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The statistical dynamics of a classical random variable that satisfies a nonlinear equation of motion is
recast in terms of closed self-consistent equations in which only the observable correlations at pairs of
points and the exact response to infinitesimal disturbances appear. The self-consistent equations are
developed by introducing a second field that does not commute with the random variable. Techniques
used in the study of the interacting quantum fields can then be employed, and systematic
approximations can be obtained. It is also possible to carry out a ‘“‘charge normalization” eliminating
the nonlinear coupling in favor of a dimensionless parameter which measures the deviation from
Gaussian behavior. No assumptions of spatial or time homogeneity or of small deviation from
equilibrium enter. It is shown that previously inferred renormalization schemes for homogeneous systems
were incomplete or erroneous. The application of the method to classical microscopic systems, where it
leads from first principles to a coupled-mode description is briefly indicated.

I. INTRODUCTION

Despite the deluge of papers that have been
written over many years on the organization and
calculation of the statistical properties of classical
systems, there is not to our knowledge a satis-
factory theory with the utility, generality, and
precision of the quantum-field theories. In par-
ticular there is no parallel to the functional equa-
tions of Schwinger,l or the equivalent diagrammatic
techniques of Feynman? for expressing the statis-
tical and dynamical properties of a classical sys-
tem, conservative or dissipative, in terms of
closed albeit complicated equations involving the
first few of the exact correlation functions for the
system. As a consequence there is no renormal-
ized perturbation theory for a classical system.

The lack of such a theory has led to certain
bizarre and devious calculational procedures in
conservative systems. In plasmas,® and even in
conservative systems with only short-ranged non-
singular forces, * approximate classical kinetic
equations have been derived using quantum-mech-
anical techniques and the classical result deduced
by setting 7Z—0 in the final result. There has been
even less systematic study of the dynamic prop-
erties of dissipative systems for which no quantum
Hamiltonian exists.

Although a classical procedure does not exist,
the value of a practical scheme would be enormous.
In problems involving fluids, for example, it would
provide a framework for calculating transport and
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other kinetic properties near or far from equilib-
rium, from a microscopic starting point. In

other problems where macroscopic equations like
the Navier-Stokes equations provide a satisfactory
starting point, such a theory would permit an at-
tack on problems such as turbulence. And in sim-
pler problems still, like the statistical treatment
of nonlinear damped oscillators, it would provide

a systematic self-consistent treatment in terms

of physical properties. Indeed, the utility of such
an approach is so great, and its existence so likely,
that without demonstrating its correctness authors
have used it implicitly with notable success. Thus,
on the basis of equations intuitively obtained with

a mixture of classical and quantum notions,
Kadanoff and Swift, > Kawasaki, ® and Résibois’ and
co-workers have produced mode-coupling schemes
that have enabled them to predict qualitatively the
properties of transport coefficients near the critical
point,

The most serious attempts of which we are
aware, to deduce such equations for classical sys-
tems from “first principles” are those of
Kraichnan, ® Wyld, ® and Edwards'® for the problem
of turbulence. Unfortunately, their approaches
have proven too cumbersome and insufficiently
systematic to be carried to completion. Indeed,
as we shall show, they have only been treated cor-
rectly to fourth order in the anharmonicity. !

It is the purpose of this paper to present what
we believe to be the elusive generalization which
is necessary for deriving a renormalized set of
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equations and thus to deduce the renormalized
statistical theory of a classical field satisfying a
nonlinear dynamical equation. Before we go further
let us emphasize the word believe. Our procedure
is far from rigorous from a mathematical point of
view. Certain formal steps are involved which
are even less well justified than those physicists
normally call mathematics. We believe these
formal devices can be justified and provide no
serious obstacle, We have checked them to a few
orders in perturbation theory and resolved several
apparent internal inconsistencies, but we have no
categorical proof of their correctness.

The formal quantity which will play a central
role in our discussion is an operator'? which serves
to infinitesimally change the classical random
variable at a given point in space and time., With
the aid of this quantity we will be able to ask ques-
tions about the response of the system in a rep-
resentation-free fashion and thus, to determine
the response in a state, the details of which are
only determined at the end of an exact (or approxi-
mate) self-consistent calculation., From our
procedure will emerge differences between classi-
cal and quantum systems which suggest reasons
for the difficulties that have previously been en-
countered and why the curious methods that have
sometimes been used to circumvent these difficul-
ties, did so.

We have not fully assimilated all of the differ-
ences, but two seem worthy of special mention.
The first is that the operators that displace the
value of the classical field need not change the en-
ergy by a discrete amount. In quantum systems,
“second quantization” imposes the restriction that
the modulus squared of the field (and therefore the
energy or more precisely number of quanta) change
discretely. Local changes in the expression for
the classical energy or particle intensity are not
restricted in this fashion, They are described
classically by a real field (not the square of a com-
plex field), which can be altered continuously.

The second is that the classical phase space for
the corresponding problem is infinitely larger be-
cause the position and momentum of a single par-
ticle can be independently specified. It seems that
this feature is connected with the fact that in our
discussion of conservative classical systems there
appears in a natural fashion a non-unitary trans-
formation, or an effective non-Hermitian Hamil-
tonian on the Hilbert space which includes both the
physical field and the operator which increases or
decreases it. As a consequence, the equations of
motion for both conservative and dissipative clas-
sical systems are naturally described in terms of
a free-energy functional.'® (The reader may not
be surprised to learn that we were led to the de-

scription of conservative systems after studying
problems involving dissipation, that is, problems
in which a non-Hermitian “Hamiltonian” was ex-
pected for the physical field itself because the un-
derlying equations were irreversible, The adjoint
operation we introduce to define the Hermitian con-
jugate is not related to complex conjugation as in
quantum mechanics. )

We shall introduce the extra field we have been
discussing into our equations in a formal fashion.
It should be recognized, however, that it has a
physical basis. In order to discuss statistical
problems it is necessary to calculate both the re-
sponse of the system to a fluctuation and the like-
lihood of fluctuations. In a quantum system both
effects can be characterized by products of the
same pair of quantum operators. Fluctuations in-
volve the anticommutator and response is related
to the commutator, Classically the commutator
vanishes, but the physical response is given by the
Poisson bracket, in which each of the observables
is a different function of the dynamical variables
than it is in the operator product which gives the
fluctuations.* Our additional operators are not
necessary but they permit us to calculate the re-
sponse conveniently, While it is not in any way a
physical justification for their introduction, it is
noteworthy that independent attacks on this prob-
lem by Kraichnan, Wyld, Edwards, and ourselves
have all implicitly or explicitly predicted a renor-
malized theory in which more than one (in principle
four, and in practice, two) propagator occurs;
our procedure defines three propagators nonper-
turbatively. It appears that the failure to recognize
this “operator doubling” in a classical theory has
been the major stumbling block to the development
in terms of closed equations, or equivalently, to
all orders of a completely renormalized many-time
classical theory (in which & nevers appears). It
is perhaps also worth noting that this “doubling”
is not necessary for the static-equilibrium prop-
erties of classical systems. Symptomatic of the
operator doubling is the occurence of both the en-
ergy (Hamiltonian) and the Liouville operator in
classical statistical dynamics; only the former is
necessary for classical thermostatics or quantum
dynamics and thermostatics.

Up to this point we have been discussing the
questions we shall consider as if the reader were
familiar with the notions of renormalization and
quantum-field theory. The point of our work,
however, has been to develop an equivalent non-
quantum theory and our hope is to convince a wider
audience that these techniques are the proper ones
for a great variety of problems. We shall there-
fore attempt, in Sec.II, to summarize and explain
the notions that are entailed in quantum-field-
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theory renormalization and what they accomplish,
In Sec. III we derive fundamental classical equa-
tions by functional techniques. In Sec. IV we dis-
cuss the diagrammatic rules, and how certain
simple approximations emerge. We will refrain
from describing all the available techniques that
this rearrangement makes possible—the study of
low-energy theorems, the renormalization group,
variational formulations in terms of entropy
production—partly because it seems more worth-
while to discuss them in the context of particular
problems, and partly because much work along
these lines remains undone. We merely note that
most relations of this type are derived by imposing
general symmetries on the exact correlation func-
tions that occur in the renormalized perturbation
theory.

II. DESCRIPTION OF PROBLEM AND RESULTS

The problem in which we are interested is the
determination of average properties of a classical
random variable whose time dependence is gov-
erned by a prescribed nonlinear differential equa-
tion, A typical situation might be one in which we
know the differential equation but do not know, and
wish to average over initial conditions, perhaps
with some constraints. The same is, of course,
true in quantum systems. In both cases we have
an equation of the form

3 - [ U,(12)9(2) a2

- [ U,(123)9(2)9(3) d2d3=Uy(1) . 2.1)

The index 1 refers to the time and to the other
space and internal indices on which the random
variable depends. The integration implies a sum-
mation for internal coordinates and the functions
U;(1.--%) are prescribed.

Let us illustrate the formula with a few examples.
The simplest might be a classical damped-non-
linear one-dimensional forced system15 for which
¥ has two components ¥(4¢) = x(¢) and P(¥¢)=p(t) and
for which the equations of motion are

x(t) - p(t)/m=0 ,
B +vp(8) = Ax2(2) + mwha(t) = (1) .

In the general notation above we would have
U (#t)=ft) ,

Uy (VEy; ¥8,) == v0(4 = &) ,

Uz(’tﬁ *tz) = (l/m)ﬁ(tl = tz) ’

U,(Vty;42,) = = mwlb(t, - 8,) ,
Us(VEy; 48p; 485) = AO(t, — 1,)6(8, — 15)

and all other elements of U(ayt;; azty; agts) wWith

a=4% or ¥ vanish,

A second example of our basic equation is the
Navier-Stokes equation for an incompressible
fluid, Here the field § depends on space and time
and has vectorial components, i.e.,

‘)b(l): Ugl(Fltl) ’
U1(1)=f;1(f1t1) s

Ux(12)= vV 6(F - T,)8(4 - 1‘2)6,1‘a , 2.2)

i -
Us(123) = Vg, 25(t, - LI
X 6(;‘1 - F3)6(t1 - tz)ﬁ(tl - ts) ’

plus similar terms with interchanged vector in-
dices which come from eliminating the pressure.
A third example is the Liouville equation for a
fluid of interacting particles. If () and p*(t)
are the random variables that are associated with
the position and momentum of the ath particle at
time #, we may introduce the random variable'®

Y1) =fFyty) =20 O(F, — T2, )0(p, - (1) ,

(2. 3a)

which describes the single-particle phase-space
density. In this problem it is not usual to intro-
duce a source of particles, i.e., a potential

U, (FPt), but we often have a streaming term and
a one-body external potential V" of the form

Uy (F1Bity; Tobata)= [~ B./m) * Vi + Ve, VO F) - 95 ]

X 8(F; - -fz)a(-ﬁl -D)0(ty — )
(2. 3b)

and a two-body interaction V@ (¥, - ¥,) of the form
U (F1Dy 815 Toaty; Tabsts) = Vi, V' (7 - Tp) - v,
Xlﬁ(f'l - ?3)5(51 - 53)
x8(ty = t3)8(t, — &) .

In all three of the above examples we may look upon
each of the infinitely many variables ¥(1) as a
scalar and all of the variables commute. In quan-
tum-field theory each random variable # is an in-
finite dimensional matrix or operator and typically
there is a second set of operators sz (1) which does
not commute with the 3. Indeed, in contrast with
what happens in classical physics, the operators

P at different times do not commute. The quan-
tities ¥’ satisfy equations of the same form as those
satisfied by ¥(1). In addition the quantity [#(1),
#7(1")] is directly related to the response of the
interacting system!” to an external disturbance,
i.e., to the effect at point 1 in the correlated sys-

2. 3c)
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tem produced by an infinitesimal change in the
force Ul(l'). If we make the additional notation
change that ¥(1) and *(1) are the two components
of a single field with an additional index « taking
on the values 1 and 2 and correspondingly under-
stand that the potentials U; depend on the indices
o, ..., o, the equations above give a complete
description of the quantum system.

The basic problem that concerns us both clas-
sically and quantum mechanically is the calculation
of mean values and correlations of the field ¥,
Whatever the state, i.e., the probability distri-
bution, we may write

)Y - [ v2X92)

- [ U,123X9(2)%(3)) d2d3=T;(1) ,
or with (1) =(¥(1))+ 5y(1) so that (6y(1))=0,
@A) - [ Ty12X9(2)) a2

- [ U(123X6%(2)5(3)) a2 d3 = U (1) .

In this equation we have introduced the “mean
field” U,(12),

U,(12)= U, (12) + 3 [ [U;(123) + U5(132)1(%(3)) d3 .

Of course, this equation is not closed. To evaluate
(¥(1)) we must know (5¢(2)6y(3)), which satisfies
the equation

(89(1)63(1")y = [ U,(12)X89(2)5%(1")) d2

- [ U5 (123X 54(2)64(3)69(1")) d2d3=0 .

(2.9

Virtually no attempt to calculate correlations does
not make this first step. That is to say, all meth-
ods eliminate-completely uncorrelated events by
working in terms of cumulants or linked diagrams.
But up to this stage we have done very little, In-
deed since our last equation contains a new un-
known, one could say that we have done nothing.

Of course we can always put off our problem by
writing equations for {(5¢)®) in terms of ((56¢)*),
etc. The approximations come in when we replace
products like {53(1)563(2)6¢(3)53(4)) by lower cum-
ulants.'® Thus the first approximation that is often
made (a Hartree- Fock!® or Gaussian®® approxima-
tion) is the replacement

(B3p(1) 5(2)69(3) 63(4)) ~ (54(1) 8(2)X 53%(3) 53(4))
+{63(1)69(4)X0¢(2) 53(3))
+{69(1)53(3)X64(2)5¢(4))- (2.5)

When we do so we obtain a closed equation for the

matrix ((64))2) which, in a sense, is correct to or-
der [U3(123)]2. There are, however, often serious

difficulties with such a procedure. In particular,
in a system whose microscopic Hamiltonian is
time-reversal invariant the factored equations re-
main even in time and don’t reduce to equilibrium,
Furthermore the dimensionless expansion param-
eter, which is something like U%/U3 may not be
small, This is the case, for example, in a fluid
when the Reynolds number is high (the viscosity
small) and in a kinetic or Boltzmann-like equation
at low frequencies, when the collision term dom-
inates the equation. Under such conditions we
must find a new expansion parameter, or a dif-
ferent way of truncating. A similar difficulty al-
most always arises when the fluctuations tend to
oscillate,? even when U2« U3, The point is that
the parameter which actually occurs when we in-
vert truncated equations is U3[(8/8¢) - U,]"3 and
this parameter will be large near any resonance
predicted by the mean field. This is a basic dif-
ficulty with all truncation procedures. They do not
treat secular properties satisfactorily and, hence,
are ineffective for discussing properties like fre-
quency shifts and lifetimes that come about via
collision broadening.

“Mass renormalization” is a procedure that over-
comes this difficulty, at least in part. What mass
renormalization does is to express the theory not
in terms of the dimensionless parameter
U2[(8/8t) - U,]™® but in terms of U[((59)%)]°,
everywhere in a unique self-consistent equation for
((69)®! - [(8/8¢) - U,) in terms of the parameter
U2[((6¢)*)]%. While the error in {(6¢)?) would be
large and {(6¢)% would be large without mass re-
normalization because UZ[(8/8t) - U,]-* can be in-
finite, the renormalized equation that gives
[(a/at) - U,] as {(6¢9)?)"! plus corrections in powers
of UZ[((6¢)?)]® saturates® and does not diverge.
The error is never arbitrarily large even though
it is not necessarily a very good approximation
when terms are omitted. In many ways it may be
likened to a Padé-approximate scheme®® for func-
tions. (As the analogy suggests, there is no com-
pelling reason for expecting convergence in addi-
tion to order by order finiteness. )

A second renormalization, “charge renormali-
zation,” carries the procedure the final step.
Basically charge renormalization is a method for
determining the non-Gaussian part of {(6¢)*), that
is, ((6Y)*) — 3((69)®?, as it appears in the equation
for {(63)®! {in the combination U¥X (6¢)*[{(6y)*)

- 3((69)®) ]} exactly and uniquely in terms of the in-
trinsic dimensionless parameter of the interacting
system ((6¢)%)2 /A (6¥)*)®. This exact closed equa-
tion completes the system, Naturally, the exact
and unique equation closing the set is extremely
complicated. It does, however, lend itself to sys-
tematic approximations which do not demand a
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small Uy, The words “mass” and “charge” nor-
malization refer to the fact that in electrodynamics
the bare mass is U, and the measured mass is a
space-time average of ((69)®)'. Likewise U2 is
essentially the square of the bare charge, and a
space-time mean over coordinate arguments of 6y
in the combination {(6¢)%?/{(6¢)?)® the square of the
fine-structure constant. The masses and charges
we are discussing are, of course, functions, not num-
bers, since both U, and U; and their replacements
are nonlocal.?*

Clearly the point of the rearrangement is to take
advantage of the fact that the non-Gaussian char-
acter of the slow fluctuations that are actually
present are often weaker than, and even relatively
independent of, the deviations that would be pres-
ent if the interactions were unmodified.?’ Under
these circumstances we can hope to get approxi-
mate results for the fluctuations of interest in
terms of a self-consistently determined small
skewness although U%/U} is large for some argu-
ments,

Renormalization has another related advantage.
Because the expressions that occur in the calcula-
tion are measurable we can relate some we wish
to calculate to others that are measured, not cal-
culated. For example, although in principle the
equilibrium properties of a classical fluid must
emerge from the dynamical equations we shall de-
rive, it may be convenient to insert measured in-
stantaneous equilibrium properties or instantan-
eous equilibrium properties calculated by other
means.2® Three other illustrations deserve men-
tion: In discussing the coupling of hydrodynamic
modes, we must use true vertices, which in the
long-wavelength limit, are related to thermody-
namic derivatives.?” In discussing phase transi-
tions, and in properly improving upon the direct-
interaction approximation®® for turbulence, charge
renormalization plays an essential role,?® Finally,
in a rather trivial fashion it is necessary for the
elimination of the effects of infinite hard-core po-
tentials. (The classic example in electrodynamics
is the expression of low-energy scattering prccess-
es® in terms of the measured charge of the elec-
tron, the bare charge being eliminated. )

Now that we have summarized why such equa-
tions are interesting and what ideas are involved,
it seems appropriate to say a word about the equa-
tions themselves, It will turn out, in detail, that
the equations relate {¥(1)) and two functions of two
space-time points, the desired fluctuations
{59(1)59(2)) and the response function that gives the
change induced in {5y(1)) by an infinitesimal ex-
ternal disturbance U;(2). The latter two functions
satisfy nonlinear equations in which three functions
of three space-time points occur. These functions

describe (i) {63(1)6¢(2)6%(3)), (ii) the linear change
in the fluctuation produced by an external distur-
bance, and (iii) the second-order change produced
in the field ((1)) by infinitesimal changes in U,(2)
and U,(3).

It is because the combination is a rather com-
plicated and unsymmetrical one when expressed
in this form, that difficulties arise in the direct
resummation and reorganization of perturbation
theory, 8t making it so opaque even to fourth order
in the coupling U,;. In fact the renormalization
proposed by Wyld® and by Lee® does not work to
higher orders since, as the above comments sug-
gest, three renormalized vertices, only one of
which is nonvanishing to lowest order, are re-
quired. By contrast, phrased in terms of our ma-
trix operator, the procedure can be readily under-
stood, to arbitrary order, in spatially inhomoge-
neous systems, and reexpressed in terms of two
closed equations. The two renormalized propaga-
tors and three renormalized vertex functions ap-
pear naturally as the nonvanishing parts of one ma-
trix propagator and one matrix vertex function and
the combinatoric and recurrent “double-counting”
problems with “bare” graphs are eliminated. 3

The equations are now correct for arbitrary in-
homogeneous spatial distributions. With regard to
nonstationary behavior in time, it would appear
they are correct for pure states and for impure
states in which the initial field and two-field cor-
relation functions are given, but all higher cor-
relations are random consistent with the prescribed
initial values for these two functions.

III. DERIVATION OF BASIC EQUATIONS

Let us now return to our classical problem,
We have an algebra of observables ¥(1), ¥2), ...
and states which are linear functionals on them,
Less “mathematically” the states give us the values
of correlations of the field ¢ at different points.
We shall not, in general, be concerned only with
pure states—states in which all properties that
could be specified, are specified—but with mixed
states in which we have only statistical informa-
tion, Presumably initial conditions determine a
pure state and thus the pure states can be param-
etrized in terms of specified functions of the space
variable at a given time., Likewise, mixed states
can be described by giving, at a specified time,
expectation values for all the moments of the clas-
sical field, i.e., for all instantaneous correlations.
A class of mixed states are those for which (¥(1))
and ($(1)¥(2)) are specified at a fixed time. We
shall always use what is known as the Heisenberg
picture. In this picture, the values measured at
different times are described by the values of the
field for different time arguments. The state does
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not change with time., Let us define time-ordered
products of operators that depend on the time in
the usual way, i.e., [A()A®)- - A(2,)], is the
product in which the A’s are ordered from right
to left in order of increasing time. For our clas-
sical ¥ this makes no difference since the random
variables § commute, Let us, however, next ex-
tend the algebra to include all time-ordered prod-
ucts of the operator y and §, where we take J to
satisfy

[wGFe), §6'T' D))= 6F - 7)0(i - 1) ,
azpu)

(3.1a)

+ Uz(21)zp(2)+ 2U3(231)zp(2)zp(3) 0 .(3.1b)
Let each linear functional on the physical quan-
tities ¥(1) ... P(n) be extended to time-ordered prod-
ucts of y and § in such a way that (i) it is un-
changed when the product contains no §, (ii) its
values on states containing zz;’s are consistent with
Eqgs. (3.1a) and (3. 1b) and with (i), (iii) its value
is zero whenever the left-most factor of the prod-
uct is a zl» The last restriction is possible be-
cause Eq. (3.1b) contains no term U;(1). For
some purposes, however, it will be useful to con-
sider what would happen if U, (1) were not equal to
zero. In that case all elements of the matrix cor-
relation function would contain four different quan-

Jdl 7

tities {(59(F1) 09 (6'F'1)).), (Y(EFH)oYG'E 1)),
((69(F1) 5 F'¢')),), and {(SY(iF)69('F'¢')).) and
condltlon (iii) could only be imposed, say, at times
after U1 (éT¢) vanished.

The asymmetry of the restrictions is connected
with our desire to treat problems in which the
system is stationary until we apply our external
force or describe our initial conditions, whereas
we do not require absolute equilibrium beyond any
fixed finite time in the future. In stationary prob-
lems, the asymmetry is not there. We could
equally work with the convention { (7)) =0.

It is possible to deduce a number of relations
between the abstract definitions introduced above
and various averaging processes over initial con-
figurations, with and without interaction but we
shall not discuss these here.

The consistency of the above requirements is
not obvious. We shall speak about it further below,
and describe in a following paper the equivalence,
to all orders in perturbation theory, of a variety
of conditions.- We shall not, however, prove their

1
-nnwz @
1h2 @

FIG. 1. Propagators {(6y(1)6$(2)),) and {(63(1)&(2)),).

uniqueness in any conclusive nonperturbative fash-
ion,

On the hasis of the requirements imposed above
we see immediately that the matrix of the four
quantities defined above really contains only two
independent functions.

One of them is the function {(6¥(1)5%(2)),), which
to conform with Wyld, we will designate later by
a thick wavy line [Fig. 1(a)l. The second is
{(89(1)6y(2)),), which we may write alternatively
as

((6Y(F,t,) 89(F,t,)).) = Mty - X 6¢(F1t1)51/7(1.‘atz»

=((80(Fat,) SU(F111)),) , (3.2)

and which we shall designate by a thick line [Fig.
1()). 1t corresponds to the thick straight line of
Wyld but we shall reserve the notation of a thick
straight line for the matrix propagator containing
all four elements, at least in this section. The
quantity in Eq. (3. 2) describes the response at
the point 1 to an infinitesimal impulse at the point
2.

In the absence of anharmonicity, it is the quan-
tity (¥(1)#(1")) which gives the free response, i.e.,
in the Navier-Stokes fluid

-1 ,
(WP’ >o—(——vv ) 5(11")

(2‘1;;3 oK (T -vR2(2 £ ) n(t, - £)
ot =) (-(Fl - f{)2>
“@mit, -0 TP\ @i, 1) )¢
(3.3)
Likewise in the fluid of particles :
- 9 2.9\
((lp(l)‘P(l’)),)o:(a_tl - E‘;n—&) 5(11")

=0t - 4) 6@, - p)
x8((Fy - T1) - (t, - 1) By /m)) (3.4)

describes free propagation.

The remaining quantity ((64(1) 51/)(2)) ) vanishes.
As we have now stated several times, the book-
keeping will be greatly expedited by the introduc-
tion of a two-component matrix ®(airt), where
& (+irt)=pliTt) and & (- iTt)=P (iTt), and by searching
for the correlations of &, Furthermore, it will
be useful to generate our equations in terms of a
“non-Hermitian Hamiltonian, ” i.e., we may write

a(1)=[8(1),3] (3.5)

and
%= S'yl(l)@(l)d1+ 5 S 7,(12)8(1)8(2) d1 42

. Sys(1zs)<p(1)q>(z)q>(3)d1dzds, (3.6)

31
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and because § and J have canonical commutation
relations and the given potentials U;(1 .- -%) are all
instantaneous, i.e., contain 8(f — ;). (¢ = ¢;);
the operator 3¢ can be made symmetrical in the
arguments 1, 2, and 3. The commutators of ¢
satisfy

[®(+iT8), &(£i'Ft)]=0 ,

[®(+iFt), ®(Fi'T't))=406G")6F-F) , (3.7)
or

[®(aiFt), ®(a'i'F't)]= (iox)(aa’)8(E )6F-F)

where io, is the usual Pauli matrix ioy(aa’), whose
four elements are ioy(+¥)=%1, ioy(++)=0. [Sym-
metrizing introduces an effective coupling of the
form U(1)#(1) which violates condition (iii) but this
correction, which amounts to a translation, can
be eliminated and we shall assume that is done. ]
The equation of motion for the operator & is now
precisely the same equation that arises in the
quantum theory of fields, i.e.,

—i0, (1) = 7, (1) + %,(12)8(2) + 3 1,(123)2(2)2(3) ,
(3.8)

where we have introduced a summation convention

for repeated indices, and the techniques for find-

ing the correlations proceed in a similar fashion, *
The first step is to relate the mean values in a

given state to the values in the same state when

7 (1) is replaced by ¥ (1)+n(1), i.e., to consider

the generating functional

s={expl 7 2@m@1},

and to relate the functions
G1(1)={(S®(1)),)/AS)= 61n (S)/n(1),
GI(12)=((s2(1)2(2),)AS) - G1(1)6}(2)  (3.9)

= & In(S)/6n(1) 6n(2)

to one another. These functions reduce, when
n=0, to the desired correlation functions.

Taking into account the definitions of S and G
and the equations of motion, we may write

—i0,G1(1) = 7,(1)+ (1) + 1,(12)G](2)

+37,(123)[G1(23)+ G1(2)G1(3)] . (3.10)

The equation for the function G"(12) is obtained by
differentiating with respect to 7,

—ioyG1(11°) = 6(11") + [1,(12) + 75(123)G1(3)1 6 3(21")

)

1) G3(21) ,

+37,(123) (3.11)
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or using the fact that
G;(25)6G}(51) = - [6G;1"(25)16}(51")
and using the chain rule of differentiation to write

2

e - G3(34)

%
5G1(4) ’

—i0;G,(11") = [12(12) + %5(123)G,(3)1G, (21")  (3.12)

-3(12)G,(21") = 5(11") .

In this equation we have suppressed the 7 which
always occurs implicitly and introduced
6G;!(51

2(11')=%73(123)02(25)02(34)(' 5G, (4))> '

(3.13)
The quantity

6n(1’)

8G3'(51") _ _
" 56,(4)56,(5)

Iy(541")= - 56

_ 8[1{S) - n(3)G, (3)]
~ 76G,(4)5G,(5)8G,(1")

(3.14)

symmetric in these indices plays the role of the
renormalized charge. The equation

(11) = 3 75(123)G,(25)G,(34)T5(451")  (3.15)

is the equation which determines the quantity Z to
all orders, as a power series in y; and G,. The
equation can be described diagrammatically and
the nth-order terms characterized by their graph-
ical properties. In particular we have to the low-
est order 1"3(451')= 73(451') and Fig. 2(a), where
thick lines stand for propagators and dots for the
bare vertices y;. Repeated indices, which are
integrated over, are not indicated. The second
term in the series is obtained by iteration of the
exact equation®

(b)

n)—- Nl
- _
: :_.
-
g
+
=
o N
E_.
g
+
o
-
-
-
<

1
1
®: -1+ [ (@)
2 2 2

FIG. 2. Approximations to the self-energy Z(11)
(a), (b); and its reexpression in terms of a vertex func-
tion (c), ).
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63(51")
5G,(4)

62(51") 6G,(67)
6G,(67) 6G,(4)
62 (51")

= 7,(451") + 5, 67) G,(68)T4(894)G,(97) .

T'3(541") = ,(451") +

= y,(451") +

(3.16)

Since 62(51')/562(67)= 73(568)62(89)73(971') to the
next order, we derive to the next order [Fig. Z(b)].
We see immediately, by induction, that since
higher-order terms in Z are obtained from lower-
order ones by breaking open single lines and in-
troducing pairs, that the graphs are all of a form
which cannot 