\alpha, \lambda)$. The first two moment equations are:

$$
\frac{\alpha}{\lambda}=\frac{1}{n} \sum_{i=1}^{n} X_{i}=\bar{X} \quad \text { and } \frac{\alpha}{\lambda^{2}}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

yielding estimates $\hat{\alpha}=\bar{X}^{2} / \hat{\sigma}^{2}$ and $\hat{\lambda}=\bar{X} / \hat{\sigma}^{2}$.

Theorem

Suppose that F is a distribution determined by its moments. Let $\left\{F_{n}\right\}$ be a sequence of distributions such that $\int x^{k} d F_{n}(x)<\infty$ for all n and k. Then,

$$
\lim _{n \rightarrow \infty} \int x^{k} d F_{n}(x)=\int x^{k} d F(x), \quad \forall k \geq 1 \Longrightarrow F_{n} \xrightarrow{w} F .
$$

BUT: Not all distributions are determined by their moments!

Lemma

The distribution of X is determined by its moments, provided that there exists an open neighbourhood A containing zero such that

$$
M_{X}(u)=\mathbb{E}\left[e^{-\langle u, X\rangle}\right]<\infty, \quad \forall u \in A
$$

Statistical Theory (Week 5)
Point Estimation

$$
\begin{gathered}
\text { わQ } \\
22 / 31
\end{gathered}
$$

Example (Discrete Uniform Distribution)

Let $X_{1}, \ldots, X_{n} \stackrel{\text { iid }}{\sim} \mathcal{U}\{1,2, \ldots, \theta\}$, for $\theta \in \mathbb{N}$. Using the first moment of the distribution we obtain the equation

$$
\bar{X}=\frac{1}{2}(\theta+1)
$$

yielding the MoM estimator $\hat{\theta}=2 \bar{X}-1$.
A nice feature of MoM estimators is that they generalize to non-iid data. \rightarrow if $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ has distribution depending on $\theta \in \mathbb{R}^{p}$, one can choose statistics T_{1}, \ldots, T_{p} whose expectations depend on θ :

$$
\mathbb{E}_{\theta} T_{k}=g_{k}(\theta)
$$

and then equate

$$
T_{k}(\mathbf{X})=g_{k}(\theta), \quad k=1, \ldots, p .
$$

\rightarrow Important here that T_{k} is a reasonable estimator of $\mathbb{E} T_{k}$. (motivation)

- Usually easy to compute and can be valuable as preliminary estimates for algorithms that attempt to compute more efficient (but not easily computable) estimates.
- Can give a starting point to search for better estimators in situations where simple intuitive estimators are not available.
- Often these estimators are consistent, so they are likely to be close to the true parameter value for large sample size.
\hookrightarrow Use empirical process theory for plug-ins
\hookrightarrow Estimating equation theory for MoM's
- Can lead to biased estimators, or even completely ridiculous estimators (will see later)
- The estimate provided by an MoM estimator may $\notin \Theta$! (exercise: show that this can happen with the binomial distribution, both n and p unknown).
- Will later discuss optimality in estimation, and appropriateness (or inappropriateness) will become clearer.
- Observation: many of these estimators do not depend solely on sufficient statistics
\hookrightarrow Sufficiency seems to play an important role in optimality - and it does (more later)
- Will now see a method where estimator depends only on a sufficient statistic, when such a statistic exists.

| Statistical Theory (Week 5) Point Estimation | $25 / 31$ |
| :--- | :--- | :--- |

The Likelihood Function

A central theme in statistics. Introduced by Ronald Fisher.

Definition (The Likelihood Function)

Let $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ be random variables with joint density (or frequency function) $f(\mathbf{x} ; \theta), \theta \in \Theta \subseteq \mathbb{R}^{p}$. The likelihood function $L(\theta)$ is the random function

$$
L(\theta)=f(\mathbf{X} ; \theta)
$$

\hookrightarrow Notice that we consider L as a function of θ NOT of \mathbf{X}.
Interpretation: Most easily interpreted in the discrete case \rightarrow How likely does the value θ make what we observed?
(can extend interpretation to continuous case by thinking of $L(\theta)$ as how likely θ makes something in a small neighbourhood of what we observed) When \mathbf{X} has iid coordinates with density $f(\cdot ; \theta)$, then likelihood is:

$$
L(\theta)=\prod_{i=1}^{n} f\left(X_{i} ; \theta\right)
$$

Statistical Theory (Week 5) Point Estimation

Maximum Likelihood Estimators

Definition (Maximum Likelihood Estimators)

Let $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ be a random sample from F_{θ}, and suppose that $\hat{\theta}$ is such that

$$
L(\hat{\theta}) \geq L(\theta), \quad \forall \theta \in \Theta .
$$

Then $\hat{\theta}$ is called a maximum likelihood estimator of θ.
We call $\hat{\theta}$ the maximum likelihood estimator, when it is the unique maximum of $L(\theta)$,

$$
\hat{\theta}=\underset{\theta \in \Theta}{\arg \max } L(\theta) .
$$

Intuitively, a maximum likelihood estimator chooses that value of θ that is most compatible with our observation in the sense that it makes what we observed most probable. In not-so-mathematical terms, $\hat{\theta}$ is the value of θ that is most likely to have produced the data.

Saw that MoMs and Plug-Ins often do not depend only on sufficient statistics.
\hookrightarrow i.e. they also use "irrelevant" information

- If T is a sufficient statistic for θ then the Factorization theorem implies that

$$
L(\theta)=g(T(\mathbf{X}) ; \theta) h(\mathbf{X}) \propto g(T(\mathbf{X}) ; \theta)
$$

i.e. any MLE depends on data ONLY through the sufficient statistic

- MLE's are also invariant. If $g: \Theta \rightarrow \Theta^{\prime}$ is a bijection, and if $\hat{\theta}$ is the MLE of θ, then $g(\hat{\theta})$ is the MLE of $g(\theta)$.
- When the support of a distribution depends on a parameter, maximization is usually carried out by direct inspection.
- For a very broad class of statistical models, the likelihood can be maximized via differential calculus. If Θ is open, the support of the distribution does not depend on θ and the likelihood is differentiable, then the MLE satisfies the log-likelihood equations:

$$
\nabla_{\theta} \log L(\theta)=0
$$

- Notice that maximizing $\log L(\theta)$ is equivalent to maximizing $L(\theta)$
- When Θ is not open, likelihood equations can be used, provided that we verify that the maximum does not occur on the boundary of Θ.

Example (Uniform Distribution)

Let $X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} \mathcal{U}[0, \theta]$. The likelihood is

$$
L(\theta)=\theta^{-n} \prod_{i=1}^{n} \mathbf{1}\left\{0 \leq X_{i} \leq \theta\right\}=\theta^{-n} \mathbf{1}\left\{\theta \geq X_{(n)}\right\}
$$

Hence if $\theta \leq X_{(n)}$ the likelihood is zero. In the domain [$X_{(n)}, \infty$), the likelihood is a decreasing function of θ. Hence $\hat{\theta}=X_{(n)}$.

Example (Poisson Distribution)

Let $X_{1}, \ldots, X_{n} \stackrel{\text { iid }}{\sim}$ Poisson (λ). Then

$$
L(\lambda)=\prod_{i=1}^{n}\left\{\frac{\lambda^{x_{i}}}{x_{i}!} e^{-\lambda}\right\} \Longrightarrow \log L(\lambda)=-n \lambda+\log \lambda \sum_{i=1}^{n} x_{i}-\sum_{i=1}^{n} \log \left(x_{i}!\right)
$$

Setting $\nabla_{\theta} \log L(\theta)=-n+\lambda^{-1} \sum x_{i}=0$ we obtain $\hat{\lambda}=\bar{x}$ since $\nabla_{\theta}^{2} \log L(\theta)=-\lambda^{-2} \sum x_{i}<0$.

Maximum Likelihood Estimation

Statistical Theory

Victor Panaretos
Ecole Polytechnique Fédérale de Lausanne

1) The Problem of Point EstimationMaximum Likelihood EstimatorsRelationship with Kullback-Leibler DivergenceAsymptotic Properties of the MLE

Point Estimation for Parametric Families

- Collection of r.v.'s (a random vector) $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$
- $\mathbf{X} \sim F_{\theta} \in \mathcal{F}$
- F a parametric class with parameter $\theta \in \Theta \subseteq \mathbb{R}^{d}$

The Problem of Point Estimation

(1) Assume that F_{θ} is known up to the parameter θ which is unknown
(2) Let $\left(x_{1}, \ldots, x_{n}\right)$ be a realization of $\mathbf{X} \sim F_{\theta}$ which is available to us
(3) Estimate the value of θ that generated the sample given $\left(x_{1}, \ldots, x_{n}\right)$

Last week, we saw three estimation methods:

- the plug-in method,
- the method of moments,
- maximum likelihood.

Today: focus on maximum likelihood. Why does it make sense? What are its properties?

Statistical Theory (Likelihood)

Maximum Likelihood Estimators

Recall our definition of a maximum likelihood estimator:

Definition (Maximum Likelihood Estimators)

Let $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ be a random sample from F_{θ}, and suppose that $\hat{\theta}$ is such that

$$
L(\hat{\theta}) \geq L(\theta), \quad \forall \theta \in \Theta .
$$

Then $\hat{\theta}$ is called a maximum likelihood estimator of θ.
We call $\hat{\theta}$ the maximum likelihood estimator, when it is the unique maximum of $L(\theta)$,

$$
\hat{\theta}=\underset{\theta \in \Theta}{\arg \max } L(\theta) .
$$

$\rightarrow \hat{\theta}$ makes what we observed most probable, most likely.
\rightarrow Makes sense intuitively. But why should it make sense mathematically?

Kullback-Leibler Divergence

Definition (Kullback-Leibler Divergence)

Let $p(x)$ and $q(x)$ be two probability density (frequency) functions on \mathbb{R}. The Kullback-Leibler divergence, of q with respect to p is defined as:

$$
K L(q \| p):=\int_{-\infty}^{+\infty} p(x) \log \left(\frac{p(x)}{q(x)}\right) d x
$$

- Have $K L(p \| p)=\int_{-\infty}^{+\infty} p(x) \log (1) d x=0$.
- By Jensen's inequality, for $X \sim p(\cdot)$ we have

$$
K L(q \| p)=\mathbb{E}\{-\log [q(X) / p(X)]\} \geq-\log \left\{\mathbb{E}\left[\frac{q(X)}{p(X)}\right]\right\}=0
$$

since q integrates to 1 .

- $p \neq q$ implies that $K L(q \| p)>0$.
- KL is, in a sense, a distance between probability distributions
- KL is not a metric: no symmetry and no triangle inequality!
Statistical Theory (Likelihood) Maximum Likelihood

Likelihood through KL-divergence

Intuition:

- \hat{F}_{n} is (with probability 1) a uniformly good approximation of $F_{\theta_{0}}, \theta_{0}$ the true parameter (large n).
- So $F_{\theta_{0}}$ will be "very close" to \hat{F}_{n} (for large n)
- So set the "projection" of \hat{F}_{n} into $\left\{F_{\theta}\right\}_{\theta \in \Theta}$ as the estimator of $F_{\theta_{0}}$.
- ("projection" with respect to KL-divergence)

Final comments on KL-divergence:

- $K L(p \| q)$ measures how likely it would be to distinguish if an observation X came from q or p given that it came from p.
- A related quantity is the entropy of p, defined as $-\int \log (p(x)) p(x) d x$ which measures the "inherent randomness" of p (how "surprising" an outcome from p is on average).

Likelihood through KL-divergence

Lemma (Maximum Likelihood as Minimum KL-Divergence)

An estimator $\hat{\theta}$ based on an iid sample X_{1}, \ldots, X_{n} is a maximum likelihood estimator if and only if $K L\left(F(x ; \hat{\theta}) \| \hat{F}_{n}(x)\right) \leq K L\left(F(x ; \theta) \| \hat{F}_{n}(x)\right) \forall \theta \in \Theta$.

Proof (discrete case).

We recall that $\int h(x) d \hat{F}_{n}(x)=n^{-1} \sum h\left(X_{i}\right)$ so that

$$
\begin{aligned}
K L\left(F_{\theta} \| \hat{F}_{n}\right) & =\int_{-\infty}^{+\infty} \log \left(\frac{\sum_{i=1}^{n} \frac{\delta_{x_{i}}(x)}{n}}{f(x ; \theta)}\right) d \hat{F}_{n}(x)=\frac{1}{n} \sum_{i=1}^{n} \log \left(\frac{n^{-1}}{f\left(X_{i} ; \theta\right)}\right) \\
& =-\frac{1}{n} \sum_{i=1}^{n} \log n-\frac{1}{n} \sum_{i=1}^{n} \log f\left(X_{i} ; \theta\right) \\
& =-\log n-\frac{1}{n} \log \left[\prod_{i=1}^{n} f\left(X_{i} ; \theta\right)\right]=-\log n-\frac{1}{n} \log L(\theta)
\end{aligned}
$$

Statistical Theory (Likelihood)

Asymptotics for MLE's

- Under what conditions is an MLE consistent?
- How does the distribution of $\hat{\theta}_{\text {MLE }}$ concetrate around θ as $n \rightarrow \infty$?

Often, when MLE coincides with an MoM estimator, this can be seen directly.

Example (Geometric distribution)

Let X_{1}, \ldots, X_{n} be iid Geometric random variables with frequency function

$$
f(x ; \theta)=\theta(1-\theta)^{x}, \quad x=0,1,2, \ldots
$$

MLE of θ is

$$
\hat{\theta}_{n}=\frac{1}{\bar{X}+1} .
$$

By the central limit theorem, $\sqrt{n}\left(\bar{X}-\left(\theta^{-1}-1\right)\right) \xrightarrow{d} \mathcal{N}\left(0, \theta^{-2}(1-\theta)\right)$.

Example (Geometric distribution)

Now apply the delta method with $g(x)=1 /(1+x)$, so that $g^{\prime}(x)=-1 /(1+x)^{2}$:

$$
\sqrt{n}\left(\hat{\theta}_{n}-\theta\right)=\sqrt{n}\left(g\left(\bar{X}_{n}\right)-g\left(\theta^{-1}-1\right)\right) \xrightarrow{d} \mathcal{N}\left(0, \theta^{2}(1-\theta)\right) .
$$

Example (Uniform distribution)

Suppose that $X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} \mathcal{U}[0, \theta]$. MLE of θ is

$$
\hat{\theta}_{n}=X_{(n)}=\max \left\{X_{1}, \ldots, X_{n}\right\}
$$

with distribution function $\mathbb{P}\left[\hat{\theta}_{n} \leq x\right]=(x / \theta)^{n} \mathbf{1}\{x \in[0, \theta]\}$. Thus for $\epsilon>0$,

$$
\mathbb{P}\left[\left|\hat{\theta}_{n}-\theta\right|>\epsilon\right]=\mathbb{P}\left[\hat{\theta}_{n}<\theta-\epsilon\right]=\left(\frac{\theta-\epsilon}{\theta}\right)^{n} \xrightarrow{n \rightarrow \infty} 0
$$

so that the MLE is a consistent estimator.

Statistical Theory (Likelihood)

Maximum Likelihood

Asymptotics for the MLE

Regularity Conditions

(A1) Θ is an open subset of \mathbb{R}.
(A2) The support of f, supp f, is independent of θ.
(A3) f is thrice continuously differentiable w.r.t. θ for all $x \in \operatorname{supp} f$.
(A4) $\mathbb{E}_{\theta}\left[\ell^{\prime}\left(X_{i} ; \theta\right)\right]=0 \forall \theta$ and $\operatorname{Var}_{\theta}\left[\ell^{\prime}\left(X_{i} ; \theta\right)\right]=I(\theta) \in(0, \infty) \forall \theta$.
(A5) $\mathbb{E}_{\theta}\left[\ell^{\prime \prime}\left(X_{i} ; \theta\right)\right]=-J(\theta) \in(0, \infty) \forall \theta$.
(A6) $\exists M(x)>0$ and $\delta>0$ such that $\mathbb{E}_{\theta_{0}}\left[M\left(X_{i}\right)\right]<\infty$ and

$$
\left|\theta-\theta_{0}\right|<\delta \Longrightarrow\left|\ell^{\prime \prime \prime}(x ; \theta)\right| \leq M(x)
$$

Let's take a closer look at these conditions...
If Θ is open, then for θ_{0} the true parameter, it always makes sense for an estimator $\hat{\theta}$ to have a symmetric distribution around θ_{0} (e.g. Gaussian).

Example (Uniform distribution)

To determine the asymptotic concentration of $\operatorname{dist}\left(\hat{\theta}_{n}\right)$ around θ,

$$
\begin{aligned}
\mathbb{P}\left[n\left(\theta-\hat{\theta}_{n}\right) \leq x\right] & =\mathbb{P}\left[\hat{\theta}_{n} \geq \theta-\frac{x}{n}\right] \\
& =1-\left(1-\frac{x}{\theta n}\right)^{n} \\
& \xrightarrow{n \rightarrow \infty} 1-\exp (-x / \theta)
\end{aligned}
$$

so that $n\left(\theta-\hat{\theta}_{n}\right)$ weakly converges to an exponential random variable.
Thus we understand the concentration of $\operatorname{dist}\left(\hat{\theta}_{n}-\theta\right)$ around zero for large n as that of an exponential distribution with variance $\frac{1}{\theta^{2} n^{2}}$.

From now on assume that X_{1}, \ldots, X_{n} are iid with density (frequency) $f(x ; \theta), \theta \in \mathbb{R}$. Notation:

- $\ell(x ; \theta)=\log f(x ; \theta)$
- $\ell^{\prime}(x ; \theta), \ell^{\prime \prime}(x ; \theta)$ and $\ell^{\prime \prime \prime \prime}(x ; \theta)$ are partial derivatives w.r.t θ.

Statistical Theory (Likelihood)

Maximum Likelihood

Asymptotics for the MLE

Under condition (A2) we have $\frac{d}{d \theta} \int_{\text {supp } f} f(x ; \theta) d x=0$ for all $\theta \in \Theta$ so that, if we can interchange integration and differentiation,

$$
0=\int \frac{d}{d \theta} f(x ; \theta) d x=\int \ell^{\prime}(x ; \theta) f(x ; \theta) d x=\mathbb{E}_{\theta}\left[\ell^{\prime}\left(X_{i} ; \theta\right)\right]
$$

so that in the presence of (A2), (A4) is essentially a condition that enables differentiation under the integral and asks that the r.v. ℓ^{\prime} have a finite second moment for all θ. Similarly, (A5) requires that $\ell^{\prime \prime}$ have a first moment for all θ.
Conditions (A2) and (A6) are smoothness conditions that will allow us to "linearize" the problem, while the other conditions will allow us to "control" the random linearization.
Furthermore, if we can differentiate twice under the integral sign
$0=\int \frac{d}{d \theta}\left[\ell^{\prime}(x ; \theta) f(x ; \theta)\right] d x=\int \ell^{\prime \prime}(x ; \theta) f(x ; \theta) d x+\int\left(\ell^{\prime}(x ; \theta)\right)^{2} f(x ; \theta) d x$
so that $I(\theta)=-J(\theta)$.

Example (Exponential Family)

Let X_{1}, \ldots, X_{n} be iid random variables distributed according to a one-parameter exponential family

$$
f(x ; \theta)=\exp \{c(\theta) T(x)-d(\theta)+S(x)\}, \quad x \in \operatorname{supp} f .
$$

It follows that

$$
\begin{aligned}
\ell^{\prime}(x ; \theta) & =c^{\prime}(\theta) T(x)-d^{\prime}(\theta) \\
\ell^{\prime \prime}(x ; \theta) & =c^{\prime \prime}(\theta) T(x)-d^{\prime \prime}(\theta) .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\mathbb{E}\left[T\left(X_{i}\right)\right] & =\frac{d^{\prime}(\theta)}{c^{\prime}(\theta)} \\
\operatorname{Var}\left[T\left(X_{i}\right)\right] & =\frac{1}{\left[c^{\prime}(\theta)\right]^{2}}\left(d^{\prime \prime}(\theta)-c^{\prime \prime}(\theta) \frac{d^{\prime}(\theta)}{c^{\prime}(\theta)}\right)
\end{aligned}
$$

Hence $\mathbb{E}\left[\ell^{\prime}\left(X_{i} ; \theta\right)\right]=c^{\prime}(\theta) \mathbb{E}\left[T\left(X_{i}\right)\right]-d^{\prime}(\theta)=0$.

Asymptotic Normality of the MLE

Theorem (Asymptotic Distribution of the MLE)

Let X_{1}, \ldots, X_{n} be iid random variables with density (frequency) $f(x ; \theta)$ and satisfying conditions (A1)-(A6). Suppose that the sequence of MLE's $\hat{\theta}_{n}$ satisfies $\hat{\theta}_{n} \xrightarrow{p} \theta$ where

$$
\sum_{i=1}^{n} \ell^{\prime}\left(X_{i} ; \hat{\theta}_{n}\right)=0, \quad n=1,2, \ldots
$$

Then,

$$
\sqrt{n}\left(\hat{\theta}_{n}-\theta\right) \xrightarrow{d} \mathcal{N}\left(0, \frac{I(\theta)}{J^{2}(\theta)}\right) .
$$

When $I(\theta)=J(\theta)$, we have of course $\sqrt{n}\left(\hat{\theta}_{n}-\theta\right) \xrightarrow{d} \mathcal{N}\left(0, \frac{1}{I(\theta)}\right)$.

Example (Exponential Family)

Furthermore,

$$
\begin{aligned}
I(\theta) & =\left[c^{\prime}(\theta)\right]^{2} \operatorname{Var}\left[T\left(X_{i}\right)\right] \\
& =d^{\prime \prime}(\theta)-c^{\prime \prime}(\theta) \frac{d^{\prime}(\theta)}{c^{\prime}(\theta)}
\end{aligned}
$$

and

$$
\begin{aligned}
J(\theta) & =d^{\prime \prime}(\theta)-c^{\prime \prime}(\theta) \mathbb{E}\left[T\left(X_{i}\right)\right] \\
& =d^{\prime \prime}(\theta)-c^{\prime \prime}(\theta) \frac{d^{\prime}(\theta)}{c^{\prime}(\theta)}
\end{aligned}
$$

so that $I(\theta)=J(\theta)$.

Statistical Theory (Likelihood)

Proof

Under conditions (A1)-(A3), if $\hat{\theta}_{n}$ maximizes the likelihood, we have

$$
\sum_{i=1}^{n} \ell^{\prime}\left(X_{i} ; \hat{\theta}_{n}\right)=0 .
$$

Expanding this equation in a Taylor series, we get

$$
\begin{aligned}
0=\sum_{i=1}^{n} \ell^{\prime}\left(X_{i} ; \hat{\theta}_{n}\right)=\sum_{i=1}^{n} & \ell^{\prime}\left(X_{i} ; \theta\right)+ \\
& +\left(\hat{\theta}_{n}-\theta\right) \sum_{i=1}^{n} \ell^{\prime \prime}\left(X_{i} ; \theta\right) \\
& +\frac{1}{2}\left(\hat{\theta}_{n}-\theta\right)^{2} \sum_{i=1}^{n} \ell^{\prime \prime \prime}\left(X_{i} ; \theta_{n}^{*}\right)
\end{aligned}
$$

with θ_{n}^{*} lying between θ and $\hat{\theta}_{n}$.

Dividing accross by \sqrt{n} yields

$$
\begin{aligned}
0= & \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \ell^{\prime}\left(X_{i} ; \theta\right)+\sqrt{n}\left(\hat{\theta}_{n}-\theta\right) \frac{1}{n} \sum_{i=1}^{n} \ell^{\prime \prime}\left(X_{i} ; \theta\right) \\
& +\frac{1}{2} \sqrt{n}\left(\hat{\theta}_{n}-\theta\right)^{2} \frac{1}{n} \sum_{i=1}^{n} \ell^{\prime \prime \prime}\left(X_{i} ; \theta_{n}^{*}\right)
\end{aligned}
$$

which suggests that $\sqrt{n}\left(\hat{\theta}_{n}-\theta\right)$ equals

$$
\frac{-n^{-1 / 2} \sum_{i=1}^{n} \ell^{\prime}\left(X_{i} ; \theta\right)}{n^{-1} \sum_{i=1}^{n} \ell^{\prime \prime}\left(X_{i} ; \theta\right)+\left(\hat{\theta}_{n}-\theta\right)(2 n)^{-1} \sum_{i=1}^{n} \ell^{\prime \prime \prime}\left(X_{i} ; \theta_{n}^{*}\right)} .
$$

Now, from the central limit theorem and condition (A4), it follows that

$$
\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \ell^{\prime}\left(X_{i} ; \theta\right) \xrightarrow{d} \mathcal{N}(0, I(\theta)) .
$$

Statistical Theory (Likelihood)
Maximum Likelihood

Since the weak law of large numbers implies that

$$
\frac{1}{n} \sum_{i=1}^{n} M\left(X_{i}\right) \xrightarrow{p} \mathbb{E}\left[M\left(X_{1}\right)\right]<\infty
$$

the quantity $\mathbb{P}\left[\left|R_{n}\right|>\epsilon,\left|\hat{\theta}_{n}-\theta\right| \leq \delta\right]$ can be made arbitrarily small (for large n) by taking δ sufficiently small. Thus, $R_{n} \xrightarrow{p} 0$ and applying Slutsky's theorem we may conclude that

$$
\sqrt{n}\left(\hat{\theta}_{n}-\theta\right) \xrightarrow{d} \mathcal{N}\left(0, \frac{I(\theta)}{J^{2}(\theta)}\right) .
$$

- Notice that for our proof, we assumed that the sequence of MLE's was consistent.
- Proving consistency of an MLE can be subtle

Next, the weak law of large numbers along with condition (A5) implies

$$
\frac{1}{n} \sum_{i=1}^{n} \ell^{\prime \prime}\left(X_{i} ; \theta\right) \xrightarrow{p}-J(\theta)
$$

Now we turn to show that the remainder vanishes in probability,

$$
R_{n}=\left(\hat{\theta}_{n}-\theta\right) \frac{1}{2 n} \sum_{i=1}^{n} \ell^{\prime \prime \prime}\left(X_{i} ; \theta_{n}^{*}\right) \xrightarrow{p} 0 .
$$

We have that for any $\epsilon>0$

$$
\mathbb{P}\left[\left|R_{n}\right|>\epsilon\right]=\mathbb{P}\left[\left|R_{n}\right|>\epsilon,\left|\hat{\theta}_{n}-\theta\right|>\delta\right]+\mathbb{P}\left[\left|R_{n}\right|>\epsilon,\left|\hat{\theta}_{n}-\theta\right| \leq \delta\right]
$$

and

$$
\mathbb{P}\left[\left|R_{n}\right|>\epsilon,\left|\hat{\theta}_{n}-\theta\right|>\delta\right] \leq \mathbb{P}\left[\left|\hat{\theta}_{n}-\theta\right|>\delta\right] \xrightarrow{p} 0 .
$$

If $\left|\hat{\theta}_{n}-\theta\right|<\delta$, (A6) gives $\left|R_{n}\right| \leq \frac{\delta}{2 n} \sum_{i=1}^{n} M\left(X_{i}\right)$.

Statistical Theory (Likelihood)

Consistency of the MLE

Consider the random function

$$
\phi_{n}(t)=\frac{1}{n} \sum_{i=1}^{n}\left[\log f\left(X_{i} ; t\right)-\log f\left(X_{i} ; \theta\right)\right]
$$

which is maximized at $t=\hat{\theta}_{n}$. By the WLLN, for each $t \in \Theta$,

$$
\phi_{n}(t) \xrightarrow{p} \phi(t)=\mathbb{E}\left[\log \left(\frac{f\left(X_{i} ; t\right)}{f\left(X_{i} ; \theta\right)}\right)\right] .
$$

which is minus the KL-divergence.

- The latter is minimized when $t=\theta$ and so $\phi(t)$ is maximized at $t=\theta$.
- Moreover, unless $f(x ; t)=f(x ; \theta)$ for all $x \in \operatorname{supp} f$, we have $\phi(t)<0$
- Since we are assuming identifiability, it follows that ϕ is uniquely maximized at θ

Consistency of the MLE

- Does the fact that $\phi_{n}(t) \xrightarrow{p} \phi(t) \forall t$ with ϕ maximized uniquely at θ imply that $\hat{\theta}_{n} \xrightarrow{p} \theta$?

Unfortunately, the answer is in general no.

Example (A Deterministic Example)

Define $\phi_{n}(t)= \begin{cases}1-n\left|t-n^{-1}\right| & \text { for } 0 \leq t \leq 2 / n, \\ 1 / 2-|t-2| & \text { for } 3 / 2 \leq t \leq 5 / 2, \\ 0 & \text { otherwise. }\end{cases}$
It is easy to see that $\phi_{n} \rightarrow \phi$ pointwise, with

$$
\phi(t)=\left[\frac{1}{2}-|t-2|\right] \mathbf{1}\{3 / 2 \leq t \leq 5 / 2\} .
$$

But now note that ϕ_{n} is maximized at $t_{n}=n^{-1}$ with $\phi_{n}\left(t_{n}\right)=1$ for all n.
On the other hand, ϕ is maximized at $t_{0}=2$.

Statistical Theory (Likelihood)
 Maximum Likelihood

- 客

Example (Exponential Families)

Let X_{1}, \ldots, X_{n} be iid random variables from a one-parameter exponential family

$$
f(x ; \theta)=\exp \{c(\theta) T(x)-d(\theta)+S(x)\}, \quad x \in \operatorname{supp} f .
$$

The MLE of θ maximizes

$$
\phi_{n}(t)=\frac{1}{n} \sum_{i=1}^{n}\left[c(t) T\left(X_{i}\right)-d(t)\right]
$$

If $c(\cdot)$ is continuous and $1-1$ with inverse $c^{-1}(\cdot)$, we may define $u=c(t)$ and consider

$$
\phi_{n}^{*}(u)=\frac{1}{n} \sum_{i=1}^{n}\left[u T\left(X_{i}\right)-d_{0}(u)\right]
$$

with $d_{0}(u)=d\left(c^{-1}(u)\right)$. It follows that ϕ_{n}^{*} is a concave function, since its second derivative is, $\left(\phi_{n}^{*}\right)^{\prime \prime}(u)=-d_{0}^{\prime \prime}(u)$, which is negative $\left(d_{0}^{\prime \prime}(u)=\operatorname{Var} T\left(X_{i}\right)\right)$.

- More assumptions are needed on the $\phi_{n}(t)$.

Theorem

Suppose that $\left\{\phi_{n}(t)\right\}$ and $\phi(t)$ are real-valued random functions defined on the real line. Suppose that
(1) for each $M>0, \sup _{|t| \leq M}\left|\phi_{n}(t)-\phi(t)\right| \xrightarrow{p} 0$
(2) T_{n} maximizes $\phi_{n}(t)$ and T_{0} is the unique maximizer of $\phi(t)$
(3) $\forall \epsilon>0$, there exists M_{ϵ} such that $\mathbb{P}\left[\left|T_{n}\right|>M_{\epsilon}\right]<\epsilon \forall n$

Then, $T_{n} \xrightarrow{p} T_{0}$
If ϕ_{n} are concave, can weaken the assumptions,

Theorem

Suppose that $\left\{\phi_{n}(t)\right\}$ and $\phi(t)$ are random concave functions defined on the real line. Suppose that
(1) $\phi_{n}(t) \xrightarrow{p} \phi(t)$ for all t
(2) T_{n} maximizes ϕ_{n} and T_{0} is the unique maximizer of ϕ.

Then, $T_{n} \xrightarrow{p} T_{0}$.
Statistical Theory (Likelihood) Maximum Likelihood

Example (Exponential Families)

Now, by the weak law of large numbers, for each u, we have

$$
\phi_{n}^{*}(u) \xrightarrow{p} u \mathbb{E}\left[T\left(X_{1}\right)\right]-d_{0}(u)=\phi^{*}(u) .
$$

Furthermore, $\phi^{*}(u)$ is maximized when $d_{0}^{\prime}(u)=\mathbb{E}\left[T\left(X_{1}\right)\right]$. But since,

$$
\mathbb{E}\left[T\left(X_{1}\right)\right]=d_{0}^{\prime}(c(\theta))
$$

we must have that ϕ^{*} is maximized when

$$
d_{0}^{\prime}(u)=d_{0}^{\prime}(c(\theta))
$$

The condition holds is if we set $u=c(\theta)$, so $c(\theta)$ is a maximizer of ϕ^{*}. By concavity, it is the unique maximizer.
It follows from our theorem that if $\hat{u}_{n}=c\left(\hat{\theta}_{n}\right)$ then $\hat{u}_{n}=c\left(\hat{\theta}_{n}\right) \xrightarrow{p} c(\theta)$.
But c is 1-1 and continuous, so the continuous mapping theorem implues

$$
\hat{\theta}_{n} \xrightarrow{p} \theta .
$$

More on Maximum Likelihood Estimation

Statistical Theory

Victor Panaretos
Ecole Polytechnique Fédérale de Lausanne
 FÉDÉRALE DE LAUSANNE

Consistent Roots of the Likelihood EquationsApproximate Solution of the Likelihood EquationsThe Multiparameter CaseMisspecified Models and Likelihood

Maximum Likelihood Estimators

Recall our definition of a maximum likelihood estimator:

Definition (Maximum Likelihood Estimators)

Let $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ be a random sample from F_{θ}, and suppose that $\hat{\theta}$ is such that

$$
L(\hat{\theta}) \geq L(\theta), \quad \forall \theta \in \Theta .
$$

Then $\hat{\theta}$ is called a maximum likelihood estimator of θ.
We saw that, under regularity conditions, the distribution of a consistent sequence of MLEs converges weakly to the normal distribution centred around the true parameter value when this is real.

- Consistent likelihood equation roots
- Newton-Raphson and "one-step" estimators
- The multivariate parameter case
- What happens if the model has been mis-specified?

Consistent Likelihood Roots

Theorem

Let $\{f(\because ; \theta)\}_{\theta \in \mathbb{R}}$ be an identifiable parametric class of densities (frequencies) and let X_{1}, \ldots, X_{n} be iid random variables each having density $f\left(x ; \theta_{0}\right)$. If the support of $f(; \theta)$ is independent of θ,

$$
\mathbb{P}\left[L\left(\theta_{0} \mid X_{1}, \ldots, X_{n}\right)>L\left(\theta \mid X_{1}, \ldots, X_{n}\right)\right] \xrightarrow{n \rightarrow \infty} 1
$$

for any fixed $\theta \neq \theta_{0}$.

- Therefore, with high probability, the likelihood of the true parameter exceeds the likelihood of any other choice of parameter, provided that the sample size is large.
- Hints that extrema of $L(\theta ; \mathbf{X})$ should have something to do with θ_{0} (even though we saw that without further assumptions a maximizer of L is not necessarily consistent).

Consistent Sequences of Likelihood Roots

Proof.

Notice that

$$
L\left(\theta_{0} \mid \mathbf{X}_{n}\right)>L\left(\theta \mid \mathbf{X}_{n}\right) \Longleftrightarrow \frac{1}{n} \sum_{i=1}^{n} \log \left[\frac{f\left(X_{i} ; \theta\right)}{f\left(X_{i} ; \theta_{0}\right)}\right]<0
$$

By the WLLN,

$$
\frac{1}{n} \sum_{i=1}^{n} \log \left[\frac{f\left(X_{i} ; \theta\right)}{f\left(X_{i} ; \theta_{0}\right)}\right] \xrightarrow{p} \mathbb{E} \log \left[\frac{f(X ; \theta)}{f\left(X ; \theta_{0}\right)}\right]=-K L\left(f_{\theta} \| f_{\theta_{0}}\right)
$$

But we have seen that the KL-divergence is zero only at θ_{0} and positive everywhere else.

Corollary (Consistency of Unique Solutions)

Under the assumptions of the previous theorem, if the likelihood equation has a unique root δ_{n} for each n and all \mathbf{x}, then δ_{n} is a consistent sequence of estimators for θ_{0}.

- The statement remains true if the uniqueness requirement is substituted with the requirement that the probability of multiple roots tends to zero as $n \rightarrow \infty$.
- Notice that the statement does not claim that the root corresponds to a maximum: it merely requires that we have a root.
- On the other hand, even when the root is unique, the corollary says nothing about its properties for finite n.

Example (Minimum Likelihood Estimation)

Let X take the values $0,1,2$ with probabilities $6 \theta^{2}-4 \theta+1, \theta-2 \theta^{2}$ and $3 \theta-4 \theta^{2}(\theta \in(0,1 / 2))$. Then, the likelihood equation has a unique root for all x, which is a minimum for $x=0$ and a maximum for $x=1,2$.

Theorem (Cramér)

Let $\{f(\because ; \theta)\}_{\theta \in \mathbb{R}}$ be an identifiable parametric class of densities (frequencies) and let X_{1}, \ldots, X_{n} be iid random variables each having density $f\left(x ; \theta_{0}\right)$. Assume that the the support of $f(\because ; \theta)$ is independent of θ and that $f(x ; \theta)$ is differentiable with respect to θ for (almost) all x. Then, given any $\epsilon>0$, with probability tending to 1 as $n \rightarrow \infty$, the likelihood equation

$$
\frac{\partial}{\partial \theta} \ell\left(\theta ; X_{1}, \ldots, X_{n}\right)=0
$$

has a root $\hat{\theta}_{n}\left(X_{1}, \ldots, X_{n}\right)$ such that $\left|\hat{\theta}_{n}\left(X_{1}, \ldots, X_{n}\right)-\theta_{0}\right|<\epsilon$.

- Does not tell us which root to choose, so not useful in practice
- Actually the consistent sequence is essentially unique

Consistent Sequences of Likelihood Roots

Fortunately, some "good" estimator is already available, then...

Lemma

Let α_{n} be any consistent sequence of estimators for the parameter θ. For each n, let θ_{n}^{*} denote the root of the likelihood equations that is closest to α_{n}. Then, under the assumptions of Cramér's theorem, $\theta_{n}^{*} \rightarrow \theta$.

- Therefore, when the likelihood equations do not have a single root, we may still choose a root based on some estimator that is readily available
\hookrightarrow Only require that the estimator used is consistent
\hookrightarrow Often the case with Plug-In or MoM estimators
- Very often, the roots will not be available in closed form. In these cases, an iterative approach will be required to approximate the roots

The Newton-Raphson Algorithm

We wish to solve the equation

$$
\ell^{\prime}(\theta)=0
$$

Supposing that $\tilde{\theta}$ is close to a root (perhaps is a consistent estimator),

$$
0=\ell^{\prime}(\hat{\theta}) \simeq \ell^{\prime}(\tilde{\theta})+(\hat{\theta}-\tilde{\theta}) \ell^{\prime \prime}(\tilde{\theta})
$$

By using a second-order Taylor expansion. This suggests

$$
\hat{\theta} \simeq \tilde{\theta}-\frac{\ell^{\prime}(\tilde{\theta})}{\ell^{\prime \prime}(\tilde{\theta})}
$$

The procedure can then be iterated by replacing $\tilde{\theta}$ by the right hand side of the above relation.
\rightarrow Many issues regarding convergence, speed of convergence, etc...
(numerical analysis course)
Statistical Theory (Likelihood)
Maximum Likelihood かacr

Proof.

We Taylor expand around the true value, θ_{0},

$$
\ell^{\prime}\left(\tilde{\theta}_{n}\right)=\ell^{\prime}\left(\theta_{0}\right)+\left(\tilde{\theta}_{n}-\theta_{0}\right) \ell^{\prime \prime}\left(\theta_{0}\right)+\frac{1}{2}\left(\tilde{\theta}_{n}-\theta_{0}\right)^{2} \ell^{\prime \prime \prime}\left(\theta_{n}^{*}\right)
$$

with θ_{n}^{*} between θ_{0} and $\tilde{\theta}_{n}$. Subsituting this expression into the definition of δ_{n} yields

$$
\begin{aligned}
\sqrt{n}\left(\delta_{n}-\theta_{0}\right)= & \frac{(1 / \sqrt{n}) \ell^{\prime}\left(\theta_{0}\right)}{-(1 / n) \ell^{\prime \prime}\left(\tilde{\theta}_{n}\right)}+\sqrt{n}\left(\tilde{\theta}_{n}-\theta_{0}\right) \times \\
& \times\left[1-\frac{\ell^{\prime \prime}\left(\theta_{0}\right)}{\ell^{\prime \prime}\left(\tilde{\theta}_{n}\right)}-\frac{1}{2}\left(\tilde{\theta}_{n}-\theta_{0}\right) \frac{\ell^{\prime \prime \prime}\left(\theta_{n}^{*}\right)}{\ell^{\prime \prime}\left(\tilde{\theta}_{n}\right)}\right]
\end{aligned}
$$

Exercise.

Use the central limit theorem and the law of large numbers to complete the proof.

Construction of Asymptotically MLE-like Estimators

Theorem

Suppose that assumptions (A1)-(A6) hold and let $\tilde{\theta}_{n}$ be a consistent estimator of θ_{0} such that $\sqrt{n}\left(\theta_{n}-\theta_{0}\right)$ is bounded in probability. Then, the sequence of estimators

$$
\delta_{n}=\tilde{\theta}_{n}-\frac{\ell^{\prime}\left(\tilde{\theta}_{n}\right)}{\ell^{\prime \prime}\left(\tilde{\theta}_{n}\right)}
$$

satisfies

$$
\sqrt{n}\left(\delta_{n}-\theta_{0}\right) \xrightarrow{d} \mathcal{N}\left(0, I(\theta) / J(\theta)^{2}\right) .
$$

- Therefore, with a single Newton-Raphson step, we may obtain an estimator that, asymptotically, behaves like a consistent MLE.

$$
\hookrightarrow \text { Provided that we have a } \sqrt{n} \text {-consistent estimator! }
$$

- The "one-step" estimator does not necessarily behave like an MLE for finite n !

Statistical Theory (Likelihood)
Maximum Likelihood
$10 / 24$

The Multiparameter Case

\rightarrow Extension of asymptotic results to multiparameter models easy under similar assumptions, but notationally cumbersome.
\rightarrow Same ideas: the MLE will be a zero of the likelihood equations

$$
\sum_{i=1}^{n} \nabla \ell\left(X_{i} ; \theta\right)=0
$$

A Taylor expansion can be formed

$$
0=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \nabla \ell\left(X_{i} ; \boldsymbol{\theta}\right)+\left(\frac{1}{n} \sum_{i=1}^{n} \nabla^{2} \ell\left(X_{i} ; \boldsymbol{\theta}_{n}^{*}\right)\right) \sqrt{n}\left(\hat{\boldsymbol{\theta}}_{N}-\boldsymbol{\theta}\right)
$$

Under regularity conditions we should have:

- $\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \nabla \ell\left(X_{i} ; \boldsymbol{\theta}\right) \xrightarrow{d} \mathcal{N}_{p}\left(0, \operatorname{Cov}\left[\nabla \ell\left(X_{i} ; \boldsymbol{\theta}\right)\right]\right)$
- $\frac{1}{n} \sum_{i=1}^{n} \nabla^{2} \ell\left(X_{i} ; \boldsymbol{\theta}_{n}^{*}\right) \xrightarrow{p} \mathbb{E}\left[\nabla^{2} \ell\left(X_{i} ; \boldsymbol{\theta}\right)\right]$

The Multiparameter Case

The Multiparameter Case

Regularity Conditions

(B1) The parameter space $\Theta \in \mathbb{R}^{p}$ is open.
(B2) The support of $f(\cdot \mid \boldsymbol{\theta})$, supp $f(\cdot \mid \boldsymbol{\theta})$, is independent of $\boldsymbol{\theta}$
(B3) All mixed partial derivatives of ℓ w.r.t. θ up to degree 3 exist and are continuous.
(B4) $\mathbb{E}\left[\nabla \ell\left(X_{i} ; \theta\right)\right]=0 \forall \boldsymbol{\theta}$ and $\operatorname{Cov}\left[\nabla \ell\left(X_{i} ; \theta\right)\right]=: I(\theta) \succ 0 \forall \theta$.
(B5) $-\mathbb{E}\left[\nabla^{2} \ell\left(X_{i} ; \boldsymbol{\theta}\right)\right]=: J(\boldsymbol{\theta}) \succ 0 \forall \boldsymbol{\theta}$.
(B6) $\exists \delta>0$ s.t. $\forall \boldsymbol{\theta} \in \Theta$ and for all $1 \leq j, k, l \leq p$,

$$
\left|\frac{\partial}{\partial \theta_{j} \partial \theta_{k} \partial \theta_{l}} \ell(x ; \mathbf{u})\right| \leq M_{j k l}(x)
$$

for $\|\boldsymbol{\theta}-\mathbf{u}\| \leq \delta$ with $M_{j k l}$ such that $\mathbb{E}\left[M_{j k l}\left(X_{i}\right)\right]<\infty$.

- The interpretation of the conditions is the same as with the one-dimensional case

Maximum Likelihood

Misspecification of Models

- Statistical models are typically mere approximations to reality
- George P. Box: "all models are wrong, but some are useful' As worrying as this may seem, it may not be a problem in practice.
- Often the model is wrong, but is "close enough" to the true situation
- Even if the model is wrong, the parameters often admit a fruitful interpretation in the context of the problem.

Example

Let X_{1}, \ldots, X_{n} be iid Exponential (λ) r.v.'s but we have modelled them as having the following two parameter density

$$
f(x \mid \alpha, \theta)=\frac{\alpha}{\theta}\left(1+\frac{x}{\theta}\right)^{-(\alpha+1)}, \quad x>0
$$

with α and θ positive unknown parameters to be estimated.

Theorem (Asymptotic Normality of the MLE)

Let X_{1}, \ldots, X_{n} be iid random variables with density (frequency) $f(x ; \theta)$, satisfying conditions (B1)-(B6). If $\hat{\boldsymbol{\theta}}_{n}=\hat{\boldsymbol{\theta}}\left(X_{1}, \ldots, X_{n}\right)$ is a consistent sequence of MLE estimators, then

$$
\sqrt{n}\left(\hat{\theta}_{n}-\theta\right) \xrightarrow{d} \mathcal{N}_{p}\left(0, J^{-1}(\theta) I(\theta) J^{-1}(\theta)\right)
$$

- The theorem remains true if each X_{i} is a random vector
- The proof mimics that of the one-dimensional case

Statistical Theory (Likelihood) Maximum Likelihood $14 / 24$

Example (cont'd)

- Notice that the exponential distribution is not a member of this parametric family.
- However, letting $\alpha, \theta \rightarrow \infty$ at rates such that $\alpha / \theta \rightarrow \lambda$, we have

$$
f(x \mid \alpha, \theta) \rightarrow \lambda \exp (-\lambda x)
$$

Thus, we may approximate the true model from within this class. Reasonable $\hat{\alpha}$ and $\hat{\lambda}$ will yield a density "close" to the true density.

Example

Let X_{1}, \ldots, X_{n} be independent random variables with variance σ^{2} and mean

$$
\mathbb{E}\left[X_{i}\right]=\alpha+\beta t_{i}
$$

If we assume that the X_{i} are normal when they are in fact not, the MLEs of the parameters $\alpha, \beta, \sigma^{2}$ remain good (in fact optimal in a sense) for the true parameters (Gauss-Markov theorem).

The Framework

- X_{1}, \ldots, X_{n} are iid r.v.'s with distribution F
- We have assumed that the X_{i} admit a density in $\{f(x ; \theta)\}_{\theta \in \Theta}$.
- The true distribution F does not correspond to any of the $\left\{f_{\theta}\right\}$

Let $\hat{\theta}_{n}$ be a root of the likelihood equation,

$$
\sum_{i=1}^{n} \ell^{\prime}\left(X_{i} ; \hat{\theta}_{n}\right)=0
$$

where the log-likelihood $\ell(\theta)$ is w.r.t. $f(\cdot \mid \theta)$.

- What exactly is $\hat{\theta}_{n}$ estimating?
- What is the behaviour of the sequence $\left\{\hat{\theta}_{n}\right\}_{n \geq 1}$ as $n \rightarrow \infty$?

Model Misspecification and the Likelihood

Theorem

Let $X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} F$ and let $\hat{\theta}_{n}$ be a random variable solving the equations $\sum_{i=1}^{n} \ell^{\prime}\left(X_{i} ; \theta\right)=0$ for θ in the open set Θ. If
(a) ℓ^{\prime} is a strictly monotone function on Θ for each x
(b) $\int_{-\infty}^{+\infty} \ell^{\prime}(x ; \theta(F)) d F(x)=0$ has a unique solution $\theta=\theta(F)$ on Θ
(c) $I(F):=\int_{-\infty}^{+\infty}\left[\ell^{\prime}(x ; \theta(F))\right]^{2} d F(x)<\infty$
(d) $J(F):=-\int_{-\infty}^{+\infty} \ell^{\prime \prime}(x ; \theta(F)) d F(x)<\infty$
(e) $\left|\ell^{\prime \prime \prime}(x ; t)\right| \leq M(x)$ for $t \in(\theta(F)-\delta, \theta(F)+\delta)$, some $\delta>0$ and $\int_{-\infty}^{+\infty} M(x) d F(x)<\infty$
Then

$$
\hat{\theta}_{n} \xrightarrow{p} \theta(F)
$$

and

$$
\sqrt{n}\left(\hat{\theta}_{n}-\theta(F)\right) \xrightarrow{d} \mathcal{N}\left(0, I(F) / J^{2}(F)\right)
$$

Proof.

Assume without loss of generality that $\ell^{\prime}(x ; \theta)$ is strictly decreasing in θ. Let $\epsilon>0$ and observe that

$$
\begin{aligned}
\mathbb{P}\left[\left|\hat{\theta}_{n}-\theta(F)\right|>\epsilon\right] & =\mathbb{P}\left[\left\{\hat{\theta}_{n}-\theta(F)>\epsilon\right\} \cup\left\{\theta(F)-\hat{\theta}_{n}>\epsilon\right\}\right] \\
& \leq \mathbb{P}\left[\left\{\hat{\theta}_{n}-\theta(F)>\epsilon\right\}\right]+\mathbb{P}\left[\left\{\theta(F)-\hat{\theta}_{n}>\epsilon\right\}\right]
\end{aligned}
$$

By our monotonicity assumption, we have

$$
\hat{\theta}_{n}-\theta(F)>\epsilon \Longrightarrow \hat{\theta}_{n}>\theta(F)+\epsilon \Longrightarrow \frac{1}{n} \sum_{i=1}^{n} \ell^{\prime}\left(X_{i} ; \theta(F)+\epsilon\right)>0
$$

because $\hat{\theta}_{n}$ is the solution to the equation $\frac{1}{n} \sum_{i=1}^{n} \ell^{\prime}\left(X_{i} ; \theta\right)=0$.
Similarly we also obtain

$$
\theta(F)-\hat{\theta}_{n}>\epsilon \Longrightarrow \theta(F)-\epsilon>\hat{\theta}_{n} \Longrightarrow \frac{1}{n} \sum_{i=1}^{n} \ell^{\prime}\left(X_{i} ; \theta(F)-\epsilon\right)<0
$$

Hence,

$$
\begin{aligned}
\mathbb{P}\left[\left|\hat{\theta}_{n}-\theta(F)\right|>\epsilon\right] \leq \mathbb{P} & {\left[\frac{1}{n} \sum_{i=1}^{n} \ell^{\prime}\left(X_{i} ; \theta(F)+\epsilon\right)>0\right] } \\
& +\mathbb{P}\left[\frac{1}{n} \sum_{i=1}^{n} \ell^{\prime}\left(X_{i} ; \theta(F)-\epsilon\right)<0\right] .
\end{aligned}
$$

We may re-write the first term on the right-hand side as

$$
\begin{aligned}
\mathbb{P}\left[\frac{1}{n} \sum_{i=1}^{n} \ell^{\prime}\left(X_{i} ; \theta(F)+\epsilon\right)>0\right]=\mathbb{P}\left[\frac{1}{n} \sum_{i=1}^{n} \ell^{\prime}\left(X_{i} ; \theta(F)+\epsilon\right)\right. \\
\left.\quad-\int_{-\infty}^{\infty} \ell^{\prime}(x ; \theta(F)+\epsilon) d F(x)>-\int_{-\infty}^{\infty} \ell^{\prime}(x ; \theta(F)+\epsilon) d F(x)\right]
\end{aligned}
$$

This converges to zero because the monotonicity assumption implies that $-\int_{-\infty}^{\infty} \ell^{\prime}(x ; \theta(F)+\epsilon) d F(x)>0$ and the law of large numbers implies that

$$
\frac{1}{n} \sum_{i=1}^{n} \ell^{\prime}\left(X_{i} ; \theta(F)+\epsilon\right) \xrightarrow{p} \int_{-\infty}^{\infty} \ell^{\prime}(x ; \theta(F)) d F(x)
$$

Here, θ_{n}^{*} lies between $\theta(F)$ and $\hat{\theta}_{n}$.
Exercise: complete the proof by mimicking the proof of asymptotic normality of MLEs.

- The result extends immediately to the multivariate parameter case.
- Notice that the proof is essentially identical to MLE asymptotics proof.
- The difference is the first part, where we show consistency.
- This is where assumptions (a) and (b) come in
- These can be replaced by any set of assumptions yielding consistency
- Indicated the subtleties that are involved when proving convergence for indirectly defined estimators

Similar arguments give

$$
\mathbb{P}\left[\frac{1}{n} \sum_{i=1}^{n} \ell^{\prime}\left(X_{i} ; \theta(F)-\epsilon\right)<0\right] \rightarrow 0
$$

and thus

$$
\hat{\theta}_{n} \xrightarrow{p} \theta(F) .
$$

Expanding the equation that defines the estimator in a Taylor series, gives

$$
\begin{aligned}
0=\sum_{i=1}^{n} \ell^{\prime}\left(X_{i} ; \hat{\theta}_{n}\right)=\frac{1}{\sqrt{n}} & \sum_{i=1}^{n} \ell^{\prime}\left(X_{i} ; \theta(F)\right)+ \\
& +\sqrt{n}\left(\hat{\theta}_{n}-\theta(F)\right) \frac{1}{n} \sum_{i=1}^{n} \ell^{\prime \prime}\left(X_{i} ; \theta(F)\right) \\
& +\sqrt{n}\left(\hat{\theta}_{n}-\theta(F)\right)^{2} \frac{1}{2 n} \sum_{i=1}^{n} \ell^{\prime \prime \prime}\left(X_{i} ; \theta_{n}^{*}\right)
\end{aligned}
$$

Statistical Theory (Likelihood)
Maximum Likelihood
$22 / 24$

Model Misspecification and the Likelihood

What is the interpretation of the parameter $\theta(F)$ in the misspecified setup?
Suppose that F has density (frequency) g and assume that integration/differentiation may be interchanged:

$$
\begin{gathered}
\int_{-\infty}^{+\infty} \frac{d}{d \theta} \log f(x ; \theta) d F(x)=0 \Longleftrightarrow \frac{d}{d \theta} \int_{-\infty}^{+\infty} \log f(x ; \theta) d F(x)=0 \\
\Longleftrightarrow \frac{d}{d \theta}\left[\int_{-\infty}^{+\infty} \log f(x ; \theta) d F(x)-\int_{-\infty}^{+\infty} \log g(x) d F(x)\right]=0 \\
\Longleftrightarrow \frac{d}{d \theta} K L(f(x ; \theta) \| g(x))=0
\end{gathered}
$$

- When the equation is assumed to have a unique solution, then this is to be though as a minimum of the $K L$-distance
- Hence we may intuitively think of the $\theta(F)$ as the element of Θ for which f_{θ} is "closest" to F in the $K L$-sense.

The Decision Theory Framework

Statistical Theory

Victor Panaretos
Ecole Polytechnique Fédérale de Lausanne

ÉCOLE POLYTECHNIQUE
fédérale de lausanne

Statistics as a Random Game

Risk (Expected Loss)Admissibility and InadmisibilityMinimax RulesBayes RulesRandomised Rules

Statistics as a Random Game?

Nature and a statistician decide to play a game. What's in the box?

- A family of distributions \mathcal{F}, usually assumed to admit densities (frequencies). This is the variant of the game we decide to play.
- A parameter space $\Theta \subseteq \mathbb{R}^{p}$ which parametrizes the family $\mathcal{F}=\left\{F_{\theta}\right\}_{\theta \in \Theta}$. This represents the space of possible plays/moves available to Nature.
- A data space \mathcal{X}, on which the parametric family is supported. This represents the space of possible outcomes following a play by Nature.
- An action space \mathcal{A}, which represents the space of possible actions or decisions or plays/moves available to the statistician.
- A loss function $\mathcal{L}: \Theta \times \mathcal{A} \rightarrow \mathbb{R}^{+}$. This represents how much the statistician has to pay nature when losing.
- A set \mathcal{D} of decision rules. Any $\delta \in \mathcal{D}$ is a (measurable) function $\delta: \mathcal{X} \rightarrow \mathcal{A}$. These represent the possible strategies available to the statistician.
$1 / 23$

Statistics as a Random Game?

How the game is played:

- First we agree on the rules:
(1) Fix a parametric family $\left\{F_{\theta}\right\}_{\theta \in \Theta}$
(2) Fix an action space \mathcal{A}
(3) Fix a loss function \mathcal{L}
- Then we play:
(1) Nature selects (plays) $\theta_{0} \in \Theta$.
(2) The statistician observes $\mathbf{X} \sim F_{\theta_{0}}$
(3) The statistician plays $\alpha \in \mathcal{A}$ in response.
(9) The statistician has to pay nature $\mathcal{L}\left(\theta_{0}, \alpha\right)$.

Framework proposed by A. Wald in 1939. Encompasses three basic statistical problems:

- Point estimation
- Hypothesis testing
- Interval estimation

Point Estimation as a Game

In the problem of point estimation we have:
(1) Fixed parametric family $\left\{F_{\theta}\right\}_{\theta \in \Theta}$
(2) Fixed an action space $\mathcal{A}=\Theta$
(3) Fixed loss function $\mathcal{L}(\theta, \alpha)$ (e.g. $\|\theta-\alpha\|^{2}$)

The game now evolves simply as:
(1) Nature picks $\theta_{0} \in \Theta$
(2) The statistician observes $\mathbf{X} \sim F_{\theta_{0}}$
(3) The statistician plays $\delta(\mathbf{X}) \in \mathcal{A}=\Theta$
(9) The statistician loses $\mathcal{L}\left(\theta_{0}, \delta(\mathbf{X})\right)$

Notice that in this setup δ is an estimator (it is a statistic $\mathcal{X} \rightarrow \Theta$).
The statistician always loses.
\hookrightarrow Is there a good strategy $\delta \in \mathcal{D}$ for the statistician to restrict his losses?
\hookrightarrow Is there an optimal strategy?

Statistical Theory ()
Decision Theory

Coin Tossing Revisited

Consider the "coin tossing game" with quadratic loss:

- Nature picks $\theta \in[0,1]$
- We observe n variables $X i \stackrel{i i d}{\sim} \operatorname{Bernoulli}(\theta)$.
- Action space is $\mathcal{A}=[0,1]$
- Loss function is $\mathcal{L}(\theta, \alpha)=(\theta-\alpha)^{2}$.

Consider 3 different decision procedures $\left\{\delta_{j}\right\}_{j=1}^{3}$:
(1) $\delta_{1}(\mathbf{X})=\frac{1}{n} \sum_{i=1}^{n} X_{i}$
(2) $\delta_{2}(\mathbf{X})=X_{1}$
(3) $\delta_{3}(\mathbf{X})=\frac{1}{2}$

Let us compare these using their associated risks as benchmarks.

Risk of a Decision Rule

Statistician would like to pick strategy δ so as to minimize his losses. But losses are random, as they depend on \mathbf{X}.

Definition (Risk)

Given a parameter $\theta \in \Theta$, the risk of a decision rule $\delta: \mathcal{X} \rightarrow \mathcal{A}$ is the expected loss incurred when employing $\delta: R(\theta, \delta)=\mathbb{E}_{\theta}[\mathcal{L}(\theta, \delta(\mathbf{X}))]$.

Key notion of decision theory

decision rules should be compared by comparing their risk functions

Example (Mean Squared Error)

In point estimation, the mean squared error

$$
\operatorname{MSE}(\delta(\mathbf{X}))=\mathbb{E}_{\theta}\left[\|\theta-\delta(\mathbf{X})\|^{2}\right]
$$

is the risk corresponding to a squared error loss function.

Coin Tossing Revisited

Risks associated with different decision rules:

$$
R_{j}(\theta)=R\left(\theta, \delta_{j}(\mathbf{X})\right)=\mathbb{E}_{\theta}\left[\left(\theta-\delta_{j}(\mathbf{X})\right)^{2}\right]
$$

- $R_{1}(\theta)=\frac{1}{n} \theta(1-\theta)$
- $R_{2}(\theta)=\theta(1-\theta)$
- $R_{3}(\theta)=\left(\theta-\frac{1}{2}\right)^{2}$

Risk of a Decision Rule

Saw that decision rule may strictly dominate another rule $\left(R_{2}(\theta)>R_{1}(\theta)\right)$.

Definition (Inadmissible Decision Rule)

Let δ be a decision rule for the experiment $\left(\left\{F_{\theta}\right\}_{\theta \in \Theta}, \mathcal{L}\right)$. If there exists a decision rule δ^{*} that strictly dominates δ, i.e.

$$
R\left(\theta, \delta^{*}\right) \leq R(\theta, \delta), \forall \theta \in \Theta \quad \& \quad \exists \theta^{\prime} \in \Theta: R\left(\theta^{\prime}, \delta^{*}\right)<R\left(\theta^{\prime}, \delta\right),
$$

then δ is called an inadmissible decision rule.

- An inadmissible decision rule is a "silly" strategy since we can find a strategy that always does at least as well and sometimes better.
- However "silly" is with respect to \mathcal{L} and Θ. (it may be that our choice of \mathcal{L} is "silly" !!!)
- If we change the rules of the game (i.e. different loss or different parameter space) then domination may break down.

Statistical Theory ()
Decision Theory

Risk of a Decision Rule

Example (Exponential Distribution)

Let $X_{1}, \ldots, X_{n} \stackrel{\text { iid }}{\sim}$ Exponential $(\lambda), n \geq 2$. The MLE of λ is

$$
\hat{\lambda}=\frac{1}{\bar{X}}
$$

with \bar{X} the empirical mean. Observe that

$$
\mathbb{E}_{\lambda}[\hat{\lambda}]=\frac{n \lambda}{n-1} .
$$

It follows that $\tilde{\lambda}=(n-1) \hat{\lambda} / n$ is an unbiased estimator of λ. Observe now that

$$
\operatorname{MSE}_{\lambda}(\tilde{\lambda})<\operatorname{MSE}_{\lambda}(\hat{\lambda})
$$

since $\tilde{\lambda}$ is unbiased and $\operatorname{Var}_{\lambda}(\tilde{\lambda})<\operatorname{Var}_{\lambda}(\hat{\lambda})$. Hence the MLE is an inadmissible rule for quadratic loss.

Risk of a Decision Rule

Example (Exponential Distribution)

Notice that the parameter space in this example is $(0, \infty)$. In such cases, quadratic loss tends to penalize over-estimation more heavily than under-estimation (the maximum possible under-estimation is bounded!). Considering a different loss function gives the opposite result! Let

$$
\mathcal{L}(a, b)=\frac{a}{b}-1-\log (a / b)
$$

where, for each fixed $a, \lim _{b \rightarrow 0} \mathcal{L}(a, b)=\lim _{b \rightarrow \infty} \mathcal{L}(a, b)=\infty$. Now,

$$
\begin{aligned}
R(\lambda, \tilde{\lambda}) & =\mathbb{E}_{\lambda}\left[\frac{n \lambda \bar{X}}{n-1}-1-\log \left(\frac{n \lambda \bar{X}}{n-1}\right)\right] \\
& =\mathbb{E}_{\lambda}[\lambda \bar{X}-1-\log (\lambda \bar{X})]+\frac{\mathbb{E}_{\lambda}(\lambda \bar{X})}{n-1}-\log \left(\frac{n}{n-1}\right) \\
& >\mathbb{E}_{\lambda}[\lambda \bar{X}-1-\log (\lambda \bar{X})]=R(\lambda, \hat{\lambda}) .
\end{aligned}
$$

Criteria for Choosing Decision Rules

Minimax Decision Rules

Definition（Admissible Decision Rule）

A decision rule δ is admissible for the experiment $\left(\left\{F_{\theta}\right\}_{\theta \in \Theta}, \mathcal{L}\right)$ if it is not strictly dominated by any other decision rule．
－In non－trivial problems，it may not be easy at all to decide whether a given decision rule is admissible．
－Stein＇s paradox（＂one of the most striking post－war results in mathematical statistics＂－Brad Efron）
Admissibility is a minimal requirement－what about the opposite end （optimality）？
－In almost any non－trivial experiment，there will be no decision rule that makes risk uniformly smallest over θ
－Narrow down class of possible decision rules by unbiasedness／symmetry／．．．considerations，and try to find uniformly dominating rules of all other rules（next week！）．
－Another approach to good procedures is to use global rather than local criteria（with respect to θ ）．
Rather than look at risk at every $\theta \leftrightarrow$ Concentrate on maximum risk

Definition（Minimax Decision Rule）

Let \mathcal{D} be a class of decision rules for an experiment $\left(\left\{F_{\theta}\right\}_{\theta \in \Theta}, \mathcal{L}\right)$ ．If $\delta \in \mathcal{D}$ is such that

$$
\sup _{\theta \in \Theta} R(\theta, \delta) \leq \sup _{\theta \in \Theta} R\left(\theta, \delta^{\prime}\right), \quad \forall \delta^{\prime} \in \mathcal{D}
$$

then δ is called a minimax decision rule．
－A minimax rule δ satisfies $\sup _{\theta \in \Theta} R(\theta, \delta)=\inf _{\kappa \in \mathcal{D}} \sup _{\theta \in \Theta} R(\theta, \kappa)$ ．
－In the minimax setup，a rule is preferable to another if it has smaller maximum risk．

Minimax Decision Rules

A few comments on minimaxity：
－Motivated as follows：we do not know anything about θ so let us insure ourselves against the worst thing that can happen．
－Makes sense if you are in a zero－sum game：if your opponent chooses θ to maximize \mathcal{L} then one should look for minimax rules．But is nature really an opponent？
－If there is no reason to believe that nature is trying to＂do her worst＂， then the minimax principle is overly conservative：it places emphasis on the＂bad θ＂．
－Minimax rules may not be unique，and may not even be admissible．A minimax rule may very well dominate another minimax rule．
－A unique minimax rule is（obviously）admissible．
－Minimaxity can lead to counterintuitive results．A rule may dominate another rule，except for a small region in Θ ，where the other rule achieves a smaller supremum risk．

Counterintuitive minimax rule

Bayes Decision Rules

- Wanted to compare decision procedures using global rather than local criteria (with respect to θ).
- We arrived at the minimax principle by assuming we have no idea about the true value of θ.
- Suppose we have some prior belief about the value of θ. How can this be factored in our risk-based considerations?
Rather than look at risk at every $\theta \leftrightarrow$ Concentrate on average risk

Definition (Bayes Risk)

Let $\pi(\theta)$ be a probability density (frequency) on Θ and let δ be a decision rule for the experiment $\left(\left\{F_{\theta}\right\}_{\theta \in \Theta}, \mathcal{L}\right)$. The π-Bayes risk of δ is defined as

$$
r(\pi, \delta)=\int_{\Theta} R(\theta, \delta) \pi(\theta) d \theta=\int_{\Theta} \int_{\mathcal{X}} \mathcal{L}(\theta, \delta(\mathbf{x})) F_{\theta}[d \mathbf{x}] \pi(\theta) d \theta
$$

The prior $\pi(\theta)$ places different emphasis for different values of θ based on our prior belief/knowedge.

Statistical Theory ()
Decision Theory

Admissibility of Bayes Rules

Rule of thumb: Bayes rules are nearly always admissible.

Theorem (Discrete Case Admissibility)

Assume that $\Theta=\left\{\theta_{1}, \ldots, \theta_{t}\right\}$ is a finite space and that the prior $\pi\left(\theta_{i}\right)>0$, $i=1, \ldots, t$. Then a Bayes rule with respect to π is admissible.

Proof.

Let δ be a Bayes rule, and suppose that κ strictly dominates δ. Then

$$
\begin{aligned}
R\left(\theta_{j}, \kappa\right) & \leq R\left(\theta_{j}, \delta\right), \quad \forall j \\
R\left(\theta_{j}, \kappa\right) \pi\left(\theta_{j}\right) & \leq R\left(\theta_{j}, \delta\right) \pi\left(\theta_{j}\right), \quad \forall \theta \in \Theta \\
\sum_{j} R\left(\theta_{j}, \kappa\right) \pi\left(\theta_{j}\right) & <\sum_{j} R(\theta, \delta) \pi\left(\theta_{j}\right)
\end{aligned}
$$

which is a contradiction (strict inequality follows by strict domination and the fact that $\pi\left(\theta_{j}\right)$ is always positive).

Bayes Decision Rules

- Bayes principle: a decision rule is preferable to another if it has smaller Bayes risk (depends on the prior $\pi(\theta)!$).

Definition (Bayes Decision Rule)

Let \mathcal{D} be a class of decision rules for an experiment $\left(\left\{F_{\theta}\right\}_{\theta \in \Theta}, \mathcal{L}\right)$ and let $\pi(\cdot)$ be a probability density (frequency) on Θ. If $\delta \in \mathcal{D}$ is such that

$$
r(\pi, \delta) \leq r\left(\pi, \delta^{\prime}\right) \quad \forall \delta^{\prime} \in \mathcal{D},
$$

then δ is called a Bayes decision rule with respect to π.

- The minimax principle aims to minimize the maximum risk.
- The Bayes principle aims to minimize the average risk
- Sometime no Bayes rule exist becaise the infimum may not be attained for any $\delta \in \mathcal{D}$. However in such cases $\forall \epsilon>0 \exists \delta_{\epsilon} \in \mathcal{D}$: $r\left(\pi, \delta_{\epsilon}\right)<\inf _{\delta \in \mathcal{D}} r(\pi, \delta)+\varepsilon$.

Admissibility of Bayes Rules

Theorem (Uniqueness and Admissibility)

If a Bayes rule is unique, it is admissible.

Proof

Suppose that δ is a unique Bayes rule and assume that κ strictly dominates it. Then,

$$
\int_{\Theta} R(\theta, \kappa) \pi(\theta) d \theta \leq \int_{\Theta} R(\theta, \delta) \pi(\theta) d \theta .
$$

as a result of strict domination and by $\pi(\theta)$ being non-negative. This implies that κ either improves upon δ, or κ is a Bayes rule. Either possibility contradicts our assumption.

Admissibility of Bayes Rules

Theorem (Continuous Case Admissibility)

Let $\Theta \subset \mathbb{R}^{d}$. Assume that the risk functions $R(\theta, \delta)$ are continuous in θ for all decision rules $\delta \in \mathcal{D}$. Suppose that π places positive mass on any open subset of Θ. Then a Bayes rule with respect to π is admissible.

Proof.

Let κ be a decision rule that strictly dominates δ. Let Θ_{0} be the set on which $R(\theta, \kappa)<R(\theta, \delta)$. Given a $\theta_{0} \in \Theta_{0}$, we have $R\left(\theta_{0}, \kappa\right)<R\left(\theta_{0}, \delta\right)$. By continuity, there must exist an $\epsilon>0$ such that $R(\theta, \kappa)<R(\theta, \delta)$ for all theta satisfying $\left\|\theta-\theta_{0}\right\|<\epsilon$. It follows that Θ_{0} is open and hence, by our assumption, $\pi\left[\Theta_{0}\right]>0$. Therefore, it must be that

$$
\int_{\Theta_{0}} R(\theta, \kappa) \pi(\theta) d \theta<\int_{\Theta_{0}} R(\theta, \delta) \pi(\theta) d \theta
$$

Statistical Theory ()

Decision Theory

Randomised Decision Rules

Given

- decision rules $\delta_{1}, \ldots, \delta_{k}$
- probabilities $\pi_{i} \geq 0, \sum_{i=1}^{k} p_{i}=1$
we may define a new decision rule

$$
\delta_{*}=\sum_{i=1}^{k} p_{i} \delta_{i}
$$

called a randomised decision rule. Interpretation:
Given data \mathbf{X}, choose a δ_{i} randomly according to p but independent of \mathbf{X}. If δ_{j} is the outcome $(1 \leq j \leq k)$, then take action $\delta_{j}(\mathbf{X})$.
\rightarrow Risk of δ_{*} is average risk: $R\left(\theta, \delta_{*}\right)=\sum_{i=1}^{k} p_{i} R\left(\theta, \delta_{i}\right)$

- Appears artificial but often minimax rules are randomised
- Examples of randomised rules with $\sup _{\theta} R\left(\theta, \delta_{*}\right)<\sup _{\theta} R\left(\theta, \delta_{i}\right) \forall i$

Minimum Variance Unbiased Estimation

Statistical Theory

Victor Panaretos

Ecole Polytechnique Fédérale de Lausanne

(1) Optimality in the Decision Theory FrameworkUniform Optimality in Unbiased Quadratic EstimationThe role of sufficiency and "Rao-Blackwellization"The role of completeness in Uniform OptimalityLower Bounds for the Risk and Achieving them

Decision Theory Framework

Saw how point estimation can be seen as a game: Nature VS Statistician The decision theory framework includes:

- A family of distributions \mathcal{F}, usually assumed to admit densities (frequencies) and a parameter space $\Theta \subseteq \mathbb{R}^{p}$ which parametrizes the family $\mathcal{F}=\left\{F_{\theta}\right\}_{\theta \in \Theta}$.
- A data space \mathcal{X}, on which the parametric family is supported.
- An action space \mathcal{A}, which represents the space of possible actions available to the statistician. In point estimation $\mathcal{A} \equiv \Theta$
- A loss function $\mathcal{L}: \Theta \times \mathcal{A} \rightarrow \mathbb{R}^{+}$. This represents the lost incurred when estimating $\theta \in \Theta$ by $\alpha \in \mathcal{A}$.
- A set \mathcal{D} of decision rules. Any $\delta \in \mathcal{D}$ is a (measurable) function $\delta: \mathcal{X} \rightarrow \mathcal{A}$. In point estimation decision rules are simply estimators.
Performance of decision rules was to be judged by the risk they induce:

$$
R(\theta, \delta)=\mathbb{E}_{\theta}[\mathcal{L}(\theta, \delta(\mathbf{X}))], \quad \boldsymbol{\theta} \in \Theta, X \sim F_{\theta}, \delta \in \mathcal{D}
$$

Optimality in Point Estimation

An optimal decision rule would be one that uniformly minimizes risk:

$$
R\left(\theta, \delta_{\text {OPTIMAL }}\right) \leq R(\theta, \delta), \quad \forall \theta \in \Theta \& \forall \delta \in \mathcal{D} .
$$

But such rules can very rarely be determined.
\hookrightarrow optimality becomes a vague concept
\hookrightarrow can be made precise in many ways...
Avenues to studying optimal decision rules include:

- Restricting attention to global risk criteria rather than local \hookrightarrow Bayes and minimax risk.
- Focusing on restricted classes of rules \mathcal{D}
\hookrightarrow e.g. Minimum Variance Unbiased Estimation.
- Studying risk behaviour asymptotically $(n \rightarrow \infty)$
\hookrightarrow e.g. Asymptotic Relative Efficiency.

Unbiased Estimators under Quadratic Loss

Focus on Point Estimation

(1) Assume that F_{θ} is known up to the parameter θ which is unknown
(2) Let $\left(x_{1}, \ldots, x_{n}\right)$ be a realization of $\mathbf{X} \sim F_{\theta}$ which is available to us
(3) Estimate the value of θ that generated the sample given $\left(x_{1}, \ldots, x_{n}\right)$

- Focus on Quadratic Loss

Error incurred when estimating θ by $\hat{\theta}=\delta(\mathbf{X})$ is

$$
\mathcal{L}(\theta, \hat{\theta})=\|\theta-\hat{\theta}\|^{2}
$$

giving MSE as risk $R(\theta, \hat{\theta})=\mathbb{E}_{\theta}\|\theta-\hat{\theta}\|^{2}=$ Variance + Bias 2.

RESTRICT class of estimators (=decision rules)

Consider ONLY ubiased estimators: $\mathcal{D}:=\left\{\delta: \mathcal{X} \rightarrow \Theta \mid \mathbb{E}_{\theta}[\delta(\mathbf{X})]=\theta\right\}$.

Statistical Theory ()

MVUE

Comments on Unbiasedness

Example (Unbiased Estimators Need not Exist)

Let $X \sim \operatorname{Binomial}(n, \theta)$, with θ unknown but n known. We wish to estimate

$$
\psi=\sin \theta
$$

We require that our estimator $\delta(X)$ be unbiased, $\mathbb{E}_{\theta}[\delta]=\psi=\sin \theta$. Such an estimator satisfies

$$
\sum_{x=0}^{n} \delta(x)\binom{n}{x} \theta^{x}(1-\theta)^{n-x}=\sin \theta
$$

but this cannot hold for all θ, since the sine function cannot be represented as a finite polynomial.
The class of unbiased estimators in this case is empty.

Comments on Unbiasedness

- Unbiasedness requirement is one means of reducing the class of rules/estimators we are considering
\hookrightarrow Other requirements could be invariance or equivariance, e.g.

$$
\delta(\mathbf{X}+\mathbf{c})=\delta(\mathbf{X})+\mathbf{c}
$$

- Risk reduces to variance since bias is zero.
- Not necessarily a sensible requirement \hookrightarrow e.g. violates "likelihood principle"
- Unbiased Estimators may not exist in a particular problem
- Unbiased Estimators may be silly for a particular problem
- However unbiasedness can be a reasonable/natural requirement in a wide class of point estimation problems.
- Unbiasedness can be defined for more general loss functions, but not as conceptually clear (and with tractable theory) as for quadratic loss. $\hookrightarrow \delta$ is unbiased under \mathcal{L} if $\mathbb{E}_{\theta}\left[\mathcal{L}\left(\theta^{\prime}, \delta\right)\right] \geq \mathbb{E}_{\theta}[\mathcal{L}(\theta, \delta)] \quad \forall \theta, \theta^{\prime} \in \Theta$.

Statistical Theory () MVUE
$6 / 24$

Comments on Unbiased Estimators

Example (Unbiased Estimators May Be "Silly")

Let $X \sim \operatorname{Poisson}(\lambda)$. We wish to estimate the parameter

$$
\psi=e^{-2 \lambda} .
$$

If $\delta(X)$ is an unbiased estimator of ψ, then

$$
\begin{aligned}
\sum_{x=0}^{\infty} \delta(x) \frac{\lambda^{x}}{x!} e^{-\lambda}=e^{-2 \lambda} & \Longrightarrow \sum_{x=0}^{\infty} \delta(x) \frac{\lambda^{x}}{x!}=e^{-\lambda} \\
& \Longrightarrow \sum_{x=0}^{\infty} \delta(x) \frac{\lambda^{x}}{x!}=\sum_{x=0}^{\infty}(-1)^{x} \frac{\lambda^{x}}{x!}
\end{aligned}
$$

so that $\delta(X)=(-1)^{X}$ is the only unbiased estimator of ψ.
But $0<\psi<1$ for $\lambda>0$, so this is clearly a silly estimator

Comments on Unbiased Estimators

Example (A Non-Trivial Example)

Let X_{1}, \ldots, X_{n} be iid random variables with density

$$
f(x ; \mu)=e^{-(x-\mu)}, \quad x \geq \mu \in \mathbb{R}
$$

Two possible unbiased estimators are

$$
\hat{\mu}=X_{(1)}-\frac{1}{n} \quad \& \quad \tilde{\mu}=\bar{X}-1
$$

In fact, $t \hat{\mu}+(1-t) \tilde{\mu}$ is unbiased for any t. Simple calculations reveal

$$
R(\mu, \hat{\mu})=\operatorname{Var}(\hat{\mu})=\frac{1}{n^{2}} \quad \& \quad R(\mu, \tilde{\mu})=\operatorname{Var}(\tilde{\mu})=\frac{1}{n}
$$

so that $\hat{\mu}$ dominates $\tilde{\mu}$. Will it dominate any other unbiased estimator? (note that $\hat{\mu}$ depends only on the one-dimensional sufficient statistic $X_{(1)}$)

Statistical Theory ()
 MVUE

Proof.

Since T is sufficient for $\theta, \mathbb{E}[\delta \mid T=t]=h(t)$ is independent of θ, so that δ^{*} is well-defined as a statistic (depends only on \mathbf{X}). Then,

$$
\mathbb{E}_{\theta}\left[\delta^{*}(\mathbf{X})\right]=\mathbb{E}_{\theta}[\mathbb{E}[\delta(\mathbf{X}) \mid T(\mathbf{X})]]=\mathbb{E}_{\theta}[\delta(\mathbf{X})]=g(\theta) .
$$

Furthermore, we have

$$
\begin{aligned}
\operatorname{Var}_{\theta}(\delta)=\operatorname{Var}_{\theta}[\mathbb{E}(\delta \mid T)]+\mathbb{E}_{\theta}[\operatorname{Var}(\delta \mid T)] & \geq \operatorname{Var}_{\theta}[\mathbb{E}(\delta \mid T)] \\
& =\operatorname{Var}_{\theta}\left(\delta^{*}\right)
\end{aligned}
$$

In addition, note that

$$
\operatorname{Var}(\delta \mid T):=\mathbb{E}\left[(\delta-\mathbb{E}[\delta \mid T])^{2} \mid T\right]=\mathbb{E}\left[\left(\delta-\delta^{*}\right)^{2} \mid T\right]
$$

so that $\mathbb{E}_{\theta}[\operatorname{Var}(\delta \mid T)]=\mathbb{E}_{\theta}\left(\delta-\delta^{*}\right)^{2}>0$ unless if $\mathbb{P}_{\theta}\left(\delta^{*}=\delta\right)=1$.

Exercise

Show that $\operatorname{Var}(Y)=\mathbb{E}[\operatorname{Var}(Y \mid \mathbf{X})]+\operatorname{Var}[\mathbb{E}(Y \mid \mathbf{X})]$ when $\operatorname{Var}(Y)<\infty$.

Unbiased Estimation and Sufficiency

Theorem (Rao-Blackwell Theorem)

Let \mathbf{X} be distributed according to a distribution depending on an unknown parameter θ and let T be a sufficient statistic for θ. Let δ be decision rule such that
(1) $\mathbb{E}_{\theta}[\delta(\mathbf{X})]=g(\theta)$ for all θ
(2) $\operatorname{Var}_{\theta}(\delta(\mathbf{X}))<\infty$, for all θ.

Then $\delta^{*}:=\mathbb{E}[\delta \mid T]$ is an unbiased estimator of $g(\theta)$ that dominates δ, i.e.
(1) $\mathbb{E}_{\theta}\left[\delta^{*}(\mathbf{X})\right]=g(\theta)$ for all θ.
(2) $\operatorname{Var}_{\theta}\left(\delta^{*}(\mathbf{X})\right) \leq \operatorname{Var}_{\theta}(\delta(\mathbf{X}))$ for all θ.

Moreover, inequality is replaced by equality if and only if $\mathbb{P}_{\theta}\left[\delta^{*}=\delta\right]=1$.

- The theorem indicates that any candidate minimum variance unbiased estimator should be a functions of the sufficient statistic.
- Intuitively, an estimator that takes into account aspects of the sample that are irrelevant with respect to θ, can always be improved Statistical Theory () MVUE $10 / 24$

Unbiasedness and Sufficiency

- Any admissible unbiased estimator should be a function of a sufficient statistic
\hookrightarrow If not, we can dominate it by its conditional expectation given a sufficient statistic.
- But is any function of a sufficient statistic admissible? (provided that it is unbiased)

Suppose that δ is an unbiased estimator of $g(\theta)$ and T, S are θ-sufficient.

- What is the relationship between $\operatorname{Var}_{\theta}(\underbrace{\mathbb{E}[\delta \mid T]}_{\delta_{T}^{*}}) \gtreqless{ }^{?} \operatorname{Var}_{\theta}(\underbrace{\mathbb{E}[\delta \mid S]}_{\delta_{S}^{*}})$
- Intuition suggests that whichever of T, S carries the least irrelevant information (in addition to the relevant information) should "win" \hookrightarrow More formally, if $T=h(S)$ then we should expect that δ_{T}^{*} dominate δ_{S}^{*}.

Unbiasedness and Sufficiency

Proposition

Let δ be an unbiased estimator of $g(\theta)$ and for T, S two θ-sufficient statistics define

$$
\delta_{T}^{*}:=\mathbb{E}[\delta \mid T] \quad \& \quad \delta_{S}^{*}:=\mathbb{E}[\delta \mid S]
$$

Then, the following implication holds

$$
T=h(S) \Longrightarrow \operatorname{Var}_{\theta}\left(\delta_{T}^{*}\right) \leq \operatorname{Var}_{\theta}\left(\delta_{S}^{*}\right)
$$

(1) Essentially this means that the best possible "Rao-Blackwellization" is achieved by conditioning on a minimal sufficient statistic
(2) This does not necessarily imply that for T minimally sufficient and δ unbiased, $\mathbb{E}[\delta \mid T]$ has minimum variance.
\hookrightarrow In fact it does not even imply that $\mathbb{E}[\delta \mid T]$ is admissible.

Statistical Theory ()

MVUE
Completeness, Sufficiency, Unbiasedness, and Optimality

Theorem (Lehmann-Scheffé Theorem)

Let T be a complete sufficient statistic for θ and let δ be a statistic such that $\mathbb{E}_{\theta}[\delta]=g(\theta)$ and $\operatorname{Var}_{\theta}(\delta)<\infty, \forall \theta \in \Theta$. If $\delta^{*}:=\mathbb{E}[\delta \mid T]$ and V is any other unbiased estimator of $g(\theta)$, then
(1) $\operatorname{Var}_{\theta}\left(\delta^{*}\right) \leq \operatorname{Var}_{\theta}(V), \forall \theta \in \Theta$
(2) $\operatorname{Var}_{\theta}\left(\delta^{*}\right)=\operatorname{Var}_{\theta}(V) \Longrightarrow \mathbb{P}_{\theta}\left[\delta^{*}=V\right]=1$.

That is, $\delta^{*}:=\mathbb{E}[\delta \mid T]$ is the unique Uniformly Minimum Variance Unbiased Estimator of $g(\theta)$.

- The theorem says that if a complete sufficient statistic T exists, then the MVUE of $g(\theta)$ (if it exists) must be a function of T.
- Moreover it establishes that whenever \exists UMVUE, it is unique
- Can be used to examine whether unbiased estimators exist at all: if a complete sufficient statistic T exists, but there exists no function h with $\mathbb{E}[h(T)]=g(\theta)$, then no unbiased estimator of $g(\theta)$ exists.

Proof

Recall the tower property of conditional expectation: if $Y=f(X)$, then

$$
\mathbb{E}[Z \mid Y]=\mathbb{E}\{\mathbb{E}(Z \mid X) \mid Y\}
$$

Since $T=f(S)$ we have

$$
\begin{aligned}
\delta_{T}^{*} & =\mathbb{E}[\delta \mid T] \\
& =\mathbb{E}[\mathbb{E}(\delta \mid S) \mid T] \\
& =\mathbb{E}\left[\delta_{S}^{*} \mid T\right]
\end{aligned}
$$

The conclusion now follows from the Rao-Blackwell theorem.

A mathematical remark

To better understand the tower property intuitively, recall that $\mathbb{E}[Z \mid Y]$ is the minimizer of $\mathbb{E}\left[(Z-\varphi(Y))^{2}\right]$ over all (measurable) functions φ of Y. You can combine that with the fact that $\sqrt{\mathbb{E}\left[(X-Y)^{2}\right]}$ defines a Hilbert norm on random variables with finite variance to get geometric intuition.

$$
\begin{aligned}
& \text { Statistical Theory () MVUE } \\
& \text { Proof. } \\
& \text { To prove (1) we go through the following steps: } \\
& \text { - Take } V \text { to be any unbiased estimator with finite variance. } \\
& \text { - Define its "Rao-Blackwellized" version } V^{*}:=\mathbb{E}[V \mid T] \\
& \text { - By unbiasedness of both estimators, } \\
& \quad 0=\mathbb{E}_{\theta}\left[V^{*}-\delta^{*}\right]=\mathbb{E}_{\theta}[\mathbb{E}[V \mid T]-\mathbb{E}[\delta \mid T]]=\mathbb{E}_{\theta}[h(T)], \quad \forall \theta \in \Theta .
\end{aligned}
$$

- By completeness of T we conclude $\mathbb{P}_{\theta}[h(T)=0]=1$ for all θ.
- In other words, $\mathbb{P}_{\theta}\left[V^{*}=\delta^{*}\right]=1$ for all θ.
- But V^{*} dominates V by the Rao-Blackwell theorem.
- Hence $\operatorname{Var}_{\theta}\left(\delta^{*}\right)=\operatorname{Var}_{\theta}\left(V^{*}\right) \leq \operatorname{Var}_{\theta}(V)$.

For part (2) (the uniqueness part) notice that from our reasoning above

- $\operatorname{Var}_{\theta}(V)=\operatorname{Var}_{\theta}\left(\delta^{*}\right) \Longrightarrow \operatorname{Var}_{\theta}(V)=\operatorname{Var}_{\theta}\left(V^{*}\right)$
- But Rao-Blackwell theorem says

$$
\operatorname{Var}_{\theta}(V)=\operatorname{Var}_{\theta}\left(V^{*}\right) \Longleftrightarrow \mathbb{P}_{\theta}\left[V=V^{*}\right]=1
$$

Completeness, Sufficiency, Unbiasedness, and Optimality

Taken together, the Rao-Blackwell and Lehmann-Scheffé theorems also suggest approaches to finding UMVUE estimators when a complete sufficient statistic T exists:
(1) Find a function h such that $\mathbb{E}_{\theta}[h(T)]=g(\theta)$. If $\operatorname{Var}_{\theta}[h(T)]<\infty$ for all θ, then $\delta=h(T)$ is the unique UMVUE of $g(\theta)$.
\hookrightarrow The function h can be found by solving the equation $\mathbb{E}_{\theta}[h(T)]=g(\theta)$ or by an educated guess.
(2) Given an unbiased estimator δ of $g(\theta)$, we may obtain the UMVUE by "Rao-Blackwellizing" with respect to the complete sufficient statistic:

Example (Bernoulli Trials)

Let $X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} \operatorname{Bernoulli}(\theta)$. What is the UMVUE of θ^{2} ?

- By the Neyman factorization theorem $T=X_{1}+\ldots+X_{n}$ is sufficient,
- Since the distribution of $\left(X_{1}, \ldots, X_{n}\right)$ is a 1-parameter exponential family, T is also complete.

Statistical Theory ()

Variance Lower Bounds for Unbiased Estimators

- Often \rightarrow minimal sufficient statistic exists but is not complete. \hookrightarrow Cannot appeal to the Lehmann-Scheffé theorem in search of a UMVUE.
- However, if we could establish a lower bound for the variance as a function of θ, than an estimator achieving this bound will be the unique UMVUE.

The Aim

For iid X_{1}, \ldots, X_{n} with density (frequency) depending on θ unknown, we want to establish conditions under which

$$
\operatorname{Var}_{\theta}[\delta] \geq \phi(\theta), \quad \forall \theta
$$

for any unbiased estimator δ. We also wish to determine $\phi(\theta)$.

Example (Bernoulli Trials)

First suppose that $n=2$. If a UMVUE exists, it must be of the form $h(T)$ with h satisfying

$$
\theta^{2}=\sum_{k=0}^{2} h(k)\binom{2}{k} \theta^{k}(1-\theta)^{2-k}
$$

It is easy to see that $h(0)=h(1)=0$ while $h(2)=1$. Thus, for $n=2$, $h(T)=T(T-1) / 2$ is the unique UMVUE of θ^{2}.
For $n>2$, set $\delta=\mathbf{1}\left\{X_{1}+X_{2}=2\right\}$ and note that this is an unbiased estimator of θ^{2}. By the Lehmann-Scheffé theorem, $\delta^{*}=\mathbb{E}[\delta \mid T]$ is the unique UMVUE estimator of θ^{2}. We have

$$
\begin{aligned}
\mathbb{E}[S \mid T=t] & =\mathbb{P}\left[X_{1}+X_{2}=2 \mid T=t\right] \\
& =\frac{\mathbb{P}_{\theta}\left[X_{1}+X_{2}=2, X_{3}+\ldots+X_{n}=t-2\right]}{\mathbb{P}_{\theta}[T=t]} \\
& =\left\{\begin{array}{ll}
0 & \text { if } t \leq 1 \\
\binom{n-2}{t-2} /\binom{n}{t} & \text { if } t \geq 2
\end{array}\right\}=\frac{t(t-1)}{n(n-1)} .
\end{aligned}
$$

Statistical Theory ()
MVUE
$18 / 24$

Cuachy-Schwarz Bounds

Theorem (Cauchy-Schwarz Inequality)

Let U, V be random variables with finite variance. Then,

$$
\operatorname{Cov}(U, V) \leq \sqrt{\operatorname{Var}(U) \operatorname{Var}(V)}
$$

The theorems yields an immediate lower bound for the variance of an unbiased estimator δ_{0} :

$$
\operatorname{Var}_{\theta}\left(\delta_{0}\right) \geq \frac{\operatorname{Cov}_{\theta}^{2}\left(\delta_{0}, U\right)}{\operatorname{Var}_{\theta}(U)}
$$

which is valid for any random variable U with $\operatorname{Var}_{\theta}(U)<\infty$ for all θ.

- The bound can be made tight be choosing a suitable U.
- However this is still not very useful as it falls short of our aim
- The bound will be specific to δ_{0}, while we want a bound that holds for any unbiased estimator δ.
- Is there a smart choice of U for which $\operatorname{Cov}_{\theta}\left(\delta_{0}, U\right)$ depends on $g(\theta)=\mathbb{E}_{\theta}\left(\delta_{0}\right)$ only? (and so is not specific to $\left.\delta_{0}\right)_{\theta}$

Let's take a closer look at this...

Optimizing the Cauchy-Schwartz Bound

Assume that θ is real and the following regularity conditions hold

Regularity Conditions

(C1) The support of $A:=\{\mathbf{x}: f(\mathbf{x} ; \theta)>0\}$ is independent of θ
(C2) $f(\mathbf{x} ; \theta)$ is differentiable w.r.t. $\theta, \forall \theta \in \Theta$
(C3) $\mathbb{E}_{\theta}\left[\frac{\partial}{\partial \theta} \log f(\mathbf{X} ; \theta)\right]=0$
(C4) For a statistic $T=T(\mathbf{X})$ with $\mathbb{E}_{\theta}|T|<\infty$ and $g(\theta)=\mathbb{E}_{\theta} T$ differentiable,

$$
g^{\prime}(\theta)=\mathbb{E}_{\theta}\left[T \frac{\partial}{\partial \theta} \log f(\mathbf{X} ; \theta)\right]
$$

To make sense of (C3) and (C4), suppose that $f(\cdot ; \theta)$ is a density. Then $\frac{d}{d \theta} \int S(\mathbf{x}) f(\mathbf{x} ; \theta) d \mathbf{x} \stackrel{!}{=} \int S(\mathbf{x}) \frac{f(x ; \theta)}{f(x ; \theta)} \frac{d}{d \theta} f(\mathbf{x} ; \theta) d x=\int S(\mathbf{x}) f(\mathbf{x} ; \theta) \frac{d}{d \theta} \log f(\mathbf{x} ;$ provided integration/differentiation can be interchanged.

mVUE

The Cramér-Rao Lower Bound

Also, observe that

$$
\begin{aligned}
\operatorname{Cov}_{\theta}\left(T, \frac{\partial}{\partial \theta} \log f(\mathbf{X} ; \theta)\right)= & \mathbb{E}_{\theta}\left[T \frac{\partial}{\partial \theta} \log f(\mathbf{X} ; \theta)\right] \\
& -\mathbb{E}_{\theta}[T] \mathbb{E}_{\theta}\left[\frac{\partial}{\partial \theta} \log f(\mathbf{X} ; \theta)\right] \\
= & \mathbb{E}_{\theta}\left[T \frac{\partial}{\partial \theta} \log f(\mathbf{X} ; \theta)\right] \\
= & \frac{d}{d \theta} \mathbb{E}_{\theta}[T] \\
= & g^{\prime}(\theta)
\end{aligned}
$$

which completes the proof.

The Cramér-Rao Lower Bound

Theorem

Let $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ have joint density (frequency) $f(\mathbf{x} ; \theta)$ satisfying conditions (C1), (C2) and (C3). If the statistic T satisfies condition (C4), then

$$
\operatorname{Var}_{\theta}(T) \geq \frac{\left[g^{\prime}(\theta)\right]^{2}}{I(\theta)}
$$

with $I(\theta)=\mathbb{E}_{\theta}\left[\left(\frac{\partial}{\partial \theta} \log f(\mathbf{X} ; \theta)\right)^{2}\right]$

Proof

By the Cauchy-Schartz inequality with $U=\frac{\partial}{\partial \theta} \log f(\mathbf{X} ; \theta)$,

$$
\operatorname{Var}_{\theta}(T) \geq \frac{\operatorname{Cov}_{\theta}^{2}\left(T, \frac{\partial}{\partial \theta} \log f(\mathbf{X} ; \theta)\right)}{\operatorname{Var}_{\theta}\left(\frac{\partial}{\partial \theta} \log f(\mathbf{X} ; \theta)\right)}
$$

Since $\mathbb{E}_{\theta}\left[\frac{\partial}{\partial \theta} \log f(\mathbf{X} ; \theta)\right]=0$ we have $\operatorname{Var}_{\theta}\left(\frac{\partial}{\partial \theta} \log f(\mathbf{X} ; \theta)\right)=I(\theta)$.

The Cramér-Rao Lower Bound

When is the Cramér-Rao lower bound achieved?

$$
\begin{gathered}
\text { if } \operatorname{Var}_{\theta}[T]=\frac{\left[g^{\prime}(\theta)\right]^{2}}{I(\theta)} \\
\text { then } \operatorname{Var}_{\theta}[T]=\frac{\operatorname{Cov}_{\theta}^{2}\left[T, \frac{\partial}{\partial \theta} \log f(\mathbf{X} ; \theta)\right]}{\operatorname{Var}_{\theta}\left[\frac{\partial}{\partial \theta} \log f(\mathbf{X} ; \theta)\right]}
\end{gathered}
$$

which occurs if and only if $\frac{\partial}{\partial \theta} \log f(\mathbf{X} ; \theta)$ is a linear function of T (correlation 1). That is, w.p.1:

$$
\frac{\partial}{\partial \theta} \log f(\mathbf{X} ; \theta)=A(\theta) T(\mathbf{x})+B(\theta)
$$

Solving this differential equation yields, for all \mathbf{x},

$$
\log f(\mathbf{x} ; \theta)=A^{*} T(\mathbf{x})+B^{*}(\theta)+S(\mathbf{x})
$$

Testing Statistical Hypotheses

Statistical Theory

Victor Panaretos
Ecole Polytechnique Fédérale de Lausanne

ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNEContrasting Theories With Experimental Evidence
\qquad Hypothesis Testing SetupType I vs Type II ErrorThe Neyman－Pearson SetupOptimality in the Neyman Pearson Setup

Using Data to Evaluate Theories／Assertions

－Scientific theories lead to assertions that are testable using empirical data．
－Data may discredit the theory（call it a hypothesis）or not
\hookrightarrow i．e．are empirical findings reasonable under hypothesis？
－Example：Large Hadron Collider in CERN，Genève．Does the Higgs Boson exist？Study if particle trajectories are consistent with what theory predicts．
－Example：Theory of＂luminoferous aether＂in late 19th century to explain light travelling in vacuum．Discredited by Michelson－Morley experiment．
－Similarities with the logical／mathematical concept of a necessary condition

Formal statistical framework？

Statistical Framework for Testing Hypotheses

The Problem of Hypothesis Testing

－ $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ random variables with joint density／frequency $f(\mathbf{x} ; \theta)$
－$\theta \in \Theta$ where $\Theta=\Theta_{0} \cup \Theta_{1}$ and $\Theta_{0} \cap \Theta_{1}=\emptyset\left(\right.$ or $\left.\Lambda\left(\Theta_{0} \cap \Theta_{1}\right)=0\right)$
－Observe realization $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ of $\mathbf{X} \sim f_{\theta}$
－Decide on the basis of \mathbf{x} whether $\theta \in \Theta_{0}$ or $\theta \in \Theta_{1}$
\hookrightarrow Often $\operatorname{dim}\left(\Theta_{0}\right)<\operatorname{dim}(\Theta)$ so $\theta \in \Theta_{0}$ represents a simplified model．

Example

Let $X_{1}, \ldots, X_{n} \stackrel{\text { iid }}{\sim} \mathcal{N}(\mu, 1)$ and $Y_{1}, \ldots, Y_{n} \stackrel{i i d}{\sim} \mathcal{N}(\nu, 1)$ ．Have $\theta=(\mu, \nu)$ and

$$
\Theta=\{(\mu, \nu): \mu \in \mathbb{R}, \nu \in \mathbb{R}\}=\mathbb{R}^{2}
$$

May be interested to see if \mathbf{X} and \mathbf{Y} have same distribution，even though they may be measurements on characteristics of different groups．In this case $\Theta_{0}=\left\{(\mu, \nu) \in \mathbb{R}^{2}: \mu=\nu\right\}$

Decision Theory Perspective on Hypothesis Testing

Given \mathbf{X} we need to decide between two hypotheses:
$H_{0}: \theta \in \Theta_{0} \quad$ (the NULL HYPOTHESIS)
$H_{1}: \theta \in \Theta_{1} \quad$ (the ALTERNATIVE HYPOTHESIS)
\rightarrow Want decision rule $\delta: \mathcal{X} \rightarrow \mathcal{A}=\{0,1\}$ (chooses between H_{0} and H_{1})

- In hypothesis testing δ is called a test function
- Often δ depends on \mathbf{X} only through some real-valued statistic $T=T(\mathbf{X})$ called a test statistic.

Unlikely that a test function is perfect. Possible errors to be made?

Action / Truth	H_{0}	H_{1}
0	$\ddot{ت}$	Type II Error
1	Type I Error	$\ddot{\sim}$

Potential asymmetry of errors in practice: false positive VS false negative (e.g. spam filters for e-mail)

Optimal Testing?

As with point estimation, we may wish to find optimal test functions
\hookrightarrow Find test functions that uniformly minimize risk?

- Possible to do in some problems, but in intractable in general \hookrightarrow As in point estimation
- How to relax problem in this case? Minimize each type I and type II error probabilities separately?
- In general there is a trade-off between the two error probabilities

For example, consider two test functions δ_{1} and δ_{2} and let

$$
R_{1}=\left\{\mathbf{x}: \delta_{1}(\mathbf{x})=1\right\} \& R_{2}=\left\{\mathbf{x}: \delta_{2}(\mathbf{x})=1\right\}
$$

Assume that $R_{1} \subset R_{2}$. Then, for all $\theta \in \Theta$,

$$
\begin{aligned}
\mathbb{P}_{\theta}\left[\delta_{1}(\mathbf{X})=1\right] & \leq \mathbb{P}_{\theta}\left[\delta_{2}(\mathbf{X})=1\right] \\
\mathbb{P}_{\theta}[\delta=0]=1-\mathbb{P}_{\theta}\left[\delta_{1}(\mathbf{X})=1\right] & \geq 1-\mathbb{P}_{\theta}\left[\delta_{2}(\mathbf{X})=1\right]=\mathbb{P}_{\theta}\left[\delta_{2}(\mathbf{X})=0\right]
\end{aligned}
$$

so by attempting to reduce the probability of error when $\theta \in \Theta_{0}$ we may increase the the probability of error when $\theta \in \Theta_{1}$!

Decision Theory Perspective on Hypothesis Testing

Typically loss function is " $0-1$ " loss, i.e.

$$
\mathcal{L}(\theta, a)=\left\{\begin{array}{lll}
1 & \text { if } \theta \in \Theta_{0} \& a=1 \\
1 & \text { if } \theta \in \Theta_{1} \& a=0 & \text { (Type I Error) } \\
0 & \text { otherwise } & \text { (Type II Error) } \\
\text { (No Error) }
\end{array}\right.
$$

i.e. way lose 1 unit whenever committing a type I or type II error.
\longrightarrow Leads to the following risk function:

$$
R(\theta, \delta)=\left\{\begin{array}{lll}
\mathbb{E}_{\theta}[\mathbf{1}\{\delta=1\}]=\mathbb{P}_{\theta}[\delta=1] & \text { if } \theta \in \Theta_{0} & \text { (prob of type I error) } \\
\mathbb{E}_{\theta}[\mathbf{1}\{\delta=0\}]=\mathbb{P}_{\theta}[\delta=0] & \text { if } \theta \in \Theta_{1} & \text { (prob of type II error) }
\end{array}\right.
$$

In short,

$$
\begin{aligned}
R(\theta, \delta) & =\mathbb{P}_{\theta}[\delta=1] \mathbf{1}\left\{\theta \in \Theta_{0}\right\}+\mathbb{P}_{\theta}[\delta=0] \mathbf{1}\left\{\theta \in \Theta_{1}\right\} \\
" & =" \quad \mathbb{P}_{\theta}\left[\text { choose } H_{1} \mid H_{0} \text { is true }\right] \text { "OR " } \mathbb{P}_{\theta}\left[\text { choose } H_{0} \mid H_{1} \text { is true }\right] "
\end{aligned}
$$

Statistical Theory (Week 10)
Hypothesis Testing

The Neyman-Pearson Setup

Classical approach: restrict class of test functions by "minimax reasoning"
(1) We fix an $\alpha \in(0,1)$, usually small (called the significance level)
(2) We declare that we will only consider test functions δ such that

$$
\mathbb{P}_{\theta}[\delta=1] \leq \alpha \quad \forall \theta \in \Theta_{0} \quad\left(\text { i.e. } \sup _{\theta \in \Theta_{0}} \mathbb{P}_{\theta}[\delta=1] \leq \alpha\right)
$$

i.e. rules for which prob of type I error is bounded above by α
\hookrightarrow Jargon: we fix a significance level for our test
(3) Within this restricted class of rules, choose δ to minimize prob of type II error uniformly on Θ_{1} :

$$
\mathbb{P}_{\theta}[\delta(\mathbf{X})=0]=1-\mathbb{P}_{\theta}[\delta(\mathbf{X})=1]
$$

(4) Equivalently, maximize the power uniformly over Θ_{1}

$$
\begin{gathered}
\beta(\theta, \delta)=\mathbb{P}_{\theta}[\delta(\mathbf{X})=1]=\mathbb{E}_{\theta}[\mathbf{1}\{\delta(\mathbf{X})=1\}]=\mathbb{E}_{\theta}[\delta(\mathbf{X})], \quad \theta \in \Theta_{1} \\
\left(\text { since } \delta=1 \Longleftrightarrow \mathbf{1}\{\delta=1\}=1 \text { and } \delta=0 \Longleftrightarrow 1\{\delta=1\}_{0}=0\right)
\end{gathered}
$$

The Neyman-Pearson Setup

The Neyman-Pearson Setup

Intuitive rationale of the approach:

- Want to test H_{0} against H_{1} at significance level α
- Suppose we observe $\delta(\mathbf{X})=1$ (so we take action 1)
- α is usually small, so that if H_{0} is indeed true, we have observed something rare or unusual
\hookrightarrow since $\delta=1$ has probability at most α under H_{0}
- Evidence that H_{0} is false (i.e. in favour of H_{1})
- So taking action 1 is a highly reasonable decision

But what if we observe $\delta(\mathbf{X})=0$? (so we take action 0)

- Our significance level does not guarrantee that our decision is necessarily reasonable
- Our decision would have been reasonable if δ was such that the type II error was also low (given the significance level).
- If we had maximized power β at level α though, then we would be reassured of our decision.
Statistical Theory (Week 10)
Hypothesis Testing

Finding Good Test Functions

Consider simplest situation:

- Have $\left(X_{1}, \ldots, X_{n}\right) \sim f(\cdot ; \theta)$ with $\Theta=\left\{\theta_{0}, \theta_{1}\right\}$
- Want to test $H_{0}: \theta=\theta_{0}$ vs $H_{1}: \theta=\theta_{1}$

The Neyman-Pearson Lemma

Let $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ have joint density (frquency) function $f \in\left\{f_{0}, f_{1}\right\}$ and suppose we wish to test

$$
H_{0}: f=f_{0} \quad V S \quad H_{1}: f=f_{1}
$$

Then, the test whose test function is given by

$$
\delta(\mathbf{X})= \begin{cases}1 & \text { if } f_{1}(\mathbf{X}) \geq k \cdot f_{0}(\mathbf{X}) \\ 0 & \text { otherwise }\end{cases}
$$

for some $k \in(0, \infty)$, is a most powerful (MP) test of H_{0} versus H_{1} at significance level $\alpha=\mathbb{P}_{0}[\delta(\mathbf{X})=1]\left(=\mathbb{E}_{0}[\delta(\mathbf{X})]=\mathbb{P}_{0}\left[f_{1}(\mathbf{X}) \geq k \cdot f_{0}(\mathbf{X})\right]\right)$.

- Neyman-Pearson setup naturally exploits any asymmetric structure
- But, if natural asymmetry absent, need judicious choice of H_{0} Example: Obama VS McCain 2008. Pollsters gather iid sample \mathbf{X} from Ohio with $X_{i}=\mathbf{1}$ \{vote Obama\}. Which pair of hypotheses to test?

$$
\left\{\begin{array} { l }
{ H _ { 0 } : \text { Obama wins Ohio } } \\
{ H _ { 1 } : \text { McCain wins Ohio } }
\end{array} \quad \text { OR } \left\{\begin{array}{ll}
H_{0}: \text { McCain wins Ohio } \\
H_{1}: \text { Obama wins Ohio }
\end{array}\right.\right.
$$

- Which pair to choose to make a prediction? (confidence intervals?)
- If Obama is conducting poll to decide whether he'll spend more money to campaign in Ohio, then his possible losses due to errors are:
(a) Spend more \$'s to campaign in Ohio even though he would win anyway: lose \$'s
(b) Lose Ohio to McCain because he thought he would win without any extra effort.
(b) is much worse than (a) (especially since Obama had lots of \$'s)
- Hence Obama would pick $H_{0}=\{$ McCain wins Ohio $\}$ as his null

Proof.

Use obvious notation $\mathbb{E}_{0}, \mathbb{E}_{1}, \mathbb{P}_{0}, \mathbb{P}_{1}$ corresponding to H_{0} or H_{1}.
It suffices to prove that if ψ is any function with $\psi(\mathbf{x}) \in\{0,1\}$, then

$$
\mathbb{E}_{0}[\psi(\mathbf{X})] \leq \underbrace{\mathbb{E}_{0}[\delta(\mathbf{X})]}_{=\alpha(\text { by definition })} \Longrightarrow \underbrace{\mathbb{E}_{1}[\psi(\mathbf{X})]}_{\beta_{1}(\psi)} \leq \underbrace{\mathbb{E}_{1}[\delta(\mathbf{X})]}_{\beta_{1}(\delta)} .
$$

(recall that $\beta_{1}(\delta)=1-\mathbb{P}_{1}[\delta=0]=\mathbb{P}_{1}[\delta=1]=\mathbb{E}_{1}[\delta]$).
WLOG assume that f_{0} and f_{1} are density functions. Note that

$$
f_{1}(\mathbf{x})-k \cdot f_{0}(\mathbf{x}) \geq 0 \text { if } \delta(\mathbf{x})=1 \quad \& \quad f_{1}(\mathbf{x})-k \cdot f_{0}(\mathbf{x})<0 \text { if } \delta(\mathbf{x})=0
$$

Since ψ can only take the values 0 or 1 ,

$$
\begin{aligned}
\psi(\mathbf{x})\left(f_{1}(\mathbf{x})-k \cdot f_{0}(\mathbf{x})\right) & \leq \delta(\mathbf{x})\left(f_{1}(\mathbf{x})-k \cdot f_{0}(\mathbf{x})\right) \\
\int_{\mathbb{R}^{n}} \psi(\mathbf{x})\left(f_{1}(\mathbf{x})-k \cdot f_{0}(\mathbf{x})\right) d \mathbf{x} & \leq \int_{\mathbb{R}^{n}} \delta(\mathbf{x})\left(f_{1}(\mathbf{x})-k \cdot f_{0}(\mathbf{x})\right) d \mathbf{x}
\end{aligned}
$$

The Neyman-Pearson Setup

Rearranging the terms yields

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}(\psi(\mathbf{x})-\delta(\mathbf{x})) f_{1}(\mathbf{x}) d \mathbf{x} & \leq k \int_{\mathbb{R}^{n}}(\psi(\mathbf{x})-\delta(\mathbf{x})) f_{0}(\mathbf{x}) d \mathbf{x} \\
\Longrightarrow \mathbb{E}_{1}[\psi(\mathbf{X})]-\mathbb{E}_{1}[\delta(\mathbf{X})] & \leq k\left(\mathbb{E}_{0}[\psi(\mathbf{X})]-\mathbb{E}_{0}[\delta(\mathbf{X})]\right)
\end{aligned}
$$

So when $\mathbb{E}_{0}[\psi(\mathbf{X})] \leq \mathbb{E}_{0}[\delta(\mathbf{X})]$ the RHS is negative, i.e. δ is an MP test of H_{0} vs H_{1} at level α.

- Essentially the result says that the optimal test statistic for simple hypotheses vs simple alternatives is $T(\mathbf{X})=f_{1}(\mathbf{X}) / f_{0}(\mathbf{X})$
- The optimal test function would then reject the null whenever $T \geq k$
- k is chosen so that the test has desirable level α
- The result does not guarantee existence of an MP test
- The result does not guarantee uniqueness when MP test exists

Statistical Theory (Week 10) Hypothesis Testing	$13 / 19$

The Neyman-Pearson Setup

Example (Exponential Distribution)

Let $X_{1}, \ldots, X_{n} \stackrel{\text { iid }}{\sim} \operatorname{Exp}(\lambda)$ and $\lambda \in\left\{\lambda_{1}, \lambda_{2}\right\}$, with $\lambda_{1}>\lambda_{0}$ (say). Consider

$$
\begin{cases}H_{0}: & \lambda=\lambda_{0} \\ H_{1}: & \lambda=\lambda_{1}\end{cases}
$$

Have

$$
f(\mathbf{x} ; \lambda)=\prod_{i=1}^{n} \lambda e^{-\lambda x_{i}}=\lambda^{n} e^{-\lambda \sum_{i=1}^{n} x_{i}}
$$

So Neyman-Pearson say we must base our test on the statistic

$$
T=\frac{f\left(\mathbf{X} ; \lambda_{1}\right)}{f\left(\mathbf{X} ; \lambda_{0}\right)}=\left(\frac{\lambda_{1}}{\lambda_{0}}\right)^{n} \exp \left[\left(\lambda_{0}-\lambda_{1}\right) \sum_{i=1}^{n} X_{i}\right]
$$

rejecting the null if $T \geq k$, for k such that the level is α.

General version of Neyman-Pearson lemma considers relaxed problem: maximize $\mathbb{E}_{1}[\delta] \quad$ subject to $\quad \mathbb{E}_{0}[\delta]=\alpha \quad \& \quad 0 \leq \delta(\mathbf{X}) \leq 1$ a.s.

It is then proven that an optimal δ exists and is given by

$$
\delta(\mathbf{X})= \begin{cases}1 & \text { if } f_{1}(\mathbf{X})>k f_{0}(\mathbf{X}) \\ c & \text { if } f_{1}(\mathbf{X})=k f_{0}(\mathbf{X}) \\ 0 & \text { if } f_{1}(\mathbf{X})<k f_{0}(\mathbf{X})\end{cases}
$$

where k and $c \in[0,1]$ are such that the conditions are satisfied
\rightarrow The optimum need not be a test function (relaxation \equiv randomization)
\hookrightarrow But when the test statistic $T=f_{1} / f_{0}$ is a continuous RV , then δ can be taken to have range $\{0,1\}$, i.e. be a test function
\hookrightarrow In this case an MP test function of $H_{0}: f=f_{0}$ against $H_{1}: f=f_{1}$ exists for any significance level $\alpha>0$.
\rightarrow When T is discrete then the optimum need not be a test function for certain levels α, unless we consider randomized tests as well, . इ, ఐac Statistical Theory (Week 10)

Hypothesis Testing
14 / 19

The Neyman-Pearson Setup

Example (cont'd)

To determine k we note that T is a decreasing function of $S=\sum_{i=1}^{n} X_{1}$ (since $\lambda_{0}<\lambda_{1}$). Therefore

$$
T \geq k \Longleftrightarrow S \leq K
$$

for some K, so that

$$
\alpha=\mathbb{P}_{\lambda_{0}}[T \geq k] \Longleftrightarrow \alpha=\mathbb{P}_{\lambda_{0}}\left[\sum_{i=1}^{n} x_{i} \leq K\right]
$$

For given values of λ_{0} and α it is entirely feasible to find the appropriate K : under the null hypothesis, S has a gamma distribution with parameters n and λ_{0}. Hence we reject H_{0} at level α if S exceeds that α-quantile of a $\operatorname{gamma}\left(n, \lambda_{0}\right)$ distribution.

Example (Uniform Distribution)

Let $X_{1}, \ldots X_{n} \stackrel{i i d}{\sim} \mathcal{U}[0, \theta]$ with $\theta \in\left\{\theta_{0}, \theta_{1}\right\}$ where $\theta_{0}>\theta_{1}$. Consider

$$
\begin{cases}H_{0}: & \theta=\theta_{0} \\ H_{1}: & \theta=\theta_{1}\end{cases}
$$

Recall that

$$
f(\mathbf{x} ; \theta)=\frac{1}{\theta^{n}} \mathbf{1}\left\{\max _{1 \leq i \leq n} X_{i} \leq \theta\right\}
$$

so an MP test of H_{0} vs H_{1} should be based on the discrete test statistic

$$
T=\frac{f\left(\mathbf{X} ; \theta_{1}\right)}{f\left(\mathbf{X} ; \theta_{0}\right)}=\left(\frac{\theta_{0}}{\theta_{1}}\right)^{n} \mathbf{1}\left\{X_{(n)} \leq \theta_{1}\right\}
$$

So if the test rejects H_{0} when $X_{(n)} \leq \theta_{1}$ then it is MP for H_{0} vs H_{1} at

$$
\alpha=\mathbb{P}_{\theta_{0}}\left[X_{(n)} \leq \theta_{1}\right]=\left(\theta_{1} / \theta_{0}\right)^{n}
$$

with power $\mathbb{P}_{\theta_{1}}\left[X_{(n)} \leq \theta_{1}\right]=1$. What about smaller values of α ?

Example (cont'd)

\hookrightarrow What about finding an MP test for $\alpha<\left(\theta_{1} / \theta_{0}\right)^{n}$?
An intuitive test statistic is the sufficient statistic $X_{(n)}$, giving the test

$$
\text { reject } H_{0} \quad \text { iff } \quad X_{(n)} \leq k
$$

with k solving the equation:

$$
\mathbb{P}_{\theta_{0}}\left[X_{(n)} \leq k\right]=\left(\frac{k}{\theta_{0}}\right)^{n}=\alpha
$$

i.e. with $k=\theta_{0} \alpha^{1 / n}$, with power

$$
\mathbb{P}_{\theta_{1}}\left[X_{(n)} \leq \theta_{0} \alpha^{1 / n}\right]=\left(\frac{\theta_{0} \alpha^{1 / n}}{\theta_{1}}\right)^{n}=\alpha\left(\frac{\theta_{0}}{\theta_{1}}\right)^{n} .
$$

Is this the MP test at level $\alpha<\left(\theta_{1} / \theta_{0}\right)^{n}$ though?

Statistical Theory (Week 10)

Example (cont'd)

Use general form of the Neyman-Pearson lemma to solve relaxed problem:
maximize $\mathbb{E}_{1}[\delta(\mathbf{X})]$ subject to $\mathbb{E}_{\theta_{0}}[\delta(\mathbf{X})]=\alpha<\left(\frac{\theta_{1}}{\theta_{0}}\right)^{n} \& 0 \leq \delta(\mathbf{x}) \leq 1$.
One solution to this problem is given by

$$
\delta(\mathbf{X})= \begin{cases}\alpha\left(\theta_{0} / \theta_{1}\right)^{n} & \text { if } X_{(n)} \leq \theta_{1}, \\ 0 & \text { otherwise }\end{cases}
$$

which is not a test function. However, we see that its power is

$$
\mathbb{E}_{\theta_{1}}[\delta(\mathbf{X})]=\alpha\left(\frac{\theta_{0}}{\theta_{1}}\right)^{n}=\mathbb{P}_{\theta_{1}}\left[X_{(n)} \leq \theta_{0} \alpha^{1 / n}\right]
$$

which is the power of the test we proposed.
Hence the test that rejects H_{0} if $X_{(n)} \leq \theta_{0} \alpha^{1 / n}$ is an MP test for all levels $\alpha<\left(\theta_{1} / \theta_{0}\right)^{n}$.

Testing Statistical Hypotheses II

Statistical Theory

Victor Panaretos
Ecole Polytechnique Fédérale de Lausanne

ÉCOLE POLYTECHNIQUE
fédérale de lausanne
(1) Contrasting Theories With Experimental EvidenceHypothesis Testing Setup
(3) Type I vs Type II Error

4 The Neyman-Pearson SetupOptimality in the Neyman Pearson Setup

Neyman-Pearson Framework for Testing Hypotheses

The Problem of Hypothesis Testing

- $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ random variables with joint density/frequency $f(\mathbf{x} ; \theta)$
- $\theta \in \Theta$ where $\Theta=\Theta_{0} \cup \Theta_{1}$ and $\Theta_{0} \cap \Theta_{1}=\emptyset$
- Observe realization $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ of $\mathbf{X} \sim f_{\theta}$
- Decide on the basis of \mathbf{x} whether $\theta \in \Theta_{0}\left(H_{0}\right)$ or $\theta \in \Theta_{1}\left(H_{1}\right)$

Neyman-Pearson Framework:

(1) Fix a significance level α for the test
(2) Among all rules respecting the significance level, pick the one that uniformly maximizes power

When H_{0} / H_{1} both simple \rightarrow Neyman-Pearson lemma settles the problem.
\hookrightarrow What about more general structure of Θ_{0}, Θ_{1} ?

Uniformly Most Powerful Tests

A uniformly most powerful test of $H_{0}: \theta \in \Theta_{0}$ vs $H_{1}: \theta \in \Theta_{1}$ at level α :
(1) Respects the level for all $\theta \in \Theta_{0}$ (i.e. for all possible simple nulls),

$$
\mathbb{E}_{\theta}[\delta] \leq \alpha \quad \forall \theta \in \Theta_{0}
$$

(2) Is most powerful for all $\theta \in \Theta_{1}$ (i.e. for all possible simple alternatives),

$$
\mathbb{E}_{\theta}[\delta] \geq \mathbb{E}_{\theta}\left[\delta^{\prime}\right] \quad \forall \theta \in \Theta_{1} \quad \& \quad \delta^{\prime} \text { respecting level } \alpha
$$

Unfortunately UMP tests rarely exist. Why?
\hookrightarrow Consider $H_{0}: \theta=\theta_{0}$ vs $H_{1}: \theta \neq \theta_{0}$

- A UMP test must be MP test for any $\theta \neq \theta_{1}$.
- But by the form of the MP test typically differs for $\theta_{1}>\theta_{0}$ and $\theta_{1}<\theta_{0}$!

Example (No UMP test exists)

Let $X \sim \operatorname{Binom}(n, \theta)$ and suppose we want to test:

$$
H_{0}: \theta=\theta_{0} \quad \text { vs } \quad H_{1}: \theta \neq \theta_{0}
$$

at some level α. To this aim, consider first

$$
H_{0}^{\prime}: \theta=\theta_{0} \quad \text { vs } \quad H_{1}^{\prime}: \theta=\theta_{1}
$$

Neyman-Pearson lemma gives test statistics

$$
T=\frac{f\left(X ; \theta_{1}\right)}{f\left(X ; \theta_{0}\right)}=\left(\frac{1-\theta_{0}}{1-\theta_{1}}\right)^{n}\left(\frac{\theta_{1}\left(1-\theta_{0}\right)}{\theta_{0}\left(1-\theta_{1}\right)}\right)^{X}
$$

- If $\theta_{1}>\theta_{0}$ then T increasing in X
\hookrightarrow MP test would reject for large values of X
- If $\theta_{1}<\theta_{0}$ then T decreasing in X
\hookrightarrow MP test would reject for small values of X

Example (A UMP test exists)

Let $X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} \operatorname{Exp}(\lambda)$ and suppose we wish to test

$$
H_{0}: \lambda \leq \lambda_{0} \quad \text { vs } \quad H_{1}: \lambda>\lambda_{0}
$$

at some level α. To this aim, consider first the pair

$$
H_{0}^{\prime}: \lambda=\lambda_{0} \quad \text { vs } \quad H_{1}^{\prime}: \lambda=\lambda_{1}
$$

with $\lambda_{1}>\lambda_{0}$ which we saw last time to admit a MP test $\forall \lambda_{1}>\lambda_{0}$:
Reject $H_{0} \quad$ for $\quad \sum_{i=1}^{n} X_{i} \leq k, \quad$ with k such that $\mathbb{P}_{\lambda_{0}}\left[\sum_{i=1}^{n} X_{i} \leq k\right]=\alpha$
But for $\lambda<\lambda_{0}, \mathbb{P}_{\lambda_{0}}\left[\sum_{i=1}^{n} X_{i} \leq k\right]=\alpha \Longrightarrow \mathbb{P}_{\lambda}\left[\sum_{i=1}^{n} X_{i} \leq k\right]<\alpha$.
So the same test respects level α for all singletons under the the null.
\hookrightarrow The test is UMP of H_{0} vs H_{1}
Statistical Theory (Week 11)
Hypothesis Testing

When do UMP tests exist?

Proposition

Let $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ have joint distribution of monotone likelihood ratio with respect to a statistic T, depending on $\theta \in \mathbb{R}$. Further assume that T is a continuous random variable. Then, the test function given by

$$
\delta(\mathbf{X})= \begin{cases}1 & \text { if } T(\mathbf{X})>k, \\ 0 & \text { if } T(\mathbf{X}) \leq k\end{cases}
$$

is UMP among all tests with type one error bounded above by $\mathbb{E}_{\theta_{0}}[\delta(\mathbf{X})]$ for the hypothesis pair

$$
\begin{cases}H_{0}: & \theta \leq \theta_{0} \\ H_{1}: & \theta>\theta_{1} \\ \hline\end{cases}
$$

[The assumption of continuity of the random variable T can be removed, by considering randomized tests as well, similarly as before]

- T yielding monotone likelihood ratio necessarily a sufficient statistic

Example (One-Parameter Exponential Family)

Let $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ have a joint density (frequency)

$$
f(\mathbf{x} ; \theta)=\exp [c(\theta) T(\mathbf{x})-b(\theta)+S(\mathbf{x})]
$$

and assume WLOG that $c(\theta)$ is strictly increasing. For $\theta_{1}<\theta_{2}$,

$$
\frac{f\left(\mathbf{x} ; \theta_{2}\right)}{f\left(\mathbf{x} ; \theta_{1}\right)}=\exp \left\{\left[c\left(\theta_{2}\right)-c\left(\theta_{1}\right)\right] T(\mathbf{x})+b\left(\theta_{1}-b\left(\theta_{2}\right)\right)\right\}
$$

is increasing in T by monotonicity of $c(\cdot)$.
Hence the UMP test of $H_{0}: \theta \leq \theta_{0}$ vs $H_{1}: \theta>\theta_{0}$ would reject iff $T(\mathbf{x}) \geq k$, with $\alpha=\mathbb{P}_{\theta_{0}}[T \geq k]$.

Statistical Theory (Week 11)
Hypothesis Testing
How do we solve this constrained optimization problem?
\hookrightarrow Solution similar to Neyman-Pearson lemma?
Supposing that $\mathbf{X}=\left(X_{1}, \ldots X_{n}\right)$ has density $f(\mathbf{x} ; \theta)$, then

$$
\begin{aligned}
\beta(\theta) & =\int_{\mathbb{R}^{n}} \delta(\mathbf{x}) f(\mathbf{x} ; \theta) d \mathbf{x} \\
\frac{\partial}{\partial \theta} \beta(\theta) & =\int_{\mathbb{R}^{n}} \delta(\mathbf{x}) \frac{\partial}{\partial \theta} f(\mathbf{x} ; \theta) d \mathbf{x} \quad \text { [provided interchange possible] } \\
& =\int_{\mathbb{R}^{n}} \delta(\mathbf{x}) \frac{f(\mathbf{x} ; \theta)}{f(\mathbf{x} ; \theta)} \frac{\partial}{\partial \theta} f(\mathbf{x} ; \theta) d \mathbf{x} \\
& =\int_{\mathbb{R}^{n}} \delta(\mathbf{x})\left[\frac{\partial}{\partial \theta} \log f(\mathbf{x} ; \theta)\right] f(\mathbf{x} ; \theta) d \mathbf{x} \\
& =\mathbb{E}_{\theta}[\delta(\mathbf{X}) \underbrace{\frac{\partial}{\partial \theta} \log f(\mathbf{x} ; \theta)}_{S(\mathbf{X} ; \theta)}]
\end{aligned}
$$

\hookrightarrow What if MLR property fails to be satisfied? Can optimality be "saved"?

- Consider $\theta \in \mathbb{R}$ and wish to test: $H_{0}: \theta \leq \theta_{0}$ vs $H_{0}: \theta>\theta_{0}$
- Intuition: if true θ far from θ_{0} any reasonable test powerful
\star So focus on maximizing power in small neighbourhood of θ_{0}
\rightarrow Consider power function $\beta(\theta)=\mathbb{E}_{\theta}[\delta(\mathbf{X})]$ of some δ.
\rightarrow Require $\beta\left(\theta_{0}\right)=\alpha$ (a boundary condition, similar with MLR setup)
\rightarrow Assume that $\beta(\theta)$ is differentiable, so for θ close to θ_{0}

$$
\beta(\theta) \approx \beta\left(\theta_{0}\right)+\beta^{\prime}\left(\theta_{0}\right)\left(\theta-\theta_{0}\right)=\alpha+\beta^{\prime}\left(\theta_{0}\right) \underbrace{\left(\theta-\theta_{0}\right)}_{>0}
$$

Since $\Theta_{1}=\left(\theta_{0}, \infty\right)$, this suggests approach for locally most powerful test
Choose $\delta \quad$ to Maximize $\beta^{\prime}\left(\theta_{0}\right) \quad$ Subject to $\beta\left(\theta_{0}\right)=\alpha$
Statistical Theory (Week 11)
Hypothesis Testing
0/19

Locally Most Powerful Tests

Theorem

Let $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ have joint density (frequency) $f(\mathbf{x} ; \theta)$ and define the test function

$$
\delta(\mathbf{X})= \begin{cases}1 & \text { if } S\left(\mathbf{X} ; \theta_{0}\right) \geq k \\ 0 & \text { otherwise }\end{cases}
$$

where k is such that $\mathbb{E}_{\theta_{0}}[\delta(\mathbf{X})]=\alpha$. Then δ maximizes

$$
\mathbb{E}_{\theta_{0}}\left[\psi(\mathbf{X}) S\left(\mathbf{X} ; \theta_{0}\right)\right]
$$

over all test functions ψ satisfying the constraint $\mathbb{E}_{\theta_{0}}[\psi(\mathbf{X})]=\alpha$.

- Gives recipe for constructing LMP test
- We were concerned about power only locally around θ_{0}
- May not even give a level α test for some $\theta<\theta_{0}$

Proof
Consider ψ with $\psi(\mathbf{x}) \in\{0,1\} \forall \mathbf{x}$ and $\mathbb{E}_{\theta_{0}}[\psi(\mathbf{X})]=\alpha$. Then,

$$
\delta(\mathbf{x})-\psi(\mathbf{x})= \begin{cases}\geq 0 & \text { if } S\left(\mathbf{x} ; \theta_{0}\right) \geq k \\ \leq 0 & \text { if } S\left(\mathbf{x} ; \theta_{0}\right) \leq k\end{cases}
$$

Therefore

$$
\mathbb{E}_{\theta_{0}}\left[(\delta(\mathbf{X})-\psi(\mathbf{X}))\left(S\left(\mathbf{X} ; \theta_{0}\right)-k\right)\right] \geq 0
$$

Since $\mathbb{E}_{\theta_{0}}[\delta(\mathbf{X})-\psi(\mathbf{X})]=0$ it must be that

$$
\mathbb{E}_{\theta_{0}}\left[\delta(\mathbf{X}) S\left(\mathbf{X} ; \theta_{0}\right)\right] \geq \mathbb{E}_{\theta_{0}}\left[\psi(\mathbf{X}) S\left(\mathbf{X} ; \theta_{0}\right)\right]
$$

How is the critical value k evaluated in practice? (obviously to give level α)

- When $\left\{X_{i}\right\}$ are iid then $S(\mathbf{X} ; \theta)=\sum_{i=1}^{n} \ell^{\prime}\left(X_{i} ; \theta\right)$
- Under regularity conditions: sum of iid rv's mean zero variance $I(\theta)$
- So, for $\theta=\theta_{0}$ and large $n, S(\mathbf{X} ; \theta) \stackrel{d}{\approx} \mathcal{N}(0, n l(\theta))$

Statistical Theory (Week 11)

> Hypothesis Testing
$13 / 19$

Likelihood Ratio Tests

So far seen \rightarrow Tests for $\Theta=\mathbb{R}$, simple vs simple, one sided vs one sided
\hookrightarrow Extension to multiparameter case $\boldsymbol{\theta} \in \mathbb{R}^{p}$? General Θ_{0}, Θ_{1} ?

- Unfortunately, optimality theory breaks down in higher dimensions
- General method for constructive reasonable tests?
\rightarrow The idea: Combine Neyman-Pearson paradigm with Max Likelihood

Definition (Likelihood Ratio)

The likelihood ratio statistic corresponding to the pair of hypotheses $H_{0}: \boldsymbol{\theta} \in \Theta_{0}$ vs $H_{1}: \boldsymbol{\theta} \in \Theta_{1}$ is defined to be

$$
\Lambda(\mathbf{X})=\frac{\sup _{\boldsymbol{\theta} \in \Theta} f(\mathbf{X} ; \theta)}{\sup _{\boldsymbol{\theta} \in \Theta_{0}} f(\mathbf{X} ; \theta)}=\frac{\sup _{\boldsymbol{\theta} \in \Theta} L(\theta)}{\sup _{\boldsymbol{\theta} \in \Theta_{0}} L(\theta)}
$$

- "Neyman-Pearson"-esque approach: reject H_{0} for large Λ.
- Intuition: choose the "most favourable" $\theta \in \Theta_{0}$ (in favour of H_{0}) and compare it against the "most favourable" $\theta \in \Theta_{1}$ (in favour of H_{1}) in a simple vs simple setting (applying NP-lemma)

Example (Cauchy distribution)

Let $X_{1}, \ldots, X_{n} \stackrel{\text { iid }}{\sim}$ Cauchy (θ), with density,

$$
f(x ; \theta)=\frac{1}{\pi\left(1+(x-\theta)^{2}\right)}
$$

and consider the hypothesis pair $\begin{cases}H_{0}: & \theta \geq 0 \\ H_{1}: & \theta \leq 0\end{cases}$
We have

$$
S(\mathbf{X} ; 0)=\sum_{i=1}^{n} \frac{2 X_{i}}{1+X_{i}^{2}}
$$

so that the LMP test at level α rejects the null if $S(\mathbf{X} ; 0) \leq k$, where

$$
\mathbb{P}_{0}[S(\mathbf{X} ; 0) \leq k]=\alpha
$$

While the exact distribution is difficult to obtain, for large n,
$S(\mathbf{X} ; 0) \stackrel{d}{\approx} \mathcal{N}(0, n / 2)$.
Statistical Theory (Week 11)

Example

Let $X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} \mathcal{N}\left(\mu, \sigma^{2}\right)$ where both μ and σ^{2} are unknown. Consider:

$$
H_{0}: \mu=\mu_{0} \quad \text { vs } \quad H_{1}: \mu \neq \mu_{0}
$$

$\Lambda(\mathbf{X})=\frac{\sup _{\left(\mu, \sigma^{2}\right) \in \mathbb{R} \times \mathbb{R}^{+}} f\left(\mathbf{X} ; \mu, \sigma^{2}\right)}{\sup _{\left(\mu, \sigma^{2}\right) \in\left\{\mu_{0}\right\} \times \mathbb{R}^{+}} f\left(\mathbf{X} ; \mu, \sigma^{2}\right)}=\left(\frac{\hat{\sigma}_{0}^{2}}{\hat{\sigma}^{2}}\right)^{\frac{n}{2}}=\left(\frac{\sum_{i=1}^{n}\left(X_{i}-\mu_{0}\right)^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right)^{\frac{n}{2}}$
So reject when $\Lambda \geq k$, where k is s.t. $\mathbb{P}_{0}[\Lambda \geq k]=\alpha$. Distribution of Λ ? By monotonicity look only at

$$
\begin{aligned}
\frac{\sum_{i=1}^{n}\left(X_{i}-\mu_{0}\right)^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}} & =1+\frac{n\left(\bar{X}-\mu_{0}\right)^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}=1+\frac{1}{n-1}\left(\frac{n\left(\bar{X}-\mu_{0}\right)^{2}}{S^{2}}\right) \\
& =1+\frac{T^{2}}{n-1}
\end{aligned}
$$

With $S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$ and $T=\sqrt{n}\left(\bar{X}-\mu_{0}\right) / S \stackrel{H_{0}}{\sim} t_{n-1}$.
So $T^{2} \stackrel{H_{0}}{\sim} F_{1, n-1}$ and k may be chosen appropriately.

Distribution of Likelihood Ratio?

Example

Let $X_{1}, \ldots, X_{m} \stackrel{i i d}{\sim} \operatorname{Exp}(\lambda)$ and $Y_{1}, \ldots, Y_{n} \stackrel{\text { iid }}{\sim} \operatorname{Exp}(\theta)$. Assume \mathbf{X} indep \mathbf{Y}.

$$
\begin{aligned}
& \text { Consider: } H_{0}: \theta=\lambda \quad \text { vs } \quad H_{1}: \theta \neq \lambda \\
& \underset{\sup _{(\lambda, \theta) \in \mathbb{R}_{+}^{2}} f(\mathbf{X}, \mathbf{Y} ; \lambda, \theta)}{\text { Unrestricter }_{\text {M }}} \quad \hat{\lambda}=1 / \bar{X} \quad \& \quad \hat{\theta}=1 / \bar{Y} \\
& \text { Restricted MLEs: } \\
& \sup _{(\lambda, \theta) \in\left\{(x, y) \in \mathbb{R}_{+}^{2}: X=y\right\}} f(\mathbf{X}, \mathbf{Y} ; \lambda, \theta) \quad \lambda_{0}=\hat{\theta}_{0}=\left[\frac{\bar{X}+n \hat{Y}}{m+n}\right] \\
& \Longrightarrow \Lambda=\left(\frac{m}{m+n}+\frac{n}{n+m} \frac{\bar{Y}}{\bar{X}}\right)^{m}\left(\frac{n}{n+m}+\frac{m}{m+n} \frac{\bar{X}}{\bar{Y}}\right)^{n}
\end{aligned}
$$

Depends on $T=\bar{X} / \bar{Y}$ and can make Λ large/small by varying T. \hookrightarrow But $T \stackrel{H_{0}}{\sim} F_{2 m, 2 n}$ so given α we may find the critical value k.

Asymptotic Distribution of the Likelihood Ratio

Theorem (Wilks' Theorem, case $p=1$)

Let X_{1}, \ldots, X_{n} be iid random variables with density (frequency) depending on $\theta \in \mathbb{R}$ and satisfying conditions (A1)-(A6), with $I(\theta)=J(\theta)$. If the MLE sequence $\hat{\theta}_{n}$ is consistent for θ, then the likelihood ratio statistic Λ_{n} for $H_{0}: \theta=\theta_{0}$ satisfies

$$
2 \log \Lambda_{n} \xrightarrow{d} V \sim \chi_{1}^{2}
$$

when H_{0} is true.

- Obviously, knowing approximate distribution of $2 \log \Lambda_{n}$ is as good as knowing approximate distribution of Λ_{n} for the purposes of testing (by monotonicity and rejection method).
- Theorem extends immediately and trivially to the case of general p and for a hypothesis pair $H_{0}: \boldsymbol{\theta}=\boldsymbol{\theta}_{0}$ vs $H_{1}: \boldsymbol{\theta} \neq \boldsymbol{\theta}_{0}$. (i.e. when null hypothesis is simple)

More often than not, $\operatorname{dist}(\Lambda)$ intractable
\hookrightarrow (and no simple dependence on T with tractable distribution either)
Consider asymptotic approximations?

Setup

- Θ open subset of \mathbb{R}^{p}
- either $\Theta_{0}=\left\{\boldsymbol{\theta}_{0}\right\}$ or Θ_{0} open subset of \mathbb{R}^{s}, where $s<p$
- Concentrate on $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ has iid components.
- Initially restrict attention to $H_{0}: \boldsymbol{\theta}=\boldsymbol{\theta}_{0}$ vs $H_{1}: \boldsymbol{\theta} \neq \boldsymbol{\theta}_{0}$. LR becomes:

$$
\Lambda_{n}(\mathbf{X})=\prod_{i=1}^{n} \frac{f\left(X_{i} ; \hat{\boldsymbol{\theta}}_{n}\right)}{f\left(X_{i} ; \boldsymbol{\theta}_{0}\right)}
$$

where $\hat{\boldsymbol{\theta}}_{n}$ is the MLE of $\boldsymbol{\theta}$.

- Impose regularity conditions from MLE asymptotics

Statistical Theory (Week 11)
Hypothesis Testing

Asymptotic Distribution of the Likelihood Ratio

Proof.

Under the conditions of the theorem and when H_{0} is true,

$$
\sqrt{n}\left(\hat{\theta}_{n}-\theta_{0}\right) \xrightarrow{d} \mathcal{N}\left(0, I^{-1}(\theta)\right)
$$

Now take logarithms and expand in a Taylor series

$$
\begin{aligned}
\log \Lambda_{n} & =\sum_{i=1}^{n}\left[\ell\left(X_{i} ; \hat{\theta}_{n}\right)-\ell\left(X_{i} ; \theta_{0}\right)\right] \\
& =\left(\theta_{0}-\hat{\theta}_{n}\right) \sum_{i=1}^{n} \ell^{\prime}\left(X_{i} ; \hat{\theta}_{n}\right)-\frac{1}{2}\left(\hat{\theta}_{n}-\theta_{0}\right)^{2} \sum_{i=1}^{n} \ell^{\prime \prime}\left(X_{i} ; \theta_{n}^{*}\right) \\
& =-\frac{1}{2} n\left(\hat{\theta}_{n}-\theta_{0}\right)^{2} \frac{1}{n} \sum_{i=1}^{n} \ell^{\prime \prime}\left(X_{i} ; \theta_{n}^{*}\right)
\end{aligned}
$$

where θ_{n}^{*} lies between $\hat{\theta}_{n}$ and θ_{0}.

Asymptotic Distribution of the Likelihood Ratio

But under assumptions (A1)-(A6), it follows that when H_{0} is true,

$$
\frac{1}{n} \sum_{i=1}^{n} \ell^{\prime \prime}\left(X_{i} ; \theta_{n}^{*}\right) \xrightarrow{p}-\mathbb{E}_{\theta_{0}}\left[\ell^{\prime \prime}\left(X_{i} ; \theta_{0}\right)\right]=I\left(\theta_{0}\right)
$$

On the other hand, by the continuous mapping theorem,

$$
n\left(\hat{\theta}_{n}-\theta_{0}\right)^{2} \xrightarrow{d} \frac{V}{I\left(\theta_{0}\right)}
$$

Applying Slutsky's theorem now yields the result.

Other Tests?

Many other tests possible once we "liberate" ourselves from strict optimality criteria. For example:

- Wald's test
\hookrightarrow For a simple null, may compare the unrestricted MLE with the MLE under the null. Large deviations indicate evidence against null hypothesis. Distributions are approximated for large n via the asymptotic normality of MLEs.
- Score Test
\hookrightarrow For a simple null, if the null hypothesis is false, then the loglikelihood gradient at the null should not be close to zero, at least when n reasonably large: so measure its deviations form zero. Use asymptotics for distributions (under conditions we end up with a χ^{2})

Asymptotic Distribution of the Likelihood Ratio

Theorem (Wilk's theorem, general p, general $s \leq p$)

Let X_{1}, \ldots, X_{n} be iid random variables with density (frequency) depending on $\boldsymbol{\theta} \in \mathbb{R}^{p}$ and satisfying conditions (B1)-(B6), with $I(\theta)=J(\boldsymbol{\theta})$. If the MLE sequence $\hat{\boldsymbol{\theta}}_{n}$ is consistent for $\boldsymbol{\theta}$, then the likelihood ratio statistic Λ_{n} for $H_{0}:\left\{\theta_{j}=\theta_{j, 0}\right\}_{j=1}^{s}$ satisfies $2 \log \Lambda_{n} \xrightarrow{d} V \sim \chi_{s}^{2}$ when H_{0} is true.

Exercise

Prove Wilks' theorem. Note that it may potentially be that $s<p$.
Hypotheses of the form $H_{0}:\left\{g_{j}(\boldsymbol{\theta})=a_{j}\right\}_{j=1}^{s}$, for g_{j} differentiable real functions, can also be handled by Wilks' theorem:

- Define $\left(\phi_{1}, \ldots, \phi_{p}\right)=g(\boldsymbol{\theta})=\left(g_{1}(\boldsymbol{\theta}), \ldots, g_{p}(\boldsymbol{\theta})\right)$
- g_{s+1}, \ldots, g_{p} defined so that $\boldsymbol{\theta} \mapsto g(\boldsymbol{\theta})$ is 1-1
- Apply theorem with parameter ϕ

Statistical Theory (Week 11)
Hypothesis Testing

From Hypothesis Tests to Confidence Regions

Statistical Theory

Victor Panaretos
Ecole Polytechnique Fédérale de Lausanne

ÉCOLE POLYTECHNIQUE
fédérale de lausanne
(1) p-valuesConfidence IntervalsThe Pivoting MethodExtension to Confidence Regions
(5) Inverting Hypothesis Tests

Beyond Neyman-Pearson?

So far restricted to Neyman-Pearson Framework:
(1) Fix a significance level α for the test
(2) Consider rules δ respecting this significance level
\hookrightarrow We choose one of those rules, δ^{*}, based on power considerations
(3) We reject at level α if $\delta^{*}(\mathbf{x})=1$.

Useful for attempting to determine optimal test statistics
What if we already have a given form of test statistic in mind? (e.g. LRT)
\hookrightarrow A different perspective on testing (used more in practice) says:
Rather then consider a family of test functions respecting level α..
... consider family of test functions indexed by α
(1) Fix a family $\left\{\delta_{\alpha}\right\}_{\alpha \in(0,1)}$ of decision rules, with δ_{α} having level α
\hookrightarrow for a given x some of these rules reject the null, while others do not
(2) Which is the smallest α for which H_{0} is rejected given \mathbf{x} ?

Observed Significance Level

Definition ($p-$ Value)

Let $\left\{\delta_{\alpha}\right\}_{\alpha \in(0,1)}$ be a family of test functions satisfying

$$
\alpha_{1}<\alpha_{2} \Longrightarrow\left\{\mathbf{x} \in \mathcal{X}: \delta_{\alpha_{1}}(\mathbf{x})=1\right\} \subseteq\left\{\mathbf{x} \in \mathcal{X}: \delta_{\alpha_{2}}(\mathbf{x})=1\right\}
$$

The p-value (or observed significance level) of the family $\left\{\delta_{\alpha}\right\}$ is

$$
p(\mathbf{x})=\inf \left\{\alpha: \delta_{\alpha}(\mathbf{x})=1\right\}
$$

\hookrightarrow The p-value is the smallest value of α for which the null would be rejected at level α, given $\mathbf{X}=\mathbf{x}$.
Most usual setup:

- Have a single test statistic T
- Construct family $\delta_{\alpha}(\mathbf{x})=\mathbf{1}\left\{T(\mathbf{x})>k_{\alpha}\right\}$
- If $\mathbb{P}_{H_{0}}[T \leq t]=G(t)$ then $p(\mathbf{x})=\mathbb{P}_{H_{0}}[T(\mathbf{X}) \geq T(\mathbf{x})]=1-G(T(\mathbf{x}))$

Observed Significance Level

Notice: contrary to NP-framework did not make explicit decision!

- We simply reported a p-value
- The p-value is used as a measure of evidence against H_{0}
\hookrightarrow Small p-value provides evidence against H_{0}
\hookrightarrow Large p-value provides no evidence against H_{0}
- How small does "small" mean?
\hookrightarrow Depends on the specific problem...
Intuition:
- Recall that extreme values of test statistics are those that are "inconsistent" with null (NP-framework)
- p-value is probability of observing a value of the test statistic as extreme as or more extreme than the one we observed, under the null
- If this probability is small, the we have witnessed something quite unusual under the null hypothesis
- Gives evidence against the null hypothesis \qquad
Statistical Theory (Week 12)
Confidence Regions

Significance VS Decision

- Reporting a p-value does not necessarily mean making a decision
- A small p-value can simply reflect our "confidence" in rejecting a null \hookrightarrow reflects how statistically significant the alternative statement is

Recall example: Statisticians working for Obama gather iid sample X from Ohio with $X_{i}=\mathbf{1}$ \{vote Obama\}. Obama team want to test

$$
\begin{cases}H_{0}: & \text { McCain wins Ohio } \\ H_{1}: & \text { Obama wins Ohio }\end{cases}
$$

- Will statisticians decide for Obama?
- Perhaps better to report p-value to him and let him decide...

What if statisticians working for newspaper, not Obama?

- Something easier to interpret than test/ p-value?

Example (Normal Mean)

Let $X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} \mathcal{N}\left(\mu, \sigma^{2}\right)$ where both μ and σ^{2} are unknown. Consider:

$$
H_{0}: \mu=0 \quad \text { vs } \quad H_{1}: \mu \neq 0
$$

Likelihood ratio test: reject when T^{2} large, $T=\sqrt{n} \bar{X} / S \stackrel{\mathcal{H}_{0}}{\sim} t_{n-1}$.
Since $T^{2} \stackrel{H_{0}}{\sim} F_{1, n-1}, p$-value is

$$
p(\mathbf{x})=\mathbb{P}_{H_{0}}\left[T^{2}(\mathbf{X}) \geq T(\mathbf{x})\right]=1-G_{F_{1, n-1}}\left(T^{2}(\mathbf{x})\right)
$$

Consider two samples (datasets),

$$
\begin{gathered}
\mathbf{x}=(0.66,0.28,-0.99,0.007,-0.29,-1.88,-1.24,0.94,0.53,-1.2) \\
\mathbf{y}=(1.4,0.48,2.86,1.02,-1.38,1.42,2.11,2.77,1.02,1.87)
\end{gathered}
$$

Obtain $p(\mathbf{x})=0.32$ while $p(\mathbf{y})=0.006$.

> Statistical Theory (Week 12)

A Glance Back at Point Estimation

- Let X_{1}, \ldots, X_{n} be iid random variables with density (frequency) $f(\cdot ; \theta)$.
- Problem with point estimation: $\mathbb{P}_{\theta}[\hat{\theta}=\theta]$ typically small (if not zero) \hookrightarrow always attach an estimator of variability, e.g. standard error \hookrightarrow interpretation?
- Hypothesis tests may provide way to interpret estimator's variability within the setup of a particular problem
\hookrightarrow e.g. if observe \hat{P} [obama wins] $=0.52$ can actually see what p-value we get when testing $H_{0}: P$ [obama wins] $\geq 1 / 2$.
- Something more directly interpretable?

Back to our example: What do pollsters do in newspapers?
\hookrightarrow They announce their point estimate (e.g. 0.52)
\hookrightarrow They give upper and lower confidence limits
What are these and how are they interpreted?

Interval Estimation

Interval Estimation: Interpretation

Simple underlying idea:

- Instead of estimating θ by a single value
- Present a whole range of values for θ that are consistent with the data \hookrightarrow In the sense that they could have produced the data

Definition (Confidence Interval)

Let $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ be random variables with joint distribution depending on $\theta \in \mathbb{R}$ and let $L(\mathbf{X})$ and $U(\mathbf{X})$ be two statistics with $L(\mathbf{X})<U(\mathbf{X})$ a.s. Then, the random interval $[L(\mathbf{X}), U(\mathbf{X})]$ is called a $100(1-\alpha) \%$ confidence interval for θ if

$$
\mathbb{P}_{\theta}[L(\mathbf{X}) \leq \theta \leq U(\mathbf{X})] \geq 1-\alpha
$$

for all $\theta \in \Theta$, with equality for at least one value of θ.

- $1-\alpha$ is called the coverage probability or confidence level
- Beware of interpretation!

Statistical Theory (Week 12)
Confidence Regions
 $9 / 27$

- Probability statement is NOT made about θ, which is constant.
- Statement is about interval: probability that the interval contains the true value is at least $1-\alpha$.
- Given any realization $\mathbf{X}=\mathbf{x}$, the interval $[L(\mathbf{x}), U(\mathbf{x})]$ will either contain or not contain θ.
- Interpretation: if we construct intervals with this method, then we expect that $100(1-\alpha) \%$ of the time our intervals will engulf the true value.

Pivotal Quantities

What can we learn from previous example?

Definition (Pivot)

A random function $g(\mathbf{X}, \theta)$ is said to be a pivotal quantity (or simply a pivot) if it is a function both of \mathbf{X} and θ whose distribution does not depend on θ.
$\hookrightarrow \sqrt{n}(\bar{X}-\mu) \sim \mathcal{N}(0,1)$ is a pivot in previous example
Why is a pivot useful?

- $\forall \alpha \in(0,1)$ we can find constants $a<b$ independent of θ, such that

$$
\mathbb{P}_{\theta}[a \leq g(\mathbf{X}, \theta) \leq b]=1-\alpha \quad \forall \theta \in \Theta
$$

- If $g(\mathbf{X}, \theta)$ can be manipulated then the above yields a Cl

Central Limit Theorem: same argument can yield approximate $95 \% \mathrm{Cl}$ when X_{1}, \ldots, X_{n} are iid, $\mathbb{E} X_{i}=\mu$ and $\operatorname{Var}\left(X_{i}\right)=1$, regardless of their distribution.

Example

Let $X_{1}, \ldots, X_{n} \stackrel{\text { iid }}{\sim} \mathcal{U}[0, \theta]$. Recall that MLE $\hat{\theta}$ is $\hat{\theta}=X_{(n)}$, with distribution

$$
\mathbb{P}_{\theta}\left[X_{(n)} \leq x\right]=F_{X_{(n)}}(x)=\left(\frac{x}{\theta}\right)^{n} \Longrightarrow \mathbb{P}_{\theta}\left[\frac{X_{(n)}}{\theta} \leq y\right]=y^{n}
$$

\rightarrow Hence $X_{(n)} / \theta$ is a pivot for θ. Can now choose $a<b$ such that

$$
\mathbb{P}_{\theta}\left[a \leq \frac{X_{(n)}}{\theta} \leq b\right]=1-\alpha
$$

\rightarrow But there are ∞-many such choices!
\hookrightarrow Idea: choose pair (a, b) that minimizes interval's length!
Solution can be seen to be $a=\alpha^{1 / n}$ and $b=1$, yielding

$$
\left[X_{(n)}, \frac{X_{(n)}}{\alpha^{1 / n}}\right]
$$

Comments on Pivotal Quantities

Pivotal method extends to construction of Cl for θ_{k}, when

$$
\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{k}, \ldots, \theta_{p}\right) \in \mathbb{R}^{p}
$$

and the remaining coordinates are also unknown. \rightarrow Pivotal quantity should now be function $g\left(\mathbf{X} ; \theta_{k}\right)$ which
(1) Depends on \mathbf{X}, θ_{k}, but no other parameters
(2) Has a distribution independent of any of the parameters
\hookrightarrow e.g.: Cl for normal mean, when variance unknown
\rightarrow Main difficulties with pivotal method:

- Hard to find exact pivots in general problems
- Exact distributions may be intractable

Resort to asymptotic approximations...
\hookrightarrow Most classic example when have $a_{n}\left(\hat{\theta}_{n}-\theta\right) \xrightarrow{d} \mathcal{N}\left(0, \sigma^{2}(\theta)\right)$.
Statistical Theory (Week 12)
Confidence Regions

Pivots for Confidence Regions

Let $g: \mathcal{X} \times \Theta \rightarrow \mathbb{R}$ be a function such that $\operatorname{dist}[g(\mathbf{X}, \boldsymbol{\theta})]$ independent of $\boldsymbol{\theta}$ \hookrightarrow Since image space is the real line, can find $a<b$ s.t.

$$
\begin{gathered}
\mathbb{P}_{\boldsymbol{\theta}}[a \leq g(\mathbf{X}, \boldsymbol{\theta}) \leq b]=1-\alpha \\
\Longrightarrow \mathbb{P}_{\boldsymbol{\theta}}[R(\mathbf{X}) \ni \boldsymbol{\theta}]=1-\alpha
\end{gathered}
$$

where $R(\mathbf{x})=\{\boldsymbol{\theta} \in \Theta: g(\mathbf{x}, \boldsymbol{\theta}) \in[a, b])\}$
Notice that region can be "wild" since it is a random fibre of g

Example

Let $\mathbf{X}_{1}, \ldots, \mathbf{X}_{n} \stackrel{i i d}{\sim} \mathcal{N}_{k}(\boldsymbol{\mu}, \Sigma)$. Two unbiased estimators of $\boldsymbol{\mu}$ and Σ are

$$
\begin{aligned}
\hat{\boldsymbol{\mu}} & =\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i} \\
\hat{\Sigma} & =\frac{1}{n-1} \sum_{i=1}^{n}\left(\mathbf{X}_{i}-\hat{\boldsymbol{\mu}}\right)\left(\mathbf{X}_{i}-\hat{\boldsymbol{\mu}}\right)^{T}
\end{aligned}
$$

Example (cont'd)

Consider the random variable
$g\left(\{\mathbf{X}\}_{i=1}^{n}, \boldsymbol{\mu}\right):=\frac{n(n-k)}{k(n-1)}(\hat{\mu}-\boldsymbol{\mu})^{T} \hat{\Sigma}^{-1}(\hat{\mu}-\boldsymbol{\mu}) \sim F$-dist with k and n-k d.f.
A pivot!
\leftrightarrows If f_{q} is q-quantile of this distribution, then get $100 q \% \mathrm{CR}$ as

$$
R\left(\{\mathbf{X}\}_{i=1}^{n}\right)=\left\{\boldsymbol{\theta} \in \mathbb{R}^{n}: \frac{n(n-k)}{k(n-1)}(\hat{\mu}-\mu)^{T} \hat{\Sigma}^{-1}(\hat{\mu}-\mu) \leq f_{q}\right\}
$$

- An ellipsoid in \mathbb{R}^{n}
- Ellipsoid centred at $\hat{\boldsymbol{\mu}}$
- Principle axis lengths given by eigenvalues of $\hat{\Sigma}^{-1}$
- Orientation given by eigenvectors of $\hat{\Sigma}^{-1}$

Statistical Theory (Week 12)

Confidence Intervals and Hypothesis Tests

Discussion on CR's \rightarrow no guidance to choosing "good" regions
But: \exists close relationship between CR's and HT's!
\hookrightarrow exploit to transform good testing properties into good CR properties
Suppose $R(\mathbf{X})$ is an exact $100 q \%=100(1-\alpha) \%$ CR for $\boldsymbol{\theta}$. Consider

$$
H_{0}: \boldsymbol{\theta}=\boldsymbol{\theta}_{0} \quad \text { vs } \quad H_{1}: \theta \neq \theta_{0}
$$

Define test function:

$$
\delta(\mathbf{X})= \begin{cases}1 & \text { if } \boldsymbol{\theta}_{0} \notin R(\mathbf{X}) \\ 0 & \text { if } \boldsymbol{\theta}_{0} \in R(\mathbf{X})\end{cases}
$$

Then,

$$
\mathbb{E}_{\boldsymbol{\theta}_{0}}[\delta(\mathbf{X})]=1-\mathbb{P}_{\boldsymbol{\theta}_{0}}\left[\boldsymbol{\theta}_{0} \in R(\mathbf{X})\right] \leq \alpha
$$

Can use a CR to construct test with significance level α !

Getting Confidence Regions from Confidence Intervals

Visualisation of high-dimensional CR's can be hard

- When these are ellipsoids spectral decomposition helps
- But more generally?

Things especially easy when dealing with rectangles - but they rarely occur! \hookrightarrow What if we construct a CR as Cartesian product of Cl's?

Let $\left[L_{i}(\mathbf{X}), U_{i}(\mathbf{X})\right]$ be $100 q_{i} \% \mathrm{Cl}$'s for $\theta_{i}, i=1, . ., p$, and define

$$
R(\mathbf{X})=\left[L_{1}(\mathbf{X}), U_{1}(\mathbf{X})\right] \times \ldots \times\left[L_{p}(\mathbf{X}), U_{p}(\mathbf{X})\right]
$$

Bonferroni's inequality implies that

$$
\mathbb{P}_{\boldsymbol{\theta}}[R(\mathbf{X}) \ni \boldsymbol{\theta}] \geq 1-\sum_{i=1}^{p} \mathbb{P}\left[\theta_{i} \notin\left[L_{i}(\mathbf{X}), U_{i}(\mathbf{X})\right]\right]=1-\sum_{i=1}^{p}\left(1-q_{i}\right)
$$

\rightarrow So pick q_{i} such that $\sum_{i=1}^{p}\left(1-q_{i}\right)=\alpha \quad($ can be conservative...)
Statistical Theory (Week 12)

Confidence Intervals and Hypothesis Tests

Going the other way around, can invert tests to get CR's:
Suppose we have tests at level α for any choice of simple null, $\boldsymbol{\theta}_{0} \in \Theta$. \hookrightarrow Say that $\delta\left(\mathbf{X} ; \boldsymbol{\theta}_{0}\right)$ is appropriate test function for $H_{0}: \boldsymbol{\theta}=\boldsymbol{\theta}_{0}$

Define

$$
R^{*}(\mathbf{X})=\left\{\boldsymbol{\theta}_{0}: \delta\left(\mathbf{X} ; \boldsymbol{\theta}_{0}\right)=0\right\}
$$

Coverage probability of $R^{*}(\mathbf{X})$ is

$$
\mathbb{P}_{\boldsymbol{\theta}}\left[\boldsymbol{\theta} \in R^{*}(\mathbf{X})\right]=\mathbb{P}_{\boldsymbol{\theta}}[\delta(\mathbf{X} ; \boldsymbol{\theta})=0] \geq 1-\alpha
$$

Obtain a $100(1-\alpha) \%$ confidence region by choosing all the $\boldsymbol{\theta}$ for which the null would not be rejected given our data \mathbf{X}.
\hookrightarrow If test inverted is powerful, then get "small" region for given $1-\alpha$.

Multiple Testing

Multiple Testing

Modern example：looking for signals in noise

－Interested in detecting presence of a signal $\mu\left(x_{t}\right), t=1, \ldots, T$ over a discretised domain，$\left\{x_{1}, \ldots, x_{t}\right\}$ ，on the basis of noisy measurements
－This is to be detected against some known background，say 0 ．
－May or may not be specifically interested in detecting the presence of the signal in some particular location x_{t} ，but in detecting whether the a signal is present anywhere in the domain．

Formally：

Does there exist a $t \in\{1, \ldots, T\}$ such that $\mu\left(x_{t}\right) \neq 0$ ？
or

for which t＇s is $\mu\left(x_{t}\right) \neq 0$ ？

Bonferroni Method

If we test each hypothesis individually，we will not maintain the level！ Can we maintain the level α ？
Idea：use the same trick as for confidence regions！

Bonferroni

（1）Test individual hypotheses separately at level $\alpha_{t}=\alpha / T$
（2）Reject H_{0} if at least one of the $\left\{H_{0, t}\right\}_{t=1}^{T}$ is rejected
Global level is bounded as follows：

$$
\mathbb{P}\left[H_{Q} \mid H_{0}\right]=\mathbb{P}\left[\bigcup_{t=1}^{T}\left\{H_{Q, t}\right\} \mid H_{0}\right] \leq \sum_{t=1}^{T} \mathbb{P}\left[H_{Q, t} \mid H_{0}\right]=T \frac{\alpha}{T}=\alpha
$$

More generally：

－Observe

$$
Y_{t}=\mu\left(x_{t}\right)+\varepsilon_{t}, \quad t=1, \ldots, T .
$$

－Wish to test，at some significance level α ：

$$
\begin{cases}H_{0}: \mu\left(x_{t}\right)=0 & \text { for all } t \in\{1, \ldots, T\}, \\ H_{A}: \mu\left(x_{t}\right) \neq 0 & \text { for some } t \in\{1, \ldots, T\} .\end{cases}
$$

－May also be interested in which specific locations signal deviates from zero
－More generally：May have T hypotheses to test simultaneously at level α（they may be related or totally unrelated）
－Suppose we have a test statistic for each individual hypothesis $H_{0, t}$ yielding a p－value p_{t} ．

Statistical Theory（Week 12）
 Confidence Regions

Holm－Bonferroni Method

－Advantage：Works for any（discrete domain）setup！
－Disadvantage：Too conservative when T large
Holm＇s modification increases average \＃of hypotheses rejected at level α （but does not increase power for overall rejection of $H_{0}=\cap_{t \in T} H_{0, t}$ ）

Holm＇s Procedure

（1）We reject $H_{0, t}$ for large values of a corresponding p－value，p_{t}
（2）Order p－values from most to least significant：$p_{(1)} \leq \ldots \leq p_{(T)}$
（3）Starting from $t=1$ and going up，reject all $H_{0,(t)}$ such that $p_{(t)}$ significant at level α / t ．Stop rejecting at first insignificant $p_{(t)}$ ．

Genuine improvement over Bonferroni if want to detect as many signals as possible，not just existence of some signal
Both Holm and Bonferroni reject the global H_{0} if and only if inf ${ }_{t} p_{t}$ significant at level α / T ．

Taking Advantage of Structure: Independence

In the (special) case where individual test statistics are independent, one may use Sime's (in)equality,

$$
\mathbb{P}\left[p_{(j)} \geq \frac{j \alpha}{T}, \text { for all } j=1, \ldots, T \mid H_{0}\right] \geq 1-\alpha
$$

(strict equality requires continuous test statistics, otherwise $\leq \alpha$)

Yields Sime's procedure (assuming independence)

(1) Suppose we reject $H_{0, j}$ for small values of p_{j}
(2) Order p-values from most to least significant: $p_{(1)} \leq \ldots \leq p_{(T)}$
(3) If, for some $j=1, \ldots, T$ the p-value $p_{(j)}$ is significant at level $\frac{j \alpha}{T}$, then reject the global H_{0}.

Provides a test for the global hypothesis H_{0}, but does not "localise" the signal at a particular x_{t}
Statistical Theory (Week 12) Confidence Regions $25 / 27$

Taking Advantage of Structure: Independence

Bonferroni, Hochberg, Simes

Some Elements of Bayesian Inference

Statistical Theory

Victor Panaretos
Ecole Polytechnique Fédérale de Lausanne

ÉCOLE POLYTECHNIQUE
fédérale de lausanne
(1) θ as a random variableUsing Bayes' Rule to Update a PriorEmpirical BayesChoice of Prior: Informative, Conjugate, UninformativeInference in the Bayesian Framework

Back to Basics!

Classical Perspective

(1) $\boldsymbol{\theta} \in \boldsymbol{\Theta} \subseteq \mathbb{R}^{p}$ is unknown fixed
(2) data are realization of random $\mathbf{X} \sim f(\mathbf{x} ; \boldsymbol{\theta})$
(3) use data to learn about value of $\boldsymbol{\theta}$ (estimation, testing,..)

- Somehow assumes complete ignorance about $\boldsymbol{\theta}$
- What if have some prior knowledge/belief about plausible values?
\hookrightarrow We did this when defining Bayes risk
\hookrightarrow Placed a prior $\pi(\cdot)$ on θ

Bayesian Perspective

(1) $\boldsymbol{\theta}$ is RANDOM VARIABLE with prior distribution $\pi(\cdot)$
(2) data are realization of random \mathbf{X} such that $\mathbf{X} \mid \boldsymbol{\theta} \sim f(\mathbf{x} \mid \boldsymbol{\theta})$
(3) use data $\{\mathbf{X}=\mathbf{x}\}$ to UPDATE the distribution of $\boldsymbol{\theta}$

Updating a Prior

(1) Have knowledge/belief about $\boldsymbol{\theta}$: expressed via $\pi(\boldsymbol{\theta})$
(2) Observe data $\mathbf{X}=\mathbf{x}$

How do we readjust our belief incorporating this new evidence?
\hookrightarrow Answer: use Bayes' rule to obtain a posterior for $\boldsymbol{\theta}$

$$
\pi(\boldsymbol{\theta} \mid \mathbf{x})=\frac{f(\mathbf{x} \mid \boldsymbol{\theta}) \pi(\boldsymbol{\theta})}{\int_{\boldsymbol{\Theta}} f(\mathbf{x} \mid \boldsymbol{\theta}) \pi(\boldsymbol{\theta}) d \boldsymbol{\theta}}
$$

since denominator is constant,

$$
\pi(\boldsymbol{\theta} \mid \mathbf{x}) \propto \underset{\text { Likelihood Prior }}{f(\mathbf{x} \mid \boldsymbol{\theta}) \pi(\boldsymbol{\theta})}
$$

Bayesian Principle: Everything we want to learn about $\boldsymbol{\theta}$ from the data contained in the posterior

A Few Remarks

Some strengths of the Bayesian approach:

(provided we accept viewing $\boldsymbol{\theta}$ as random)

- Inferences on $\boldsymbol{\theta}$ take into account only observed data and prior
\hookrightarrow Contrast to classical approach which worries about all samples that could have but did not occur (risk)
- Provides unified approach for solving (almost) any inference problem
- Allows natural way to incorporate prior information in inference
- Posterior can become your prior for next exepriment! (updating process: can unify a series of experiments naturally)

But... one basic weaknesses:

- Choice of prior? Objective priors typically NOT available...

Statistical Theory (Week 13)
?

Example (Coin Flips)
Let $\left(X_{1}, \ldots, X_{n}\right) \mid \theta \stackrel{\text { iid }}{\sim}$ Bernoulli (θ) and consider a Beta prior density on θ :

$$
\pi(\theta)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \theta^{\alpha-1}(1-\theta)^{\beta-1}, \quad \theta \in(0,1)
$$

Given $X_{1}=x_{1}, \ldots, X_{n}=x_{n}$ with $y=x_{1}+\ldots+x_{n}$, have

$$
\begin{aligned}
\pi(\theta \mid \mathbf{x}) & =\frac{f\left(x_{1}, \ldots, x_{n} \mid \theta\right) \pi(\theta)}{\int_{0}^{1} f\left(x_{1}, \ldots, x_{n} \mid \theta\right) \pi(\theta) d \theta} \\
& =\frac{\theta^{y+\alpha-1}(1-\theta)^{n-y+\beta-1}}{\int_{0}^{1} \theta^{y+\alpha-1}(1-\theta)^{n-y+\beta-1} d \theta} \\
& =\frac{\Gamma(\alpha+\beta+n)}{\Gamma(\alpha+y) \Gamma(\beta+n-y)} \theta^{y+\alpha-1}(1-\theta)^{n-y+\beta-1}
\end{aligned}
$$

Recall that $\Gamma(k)=(k-1)$! for $k \in \mathbb{Z}^{+}$
\hookrightarrow our choice of prior includes great variety of densities, including uniform dictrihutininn

Coin Flipping Example: $n=100, \sum x_{i}=20$, prior vs posterior

Statistical Theory (Week 13)
Bayesian Inference

Empirical Bayes

Prior $\pi(\boldsymbol{\theta} ; \boldsymbol{\alpha})$ depending on hyperparameter $\boldsymbol{\alpha}$. Write

$$
\underbrace{g(\mathbf{x} ; \boldsymbol{\alpha})}_{\text {marginal of } \mathrm{x}}=\int_{\Theta} \underbrace{f(\mathbf{x} \mid \boldsymbol{\theta}) \pi(\boldsymbol{\theta} ; \boldsymbol{\alpha})}_{\text {joint density of } \boldsymbol{\theta} \text { and } \mathrm{x}} d \boldsymbol{\theta}
$$

Marginal of \mathbf{x} depends on α
\hookrightarrow classical point estimation setting - estimate α !

- Maximum likelihood
- Plug in principle
\hookrightarrow Then plug $\hat{\alpha}$ into prior, and obtain posterior

$$
\pi(\boldsymbol{\theta} \mid \mathbf{x} ; \hat{\boldsymbol{\alpha}})=\frac{f(\mathbf{x} \mid \boldsymbol{\theta}) \pi(\boldsymbol{\theta} ; \hat{\boldsymbol{\alpha}})}{\int_{\Theta} f(\mathbf{x} \mid \boldsymbol{\theta}) \pi(\boldsymbol{\theta} ; \hat{\boldsymbol{\alpha}}) d \boldsymbol{\theta}}=\frac{f(\mathbf{x} \mid \boldsymbol{\theta}) \pi(\boldsymbol{\theta} ; \hat{\boldsymbol{\alpha}})}{g(\mathbf{x} ; \hat{\boldsymbol{\alpha}})}
$$

The "catch" with Bayesian inference is picking a prior. Can be done:
(1) By expressing prior knowledge/opinion (informative)
(2) For convenience (conjugate)
(3) As objectively as possible (ignorance)

Focus on (2) and (3).
The most convenient priors to work with are conjugate families

Definition (Conjugate Family)

A parametric family $\mathcal{P}=\{\pi(\cdot ; \boldsymbol{\alpha})\}_{\boldsymbol{\alpha} \in \mathbf{A}}$ on $\boldsymbol{\Theta}$ is called a conjugate family for a family of distributions $\mathcal{F}=\{f(\cdot ; \boldsymbol{\theta})\}_{\boldsymbol{\theta} \in \boldsymbol{\Theta}}$ on \mathcal{X} if,

$$
\frac{f(\mathbf{x} \mid \boldsymbol{\theta}) \pi(\boldsymbol{\theta} ; \boldsymbol{\alpha})}{\int_{\boldsymbol{\Theta}} f(\mathbf{x} \mid \boldsymbol{\theta}) \pi(\boldsymbol{\theta} ; \boldsymbol{\alpha}) d \boldsymbol{\theta}}=\pi(\boldsymbol{\theta} \mid \mathbf{x} ; \boldsymbol{\alpha}) \in \mathcal{P}, \quad \forall \boldsymbol{\alpha} \in \mathbf{A} \& \mathbf{x} \in \mathcal{X}
$$

Statistical Theory (Week 13)
Bayesian Inference

Informative, Conjugate and Ignorance Priors

Bayesian inference ofetn perceived as not objective.

Can we find priors that express an indifference on values of $\boldsymbol{\theta}$?

- If $\boldsymbol{\Theta}$ finite: easy, place mass $1 /|\boldsymbol{\Theta}|$ on each point
- Infinite case?

Consider initially $\Theta=[a, b]$. Natural uninformative prior $\mathcal{U}[a, b]$
\hookrightarrow Uninformative for θ. But what about $g(\theta)$?
\hookrightarrow If $g(\cdot)$ non-linear, we are being informative about $g(\theta)$
What if Θ not bounded? No uniform probability distribution:

$$
\int_{\Theta} k d \theta=\infty \quad \forall k>0
$$

Some "improper" priors (i.e. infinite mass) yield valid posterior densities

Conjugate families: posterior immediately available \hookrightarrow great simplification to Bayesian inference

Example (Exponential Family)

Let $\left(X_{1}, \ldots, X_{n}\right) \mid \theta$ follow a one-parameter exponential family,

$$
\begin{aligned}
& f(\mathbf{x} \mid \theta)
\end{aligned} \quad=\exp [c(\theta) T(\mathbf{x})-d(\theta)+S(\mathbf{x})] \quad \text { Consider prior: } \quad \begin{aligned}
\pi(\theta) & =K(\alpha, \beta) \exp [\alpha c(\theta)-\beta d(\theta)] \\
\text { Posterior: } \quad \pi(\theta \mid \mathbf{x}) & \propto \pi(\theta) f(\mathbf{x} ; \theta) \\
& \propto \exp [(T(\mathbf{x})+\alpha) c(\theta)-(\beta+1) d(\theta)]
\end{aligned}
$$

So obtain a posterior in the same family as the prior

$$
\pi(\theta \mid \mathbf{x})=K(\underbrace{T(\mathbf{x})+\alpha}_{\alpha^{\prime}}, \underbrace{\beta+1}_{\beta^{\prime}}) \exp [(\underbrace{T(\mathbf{x})+\alpha}_{\alpha^{\prime}}) c(\theta)-(\underbrace{\beta+1}_{\beta^{\prime}}) d(\theta)]
$$

Statistical Theory (Week 13)

Bayesian Inference

Example (Lebesgue Prior for Normal Distribution)

Let $X_{1}, \ldots, X_{n} \mid \mu \sim \mathcal{N}(\mu, 1)$. Assume prior π is "uniform" on \mathbb{R},

$$
\pi[a, b]=b-a=\int_{a}^{b} d x, \quad \forall a<b
$$

(density 1 with respect to Lebesgue measure). Obtain posterior

$$
\begin{aligned}
& \pi(\mu \mid \mathbf{x})=k(\mathbf{x}) \exp \left[-\frac{1}{2} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}\right] \\
& k(\mathbf{x})=\left(\int_{-\infty}^{+\infty} \exp \left[-\frac{1}{2} \sum_{i=1}^{n}\left(x_{i}-\tau\right)^{2}\right] d \tau\right)^{-1} \\
& =\sqrt{\frac{n}{2 \pi}} \exp \left[\frac{1}{2} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right]
\end{aligned}
$$

so the posterior is $\mathcal{N}(\bar{x}, 1 / n)$.
Statistical Theory (Week 13) Bayesian Inference

Jeffreys' Prior

Invariance problem remains even with improper priors.
\hookrightarrow Jeffreys (1961) proposed the following approach. Assume $\mathbf{X} \mid \theta \sim f(\cdot \mid \theta)$
(1) Let g be monotone on Θ, define $\nu=g(\theta)$
(2) Define $\pi(\theta) \propto|I(\theta)|^{1 / 2}$ (Fisher information)
(3) Fisher information for ν :

$$
\begin{aligned}
I(\nu) & =\operatorname{Var}_{\nu}\left[\frac{d}{d \nu} \log f\left(\mathbf{X} ; g^{-1}(\nu)\right)\right] \\
& =\left(\frac{d}{d \nu} g^{-1}(\nu)\right)^{2} \operatorname{Var}_{\theta}\left[\frac{d}{d \theta} \log f(\mathbf{X} ; \theta)\right]=\left|\frac{d \theta}{d \nu}\right|^{2} \times I(\theta)
\end{aligned}
$$

(9) Thus $|I(\theta)|^{1 / 2} d \theta=|I(\nu)|^{1 / 2} d \nu$

Gives widely-accepted solution to some standard problems.
Note that this prior distribution can be improper.

Inference in the Bayesian Framework?

In principle: posterior contains everything you want to know
\hookrightarrow So any inference really is just a descriptive measure of posterior
\hookrightarrow Any descriptive measure contains less information than posterior

- Point estimators: posterior mean, mode, median,...
\hookrightarrow Relate to Bayes decision rules
- Highest Posterior Density Regions (vs Confidence Regions)
\hookrightarrow Different Interpretation from CRs!
- Hypothesis Testing: Bayes Factors

When prior is conjugate: easy to obtain posterior
However for a general prior: posterior not easy to obtain
\hookrightarrow Problems especially with evaluation of $\int_{\boldsymbol{\Theta}} f(\mathbf{x} \mid \boldsymbol{\theta}) \pi(\boldsymbol{\theta}) d \boldsymbol{\theta}$
Explicit intergration infeasible - alternatives

- Numerical Integration
- Monte Carlo methods
\hookrightarrow Monte Carlo Integration
\hookrightarrow Gibbs sampling
\hookrightarrow Markov Chain Monte Carlo

Computational Issues

[^0]: Equivalent Def: $X \xrightarrow{d} X \Longleftrightarrow \mathbb{E} f\left(X_{n}\right) \rightarrow \mathbb{E} f(X) \forall$ cts and bounded f

[^1]: Exercise：Generalise the proof to arbitrary random variables．

