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Abstract. This article reviews recent developments in statistical field theory far from
equilibrium. It focuses on the Kardar–Parisi–Zhang equation of stochastic surface growth and its
mathematical relatives, namely the stochastic Burgers equation in fluid mechanics and directed
polymers in a medium with quenched disorder. At strong stochastic driving—or at strong
disorder, respectively—these systems developnon-perturbativescale invariance. Presumably
exact values of the scaling exponents follow from a self-consistent asymptotic theory. This
theory is based on the concept of anoperator product expansionformed by the local scaling
fields. The key difference from standard Lagrangian field theory is the appearance of adangerous
irrelevant coupling constant generatingdynamical anomaliesin the continuum limit.

Contents

1 Introduction
1.1 Directed growth, the Burgers equation, and polymers
1.2 Overview of this article

2 The field theory of directed strings
2.1 Correlation functions and the operator product expansion
2.2 Renormalization
2.3 Results and discussion

3 Directed strings in a random medium
3.1 Replica perturbation theory
3.2 The strong-coupling regime
3.3 A string and a linear defect
3.4 A string and a wall
3.5 Strings with mutual interactions
3.6 The upper critical dimension of a single string
3.7 Discussion

4 Directed growth
4.1 Field theory of the Kardar–Parisi–Zhang model
4.2 Dynamical perturbation theory
4.3 Renormalization beyond perturbation theory
4.4 Response functions in the strong-coupling regime
4.5 Height correlations in the strong-coupling regime
4.6 The dynamical anomaly and quantized scaling
4.7 Discussion

† E-mail: lassig@mpikg-teltow.mpg.de.

0953-8984/98/449905+46$19.50c© 1998 IOP Publishing Ltd 9905



9906 M Lässig

1. Introduction

The last 25 years have seen a very fruitful application of continuum field theory to statistical
physics [1]. A system in thermodynamic equilibrium tuned to a critical point ‘looks the
same on all scales’; that is, it shows an enhanced symmetry called scale invariance. Since
there is no characteristic scale, the correlation functions in a critical system can only be
power laws. Microscopically quite different systems share certain aspects of their critical
behaviour which are therefore independent of the small-scale details. This phenomenon
is called universality. Among the universal features are the exponents characterizing the
power laws of correlation functions.

The renormalization group has provided the first satisfactory explanation of universality
as well as calculational tools to compute, for example, critical exponents. The central
concept is that of a flow on the ‘space of theories’. In equilibrium systems, this flow is
parametrized by the coupling constants of an effective Hamiltonian determining the partition
function. It can be understood as a link between the microscopic coupling constants defining
a model and the effective parameters governing its large-distance limit. (For an Ising model,
e.g., the former are the spin couplings on the lattice and the latter are the reduced temperature
and the magnetic field.) The fixed points of this flow represent the universality classes. At a
fixed point, a system can be described by a so-called renormalized continuum field theory,
that is, a theory where all microscopic quantities such as the underlying lattice constant
no longer play any role. The universal properties can often be calculated in a systematic
perturbation expansion.

About a decade after Wilson’s seminal work on renormalization, the advent of conformal
field theory triggered a new interest in two-dimensional critical phenomena [2]. It was
realized that these systems have an even larger symmetry called conformal invariance.
(A conformal transformation is any coordinate transformation thatlocally reduces to a
combination of scale transformation, rotation and translation. The rescaling factor is now
allowed to vary from place to place.) Conformal invariance severely constrains the structure
of continuum field theories in two dimensions, yielding a (partial) classification of the
universality classes and their exact scaling properties. Under some additional conditions,
there is only a discrete set of solutions: the possible values of the critical exponents are
quantized.

The subsequently developedS-matrix theory has extended the exact solvability to
theories close to a critical point, i.e., with a large but finite correlation length. For the
first time, it has been possible to verify the ideas of scaling beyond perturbation theory for
a whole class of strongly interacting field theories. On the other hand, the conformal
formalism entails a shift of focus fromglobal quantities (such as the Hamiltonian of
a theory and its coupling constants) tolocal observables, i.e., the correlation functions.
Their structure is encoded by the so-called operator product expansion, a rather formidable
name for a simple concept (explained in section 2). The operator product expansion
is at the heart of a field theory. Conformal symmetry imposes a set of constraints on
the operator product expansion which lead to expressions for the correlation functions.
This theory makes no reference to a Hamiltonian. Without a renormalization group flow,
however, the link to microscopic model parameters is lost. Hence, it has to be determined
a posterioriwhich lattice models belong to the universality class of a given conformal field
theory.

Another important shift of focus has taken place in recent years. Traditionally, scale
invariance has been associated with second-order phase transitions, which requires fine-
tuning of the model parameters to a critical manifold. However, it became clear that
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there are many systems that have generic scale invariance in a region of their parameter
space. Perhaps the simplest such systems are interfaces. For example, the surface of a
crystal in thermal equilibrium fluctuates around an ideal symmetry plane of the crystal.
The displacement can be described by the ‘height’ fieldh(r), the two-dimensional vectorr
denoting the position in the reference plane. Above a certain temperature, the surface
is rough, i.e., it develops mountains and valleys whose size is typically some power
of the system size. The correlation functions of the height field become power laws
as well. The roughness turns out to be even stronger if the crystal is growing, which
drives the surface out of equilibrium. There is another important difference between
equilibrium surfaces and driven surfaces. In the former case, the height pattern shows
an up–down symmetry between mountains and valleys. Out of equilibrium, that symmetry
is lost.

Obviously, such open systems are quite common: any growth, pattern formation or
reaction process propagating through some localized boundary or front generates a driven
interface, often with long-ranged correlations [3, 4]. An example is the kinetic roughening
of thin metal films by vapour deposition. Figure 1(a) shows the ST microscope analysis
of a gold film at room temperature from which the authors were able to extract power-law
behaviour of the height correlations, indicative of a scale-invariant surface state [5].

This state is seen to bedirected (i.e., it has no up–down symmetry) andstochastic.
Surface inhomogeneities increase with time, signalling anon-linear evolution. However,
since there are no significant overhangs, the growth mechanism should be essentially
local; that is, the growth rate at a given point depends only on the surface pattern in the
neighbourhood of that point. (Kinetic roughening can also produce quite different surface
patterns with branched tree-like structures. Their growth is strongly non-local since the
large trees shield the smaller ones from further deposition of material [6].)

Of course, generic scale invariance far from equilibrium is not limited to interfaces.
Other important examples are hydrodynamic turbulence or slowly driven systems with
so-called self-organized criticality: dynamical processes such as the stick–slip motion of
an earthquake fault generate a power-law distribution of ‘avalanches’ with long-ranged
correlations in space and time. A simple lattice model with a self-organized critical state
is the so-called forrest fire model [7, 8]. On a given lattice site, a tree grows with a small
probability per unit time. With an even smaller probability, the tree is hit by a lightning
strike which destroys it along with all of the trees in the same contiguous forrest cluster [8].
These events are the avalanches. The dynamics leads to a self-similar stationary pattern of
forrests and voids.

A satisfactory theory of non-equilibrium scale invariance should classify the different
universality classes and provide calculational methods for obtaining the scaling exponents
exactly or in a controlled approximation. To establish such a theory is obviously a complex
task that will challenge statistical physicists probably over the next 25 years. The power-law
correlations on large scales of space and time should again be described by continuum field
theories, although the proper continuum formulation is far from clear for many dynamical
systems defined originally on a lattice. It is also an open issue which of the currently known
field-theoretic concepts will continue to play an important role. For example, perturbative
renormalization may fail to produce a fixed point describing the large-distance regime, as
will be shown below for the example of driven surface growth. The seemingly easier task
of describing the time-independent scaling in a stationary state is still involved since there
is no simple Hamiltonian generating these correlations.

This article collects a few results that may become part of an eventual field theory of
non-equilibrium systems. We limit ourselves to models related to the Kardar–Parisi–Zhang
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Figure 1. (a) A STM snapshot of a kinetically roughened gold film. The projected area of the
sample is 510× 510 nm2. Courtesy of Herrastiet al [5]. (b) Part of a discretized KPZ surface.
The entire surface has 400× 400 lattice points and is shown after 1000 time steps.



On growth, disorder, and field theory 9909

(KPZ) equation [9]

∂th(r, t) = ν ∇2h(r, t)+ λ
2
(∇h(r, t))2+ η(r, t) (1.1)

for a d-dimensional height fieldh(r, t) driven by a forceη(r, t) random in space and time.
This equation has come to prominence as the ‘Ising model’ of non-equilibrium physics. It
is indeed the simplest equation capturing nevertheless the main determinants of the growth
dynamics in figure 1(a):directedness, non-linearity, stochasticity, and locality. The KPZ
surface shown in figure 1(b) has been produced by a discretized version of the growth rule
(1.1) and looks indeed qualitatively similar to these experimental data.

The theoretical richness of the KPZ model is partly due to close relationships with other
areas of statistical physics—notably hydrodynamic turbulence and disordered systems—
which are briefly reviewed below. Many more details can be found in references [3, 4].
Due to the famous problem of quenched averages, disordered systems share some of the
conceptual problems mentioned above. The observables are correlation functions averaged
over the distribution of the random variables, which is not given by a Boltzmann weight.
These correlations may be regarded as an abstract field theory but there is again no simple
effective Hamiltonian. Such systems can have scale-invariant states at zero temperature for
which the very existence of a continuum limit needs to be re-established.

Despite considerable efforts, the KPZ equation has so far defied attempts at an exact
solution or a systematic approximation for dimensiond > 1. The main reason for this is
the failure of renormalized perturbation theory. Renormalization aspects of equation (1.1)
and its theoretical relatives will be discussed below. The main emphasis lies, however, on
structures beyond perturbation theory. We analyse the internal consistency of the strong-
coupling field theory expressed by the operator product expansion of its local fields. This
approach turns out to be quite powerful. Using phenomenological constraints and the
symmetries of the equation, it produces a quantization condition on the scaling indices
from which their exact values ford = 2 andd = 3 can be deduced. This quantization is
somewhat reminiscent of what happens in conformal field theory and suggests that the KPZ
equation possesses an infinite-dimensional symmetry as well.

It is not clear to what extent the results carry over to other non-equilibrium systems.
Yet, the approach used here is fairly general and should be applicable in a wider context. It
transpires that incorporating non-equilibrium phenomena into the framework of field theory
will require yet another shift of focus to non-perturbative concepts and methods. This is
likely to change our view of field theory as well. Negative scaling dimensions, dangerous
variables, anomalies etc are oddities today but may become an essential part of its future
shape.

1.1. Directed growth, the Burgers equation, and polymers

The time evolution of a KPZ surface depends only on the local configuration of the surface
itself (and not, for example, on the bulk system beneath the surface). Hence, the r.h.s. of
equation (1.1) contains only terms that are invariant under translationsh→ h+ constant.

(a) The dissipation term∇2h is the divergence of a downhill current and acts to smooth
out the inhomogeneities of the height field.

(b) The non-linear term(∇h)2 arises from expanding the tilt dependence of the local
growth rate and acts to increase the inhomogeneities of the surface. A linear termb · ∇h
would be redundant since it could be absorbed into a tilth→ h+ b · r. The higher powers
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(∇h)3, . . . turn out to be irrelevant in the presence of the quadratic term, as well as terms
containing higher gradients such as(∇2h)2 or ∇4h.

(c) The stochastic driving termη(r, t) describes the random adsorption of molecules
onto the surface. It is taken to have a spatially uniform Gauss distribution with correlations
only over microscopic distances:

η(r, t) = 0 η(r, t)η(r′, t ′) = σ 2δ(r − r′)δ(t − t ′). (1.2)

A uniform averageη(r, t) = η would again be redundant since it could be absorbed into
the transformationh(r, t)→ h(r, t)− ηt .

Equation (1.1) is by no means the only model for a driven surface, and many exp-
erimental realizations of crystal growth are probably governed by related equations with
additional symmetries and conservation laws [10] or with different correlations of the driving
force (see, for example, [11]). As the simplest non-linear model, however, the KPZ equation
remains a cornerstone for the theoretical understanding of stochastic growth.

The morphology of a rough surface is characterized by the asymptotic scaling of the
spatio-temporal height correlations. In a stationary state, the mean square height difference
is expected to take the form

〈(h(r1, t1)− h(r2, t2))
2〉 ∼ |r1− r2|2χG

(
t1− t2
|r1− r2|z

)
. (1.3)

The higher moments〈(h(r1, t1) − h(r2, t2))
k〉 are of similar form. (In a system of finite

sizeR, equation (1.3) is valid for|r1− r2| � R and |t1− t2| � Rz.) The scaling function
G parametrizes the crossover between the power laws〈(h(r1, t)− h(r2, t))

2〉 ∼ |r1− r2|2χ
and〈(h(r, t1)−h(r, t2))2〉 ∼ |t1− t2|2χ/z of purely spatial and purely temporal correlations,
respectively. These relations define the roughness exponentχ > 0 and the dynamic exp-
onentz. In the marginal case(χ = 0), the surface may still be logarithmically rough.

A surface governed by the linear dynamics (1.1) withλ = 0 hasχ = (2− d)/2 and
z = 2: it is rough ford = 1, marginally rough ford = 2, and smooth ford > 2. The
phase diagram is well known also forλ 6= 0. For dimensiond 6 2, any small non-linearity
(λ/2)(∇h)2 is a relevant perturbation of the linear theory and induces a crossover to a
different rough state called the strong-coupling regime. Ford > 2, a small non-linearity
does not alter the smooth state of a linear surface. There is now a roughening transition to
the strong-coupling regime at finite values±λc [12–14].

This phase diagram corresponds to the following renormalization group flow. Ford 6 2,
the Gaussian fixed point (λ = 0) is (infrared-) unstable, and there is a crossover to the
stable strong-coupling fixed point. Ford > 2, a third fixed point exists, which represents
the roughening transition. It is unstable and appears between the Gaussian fixed point, and
the strong-coupling fixed point which are now both stable [15–18].

In one dimension, the critical indices of the strong-coupling regime take the exact
valuesχ = 1/2 andz = 3/2 [19, 9, 20]. Their values for higher dimensions as well as
the properties of the roughening transition have been known only numerically [21–28] and
in various approximation schemes [29–31]. In particular, it has been controversial whether
there is a finite upper critical dimensiond> at and above which KPZ surfaces are only
marginally rough (χ = 0 andz = 2). These issues are discussed in detail in sections 3
and 4.

Experiments on growing surfaces require delicacy since crossover and saturation effects
can mask the asymptotic scaling. However, several experiments have produced scaling
consistent with KPZ growth. The fire fronts in slow combustion of paper haveχ = 0.50
andz = 1.53 [32], in very good agreement with the KPZ values ford = 1. A recent study
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of kinetically roughened Fe/Au multilayers [33] obtainsχ = 0.43± 0.05, which should
be compared to the current numerical estimateχ ≈ 0.39 for d = 2 and to the presumably
exact value (4.74).

Equation (1.1) is formally equivalent to Burgers’ equation

∂tv + (v · ∇)v = ν ∇2v +∇η (1.4)

for the driven dynamics of the vortex-free velocity fieldv(r, t) = ∇h(r, t) describing a
randomly stirred fluid (withλ = −1) [19]. In this formulation, Galilei invariance becomes
obvious: the substitutions

h(r, t)→ h(r − ut, t)+ u · r − 1

2
u2t v(r, t)→ v(r − ut, t)+ u (1.5)

leave equations (1.1) and (1.4) invariant. Due to this invariance, the roughness exponent
and the dynamical exponent obey the scaling relation [34]

χ + z = 2 (1.6)

which guarantees that the total derivative dt ≡ ∂t +u · ∇ behaves consistently under scale
transformations.

It should be emphasized, however, that the velocity field of a stirred Burgers fluid looks
quite different from the gradient field of a KPZ surface since the driving force in a fluid is
correlated overmacroscopicspatial distancesR. This generates turbulence [35] (somewhat
different, of course, from Navier–Stokes turbulence). The velocity correlations show
multiscaling. For example, the stationary moments〈(v‖(r1)− v‖(r2))

k〉 of the longitudinal
velocity difference have ak-dependent singular dependence onR for |r1 − r2| � R.
Multiscaling is not expected for driving forces with short-ranged correlations (1.2). This
point will become important below.

Via the well-known Hopf–Cole transformation

Z(r, t) ≡ exp

[
λ

2ν
h(r, t)

]
(1.7)

equation (1.1) can be mapped onto the imaginary-time Schrödinger equation

β−1 ∂tZ = β−2

2
∇2Z + ληZ (1.8)

with β = 1/2ν [9]. The solution can be represented as a path integral

Z(r′, t ′) =
∫
Dr δ(r(t ′)− r′) exp(−βS) (1.9)

with the action

S =
∫ t ′

dt

(
1

2

(
dr

dt

)2

− λη(r(t), t)
)

(1.10)

describing astring or directed polymerr(t) (i.e., the world line of a random walk) in the
quenched random potentialλη(r, t) at temperatureβ−1 = 2ν. A configuration of the string
is shown in figure 2. The stochastic driving term now appears as quenched disorder in a
(1+ d)-dimensional equilibrium system. This system is of conceptual importance as one
of the simplest problems with quenched disorder.

The transverse displacement of the string

〈(r(t1)− r(t2))2〉 ∼ |t1− t2|2ζ (1.11)

defines its roughness exponentζ . (Averages over the disorder are denoted by overbars,
thermal averages by brackets,〈· · ·〉.) The rough strong-coupling regime (1.3) of the growing
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Figure 2. A configurationr(t) of a string (or directed polymer) in a medium
with quenched point disorder. Due to the inhomogeneities of the medium,
a typical path takes larger excursions to the left and to the right than an
ordinary random walk.

surface corresponds to a superdiffusive state of the string (ζ > 1/2) [36–38]. In this state,
the universal part of its free energy in a system of longitudinal sizeL and transverse size
R has the scaling form

F(L,R) ∼ LωF(LR−1/ζ ). (1.12)

In particular, the ‘Casimir’ term

f (R) ≡ lim
L→∞

∂LF (L,R) ∼ R(ω−1)/ζ (1.13)

measures the free-energy cost per unit oft of confining a long string to a tube of widthR.
The exponentsζ andω are related to the growth exponents by

ζ = 1/z ω = χ/z. (1.14)

The scaling relation (1.6) now reads

ω = 2ζ − 1. (1.15)

Replica methods yield the exact exponentsζ = 2/3 andω = 1/3 for d = 1 but fail for
higher dimensions.

In the superdiffusive state, the free energy acquires an anomalous dimension−ω < 0.
(At an ordinary critical point, the free energy is scale invariant (ω = 0), which implies a
set of hyperscaling relations. Such relations are no longer valid for quenched averages.)

The disorder-induced fluctuations (1.11) persist in the limitβ−1 → 0—that is, in the
ensemble of minimum energy pathsr0(t). In the weak-coupling (high-temperature) regime
for d > 2, thermal fluctuations dominate (ζ = 1/2) and hyperscaling is preserved (ω = 0).
The roughening transition between these two phases takes place at a finite temperatureβ−1

c .
For d > d>, the Gaussian exponents govern the low-temperature phase as well, albeit with
possible logarithmic corrections.

1.2. Overview of this article

As emphasized already, KPZ growth defines a field theory that isnon-Lagrangianand
non-perturbative. This article focuses on exact properties of its local correlation functions.
We mention only briefly the results of various approximation schemes. In particular, func-
tional renormalization ([4] and references therein) and mode-coupling theory ([31, 39] and
references therein) are important theoretical tools in a number of strong-coupling problems
but their status in field theory is not yet fully understood.

The first part of this article describes directed strings. These systems have a fascinating
spectrum of physical applications and the language of directed strings proves to be an ideal
framework for addressing some of the theoretical issues of directed growth.

In section 2, we discuss directed strings in thermal equilibrium without quenched
disorder. A single such string describes a free random walk and is thus generically
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rough. Interactions of a single string with an external defect or mutual interactions
between strings, however, can induce a localization transition destroying the long-ranged
correlations of the rough state. (De-)localization phenomena are an essential feature of
strings and surfaces [40]; they will appear in several contexts throughout this article. We
use renormalized perturbation theory to derive the phase diagram of directed strings with
short-ranged interactions and the critical behaviour at the (de-)localization transition [41–
43]. The results are, of course, well known and can be derived in various other ways.
The approach used here stresses that the response of the system to perturbations probes the
correlations in the unperturbed, rough state. It is based on theoperator product expansion
of the local interaction fields, a familiar concept in Lagrangian field theory (see, e.g.,
reference [1]).

In section 3, this approach is extended to the field theory of directed strings in a random
medium. In the replica formalism, a single such string is represented by a system of
many strings without quenched disorder but with mutual interactions. The localized many-
string state corresponds to the strong-coupling regime of the random system. Perturbative
renormalization of these interactions turns out to produce the exact scaling at the roughening
transition for 2< d < 4 but fails to describe the strong-coupling regime [18, 44]. Insight can
be gained by studying several strings in a random medium with additional direct interactions.
These probe the disorder-induced correlations in the scale-invariant strong-coupling regime.
The temperature becomes adangerous irrelevantvariable at the strong-coupling fixed point;
this is the field-theoretic fingerprint of quenched randomness. The direct interactions can
be treated in renormalized perturbation theory about that fixed point [45, 46], assuming
the existence of an operator product expansion. We find again (de-)localization transitions,
which are relevant for various applications. Their critical properties are given in terms of
the single-string exponents. Comparing the effect of pair interactions in the strong-coupling
phase and at the roughening transition of a single string then shows that the single-string
system—corresponding to the standard KPZ dynamics—has an upper critical dimension
d> 6 4 [47, 48].

Section 4 returns to growing surfaces. The dynamical field theory of KPZ systems and
its renormalization are discussed. Perturbative renormalization of the dynamic functional is
compared to the string renormalization of section 3 [18], and it is shown why perturbation
theory fails for the strong-coupling regime ford > 1. However, the scaling in this regime
can be studied directly using the operator product expansion of the height field. We find that
the KPZ equation can have only a discrete set of solutions distinguished by field-theoretic
anomalies[49]. Comparing this set with numerical estimates of the exponentsχ andz then
gives their exact values ford = 2 andd = 3.

2. The field theory of directed strings

Ensembles of interacting directed strings describe a surprising variety of statistical sys-
tems in a unifying way. Examples are interfaces between different bulk phases in a 2D
system [40], steps on crystal surfaces [50], flux lines in a type-II superconductor [51], or 1D
elastic media [52]. Directed strings are also related to mathematical algorithms detecting
similarities between DNA sequences [53–57].

At finite temperatures, a single string (or a collection of independent ones) would
simply perform Gaussian fluctuations. It is the interactions of the strings with each other
and with external objects that generate the thermodynamic complexity of these systems.
Attractive forces lead to wetting transitions of interfaces, bunching transitions of steps,
and depinning transitions of flux lines. All of these are transitions between a delocalized
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high-temperature state with unconstrained fluctuations and a localized low-temperature state
whose displacement fluctuations are constrained to a finite widthξ ; for a review, see [40].
In this and the next section, we discuss a few such systems, emphasizing their common
field-theoretic aspects.

A single thermally fluctuating string is given by the partition function

Z =
∫
Dr exp(−βS[r]) (2.1)

with the Gaussian action

S[r] =
∫

dt
1

2

(
dr

dt

)2

(2.2)

for thed-component displacement fieldr(t). In a finite system (06 t 6 L, 06 r1, . . . , rd 6
R), the universal part of the free energy has the scaling form

F(L,R) = F(L/βR2). (2.3)

This defines in particular the Casimir amplitude

C(R) ≡ β2R2 lim
L→∞

∂LF (L,R) (2.4)

measuring the scaled free-energy cost per unit oft of confining a long string to a tube
of width R. It depends only on the boundary conditions in the transverse direction. For
periodic boundary conditions,C = 0.

The displacement fieldr(t) has the negative scaling dimension−ζ0 = −1/2. Its two-
point function

〈r(t1) · r(t2)〉 =
∫

dω
eiω(t1−t2)

ω2
(2.5)

requires an infrared regularization by appropriate boundary conditions. It is the difference
correlation function

〈(r(t1)− r(t2))2〉 = −2〈r(t1)r(t2)〉 + 〈r2(t1)〉 + 〈r2(t2)〉 ∼ |t1− t2|2ζ0 (2.6)

that remains well defined in the thermodynamic limitL,R → ∞ and becomes scale
invariant. The exponentζ0 is called the thermal roughness exponent.

t

r

Figure 3. A thermally fluctuating directed stringr(t) and a rigid linear defect
at r = 0. Contact interactions between these objects are described by the local
scaling field8(t).

Consider now a directed string interacting with a rigid linear defect atr = 0 as shown
in figure 3. If the interaction decays on the microscopic scale|r| ∼ a, the system has the
action

S[r] =
∫

dt

(
1

2

(
dr

dt

)2

+ g08(t)

)
(2.7)
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in the continuum limita → 0. The local interaction of the string with the defect is
proportional to the contact field8(t) ≡ δ(r(t)) of canonical scaling dimensionx0 = dζ0.
The conjugate coupling constantg0 has the dimensiony0 = 1−x0 with t as the basic scale.

Of course, this system can be treated exactly, for example by solving the imaginary-time
Schr̈odinger equation

β−1 ∂tZ = β−2

2
∇2Z + g0δ(r)Z (2.8)

for the wave function (1.9); see [58] in the context of directed strings. Here we discuss
a different method of solution [41–43] that can be generalized to problems with quenched
disorder. For the purposes of this section, it is convenient to setβ = 1, which amounts to
the substitutiont → β−1t in the action (2.7).

2.1. Correlation functions and the operator product expansion

The perturbative analysis of the interaction in (2.7) is based on the correlation functions
〈8(t1) · · ·8(tN)〉 in the unperturbed state, which can be calculated explicitly. We take
each component of the displacement vector to be compactified on a circle of circumference
R. The scaleR also serves to generate the renormalization group flow defined below.
With this regularization, longitudinal translation invariance emerges for ‘bulk’ values
0 � t1, . . . , tN � L in the limit L → ∞ independently of the boundary conditions at
t = 0 andt = L.

The translation-invariant one-point function

〈8(t)〉 ≡ 〈8〉 = R−x0/ζ0 (2.9)

is simply the probability (density) of finding the fluctuating stringr(t) at the originr = 0
for a given t . Similarly, theN -point function〈8(t1) · · ·8(tN)〉 is the joint probability of
the configurations withN intersections of the origin at given valuest1, . . . , tN .

These correlation functions develop singularities as some of the points approach each
other. For example, the joint probability of intersecting the originr = 0 both att and att ′

equals the single-event probability (2.9) multiplied by the probability of return to the origin
after a ‘time’ |t − t ′|, which becomes singular ast ′ → t :

〈8(t)8(t ′)〉 = C0|t − t ′|−x0〈8(t)〉 + · · · (2.10)

with C0 = (2π)−x0.
The structure of this singularity and the coefficientC0 are local properties: they

appear in any (connected)N -point function as two of the argumentsti , tj approach each
other, independently of the other points remaining at a finite distance and of the infrared
regularization. This can be expressed by the field relation [41]

8(t)8(t ′) = C0|t − t ′|−x08(t)+ · · · (2.11)

illustrated in figure 4. It is called an operator product expansion (a familiar concept in
field theory; see, e.g., reference [1]). The dots denote less singular terms involving gradient
fields. Such terms are generated, for example, if the r.h.s. of (2.11) is expressed in terms
of 8(t ′) = 8(t)+ (t ′ − t)8′(t)+ · · ·, which leaves the leading singularity invariant.

2.2. Renormalization

It is convenient to set up the perturbation theory for the Casimir amplitude (2.4). SinceC
is a dimensionless number, the contribution of the interaction

1C(u0) ≡ C(g0, R)− C(0, R) (2.12)
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(t')
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O

Figure 4. The operator product expansion of contact fields for a thermally fluctuating string.
The short-distance asymptotics of the pair of fields8(t) and8(t ′) is given by the single field
8(t) multiplied by a singular prefactor. The dashed line indicates the string configurations
generating the singularity|t − t ′|−x0.

depends only on the dimensionless coupling constant

u0 ≡ g0R
y0/ζ0. (2.13)

The perturbation expansion

1C(u0) = −R2
∞∑
N=1

(−g0)
N

N !

∫
dt2 · · · dtN 〈8(t1) · · ·8(tN)〉c (2.14)

contains integrals over connected correlation functions of the contact field in the Gaussian
theory (g0 = 0). Hence, the singularities of the operator product expansion (2.11) lead to
poles in (2.14). Inserting (2.9) and (2.11) into (2.14), we obtain

1C(u0) = Rx0/ζ0〈8〉
(
u0− C0

y0
u2

0

)
+O(y0

0u
2
0, u

3
0). (2.15)

The same type of singularity (with different combinatoric factors) occurs in the expansion
of correlation functions〈8(t1) · · ·8(tN)〉(u0). For example,

〈8〉(u0, R) =
∞∑
N=0

(−g0)
N

N !

∫
dt1 · · · dtN 〈8(t)8(t1) · · ·8(tN)〉c

= 〈8〉
(

1− 2C0

y0
u0

)
+O(y0

0u0, u
2
0). (2.16)

Perturbative renormalization consists in absorbing the singularities of the ‘bare’ series
(2.14) and (2.16) into new variablesuP and8P defined order by order. (We use the subscript
P to distinguish perturbatively defined couplings and fields from their non-perturbatively
renormalized counterparts. This distinction is not necessary in the present context but will
become crucial below.) To leading (one-loop) order, the coupling constant renormalization
can be read off directly from equation (2.15). Defining

uP ≡ ZP u0 (2.17)

with

ZP (uP ) = 1− C0

y0
uP +O(y0

0uP , u
2
P ) (2.18)

the Casimir amplitude as function ofuP becomes finite to orderu2
P :

1C(uP ) = Rx0/ζ0〈8〉uP +O(y0
0u

2
P , u

3
P ). (2.19)

The coupling constant renormalization (2.18) implies a renormalization of the conjugate
field:

8P (t) ≡ Z̃P8(t) (2.20)
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with

Z̃P (uP ) = du0

duP
= 1+ 2C0

y0
uP +O(y0

0uP , u
2
P ). (2.21)

This also renders the correlation functions〈8P (t1) · · ·8P (tN)〉(uP ) finite. The scale dep-
endence ofuP is governed by the flow equation

u̇P ≡ ζ0R ∂RuP = y0uP

1− uP (d/duP ) logZP
. (2.22)

Using (2.18), we obtain

u̇P = y0uP − C0u
2
P +O(y0u

2
P , u

3
P ). (2.23)

Hence, the one-loopZ-factors and the resulting flow equation are entirely determined by
the constantsy0 andC0 encoding local properties of the unperturbed theory.

For this particular system, the one-loop equations turn out to be very powerful because
the pole at orderu2

0 is the only primitive singularity fory0 → 0 in the bare perturbation
series. Hence, the theory isone-loop renormalizable[59, 60, 18]: it can be described by
the flow equation

u̇P = y0uP − C0u
2
P (2.24)

terminating at second order. This property leads to exact results for local observables of the
perturbed theory. In the appendix, it is derived for the more general many-string system of
section 3.2.

Of course, the form (2.24) of the flow equation is not unique. It depends on the
infrared regularization of the bare perturbation series and on the renormalization conditions
defining the coupling constantuP . Changing either amounts to finite reparametrizations
of uP . Linear reparametrizations change the coefficient ofu2

P in (2.24), while non-
linear reparametrizations introduce higher-order terms (see the discussion in the appendix).
However, local observables of the perturbed theory are ‘gauge invariant’; i.e., independent
of these choices. They can be computed exactly from (2.24) and the associatedZ-factors
(A.13). The simplest such observable is the anomalous dimension

x? = x0− u̇P d

duP
log Z̃P (uP )

∣∣∣∣
u?P

= 1+ y0. (2.25)

It governs the correlation functions of the contact field at the non-trivial fixed pointu?P of
the flow equation; for example,

〈8(t)〉 ∼ R−x?/ζ0 (2.26)

and

〈8(t)8(t ′)〉 ∼ |t − t ′|−x?〈8(t)〉 (2.27)

for |t − t ′| � R2. By simple scaling arguments, it follows from (2.26) that the normalized
string density

P(|r′|) ≡ 〈δ(r(t)− r′)〉
/∫

dr 〈δ(r(t)− r′)〉 (2.28)

has the singularity

P(r) ∼ rθR−d−θ for r � R (2.29)

with

θ = −x
?

ζ
− d = 4y0 = 2(2− d). (2.30)

Of course, the exponentθ can be obtained in a simpler way. The Schrödinger equation
(2.8) has the singular ground-state wave functionZ ∼ r2−d , andP ∼ Z2.
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2.3. Results and discussion

Ford < 2, the Gaussian fixed pointuP = 0 is unstable under the flow (2.24) and governs the
(de-)localization transition. Close to the transition, the localization width has the singularity

ξ ∼ (−g0)
−ζ0/y0 (g0 < 0). (2.31)

The fixed pointu? is stable and determines the asymptotic scaling with repulsive contact
interactions in the limitR→∞ or g0→∞. The string densityP(r) then has a long-ranged
depletion given by (2.29) withθ > 0.

At the borderline dimensiond = 2, where the two fixed points coalesce, the theory is
asymptotically free with

ξ ∼ exp(−C0ζ0/g0) (g0 < 0). (2.32)

For 2< d < 4, the transition is governed by the non-trivial fixed point with

ξ ∼ (gc − g0)
−ζ0/y

?

(g0 < gc) (2.33)

and y? = 1− x? = −y0. This fixed point now has a negative value ofθ , describing a
divergence of the string densityP(r) for r → 0 due to the attractive interaction.

It is obvious that the same scaling occurs in a number of related systems. For a directed
string (r1 > 0, r2, . . . , rd)(t) confined to half space, the termg0δ(r1) describes a short-
ranged interaction with the boundary of the system. The scaling of the string close to the
boundary is described by the above two fixed points ford = 1 with the transition point
shifted to a valuegc < 0 and the fluctuations parallel to the boundary decoupled. Similarly,
a single directed string interacting with a linear defect is equivalent to the two-string system

Z =
∫

dr1 dr2 exp(−βS[r1, r2])

with the action

S[r1, r2] =
∫

dt

(
1

2

(
dr1

dt

)2

+ 1

2

(
dr2

dt

)2

+ g09(t)

)
(2.34)

containing pair interactions9(t) ≡ δ(r1(t) − r2(t)). The centre-of-mass fluctuations are
decoupled, and (2.28) is the pair density withr(t) = r1(t) − r2(t). For d = 1, Gaussian
strings with contact repulsions are known to behave asymptotically like free fermions [61],
and (2.30) then gives the correct scalingP(r) ∼ r2 of the pair density imposed by the
antisymmetry of the fermionic wave function.

Leaving aside these specifics of Gaussian strings, the qualitative features of the phase
diagram are seen to rest on two properties of the local interaction field8(t): its scaling
dimension depends ond in a continuous way and it obeys an operator product expansion
with a self-coupling term (2.11). These properties are found to be preserved for directed
strings in a random medium despite the lack of a local action.

It turns out that the renormalization discussed in this section is also applicable to tem-
perature-driven transitions in systems of many directed strings. An example of current
experimental interest isvicinal surfaces, i.e., crystal surfaces miscut at a small angle with
respect to one of the symmetry planes. A vicinal surface can be regarded as an ensemble of
terraces and steps [50]. The steps are non-crossing (fermionic) directed strings. They are
coupled by mutual forces that turn out to have a short-ranged attractive and a long-ranged
repulsive part [62]. Typical step configurations are shown in figure 5.

At high temperatures, the ensemble of steps is homogeneous. Below a faceting
temperature (that depends on the step density), the steps are found to form local bundles.
Hence, the surface splits up into domains of an increased and temperature-dependent step
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ca b

Figure 5. (De-)localization in a system of many strings. In this example, the strings are
steps on a crystal surface coupled by inverse-square and short-ranged forces. Typical step
configurations at different temperatures are the following. (a) Well above the critical temperature
Tc, the steps are dominated by the no-crossing constraint and the long-ranged repulsion. Hence,
they are well separated from each other with relatively small fluctuations. (b) In the critical
regime nearTc, the probability of a step being close to one of its neighbours is substantially
enhanced. This is accompanied by increased step fluctuations and a broader distribution of
terrace widths. (c) Below the faceting temperature, the steps form local bundles. On average,
the distance between two neighbouring bundles is larger than the width of an individual bundle.
The fluctuations of these ‘composite’ steps are smaller than those of individual steps.

density alternating with step-free facets [63]. A critical regime containing thefaceting
transition (the analogue of the (de-)localization transition of two strings) separates the high-
and low-temperature regimes. In the renormalization group, one still finds a pair of fixed
points linked by an exact one-loop renormalization group for the strength of the contact
interaction. These fixed points determine the faceting transition and the high-temperature
regime, respectively [64]. The long-ranged forces influence the universal features (e.g., the
scaling of the contact field) of both fixed points in a characteristic way. This determines,
for example, the distribution of terrace widths and the density of steps in a bundle. The
theoretical results compare favourably with recent experiments on Si surfaces [63, 65].

The thermodynamic complexity of this many-string system is due to an interplay of
attractive interactions, Fermi statistics, and repulsive forces. In the next section, we shall
discuss the much simpler case of bosonic strings (i.e., strings allowed to intersect) with
contact attractions only. Ford = 1, the latter will collapse to a bound state at any
temperature. However, qualitatively different behaviour emerges in the formal limit of
vanishing number of strings. This limit turns out to describe a single string in a random
medium.

3. Directed strings in a random medium

In this section, interactions between strings play a double role. On the one hand, a single
string in a quenched random medium can formally be represented as a system ofp strings
without disorder but with mutual interactions, in the limitp → 0 [37]. This well-known
replica formalism turns out to be a convenient basis for the perturbative renormalization of
the random system [18].

On the other hand, additional interactions are important in many applications of directed
strings in random media. An example is the physics of superconductors [51, 68–70]. A
type-II superconductor in a magnetic fieldh above a critical strengthhc1 contains magnetic
flux lines at a density that depends onh. The lines are directed parallel to the magnetic
field. Their thermally activated transverse fluctuations dissipate energy at the expense of
the supercurrent. The superconductor may be doted with point impurities, linear or planar
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defects designed to suppress these fluctuations by localizing the flux lines. Linear defects
are generated, for example, by irradiating the material with heavy ions [71, 72].

As the external field approaches the critical valuehc1, the ensemble of flux lines becomes
dilute. It is then useful to study the approximation of a single flux line interacting with
a single columnar defect in the presence of point impurities [73–76, 45]; see figure 6(a).
The next step is to consider pair interactions in a dilute ensemble of lines as shown in
figure 6(b) [77–80, 46].

r r

t (b)t (a)

r

t (c)

Figure 6. Directed strings in a disordered medium with additional contact interactions. (a) A
string and a rigid linear defect. (b) Two strings with mutual interactions. (c) A string and a
wall.

The interaction of strings with the boundaries of the system (figure 6(c)) can be discussed
on a similar theoretical footing. The particular case of one transverse dimension, where the
string becomes an interface of the system, has been of interest as a simple model for
wetting in a random medium [37]. The interaction of a string with a linear defect is also
relevant in the context of DNA pattern recognition [53–57]. Two related DNA sequences in
different organisms have mutual correlations inherited from their common ancestor in the
evolution process. The algorithmic detection of these correlations turns out to correspond
to a localized state of a string.

It is not surprising that a random medium, by changing the displacement statistics of
a single string, also modifies its direct interactions with other strings and with external
objects. In the renormalization group for these transitions, quenched impurities enter in
a characteristic way: the strong-coupling fixed point has a dangerous irrelevant coupling
constant that alters the scaling properties of the direct interactions [45]. Consequently, the
(de-)localization transitions differ from those in pure systems. In turn, the response to such
interactions becomes a theoretical tool for studying the correlations at the strong-coupling
fixed point. This is used at the end of this section to show that the single-string system has
an upper critical dimension less than or equal to four [47].

3.1. Replica perturbation theory

A medium with quenched pointlike impurities exerts a local random potentialη(r, t) on
a directed string. For a given configuration of the impurities, the partition function of the
string is

Z[η] =
∫
Dr exp(−βS[r, η]) (3.1)

with the action (1.10):

S[r, η] =
∫

dt

(
1

2

(
dr

dt

)2

+ η(r(t), t)
)

(3.2)
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where λ has been set to 1. We take the local potential variables to have the Gaussian
distribution given by (1.2) and compute average quantities like the free energy

F = −β−1
∫
Dη exp

(
−
∫

dt dr
1

2σ 2
η2(t, r)

)
logZ[η]. (3.3)

At first sight, this system looks quite different from those of the previous section.
However, we can write logZ[η] as a partition function ofp independent strings labelled
by the indexα:

logZ[η] = lim
p→0

1

p

( p∏
α=1

Z(α)[η] − 1

)
. (3.4)

In the replicated system, the integration over theη variables can be performed [37]. This
gives

F = lim
p→0

1

p
Fp (3.5)

with

Fp = −β−1 log
∫
Dr1 · · · Drp exp(−βS[r1, . . . , rp]) (3.6)

and the action

S[r1, . . . , rp] =
∫

dt

( p∑
α=1

1

2

(
drα
dt

)2

− βσ 2
∑
α<β

8αβ(t)

)
. (3.7)

The coupling of the original stringr(t) to the random medium now appears as a
contact attraction8αβ(t) ≡ δ(rα(t) − rβ(t)) between the replicas (i.e., phantom copies)
r1(t), . . . , rp(t). The free energy of the replicated system is related to the cumulant
expansion of the random free energy [37]:

Fp =
∞∑
k=1

pk

k!
F j

c
. (3.8)

The physical properties of this system strongly depend onp. For p > 1, the attractive
interactionreducesthe fluctuations of the strings. A single string (p = 1) undergoes no
interaction. Randomnessenhancesthe string fluctuations, and this is naturally associated
with valuesp < 1. The existence of the random limitp → 0 is not cleara priori. It can
be established ford = 1, where the replica system is exactly solvable (see section 3.2). For
higher dimensions, the replica interaction can still be treated in perturbation theory.

For arbitrary values ofp, the path integral in equation (3.6) can be rewritten in second
quantization [18]:

Z =
∫
Dφ Dφ̄ exp

[
−β

∫
dt dr

(
φ̄

(
∂t − 1

2β
∇2

)
φ − βσ 2φ̄2φ2

)]
. (3.9)

The contact attraction is described by the (normal-ordered) vertexφ̄2φ2. Since this inter-
action conserves the number of strings, the dependence of (3.9) onp is contained entirely
in the boundary conditions at early and late values oft . Hence, the boundary conditions
are important for obtaining the replica limitp→ 0.

The representation (3.9) is a convenient framework for perturbation theory [18]. We
now label the parametersβ−1

0 , σ 2
0 , the free energy and all longitudinal lengths with the
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subscript 0 to distinguish them from their renormalized counterparts introduced below. In
the appendix, the renormalization is carried out for the disorder-averaged Casimir amplitude

C = β2
0R

2f 0(R) (3.10)

defined by equation (1.13). The disorder-induced part

1C(σ 2
0 , β

−1
0 , R) ≡ C(σ 2

0 , β
−1
0 , R)− C(0, β−1

0 , R) (3.11)

can be expanded in powers of the dimensionless coupling constantu0 = g0R
y0/ζ0, where

g0 = −β3
0σ

2
0 (3.12)

and y0 = (2 − d)/2. Due to proliferation of replica indices, the perturbation series is
more complicated than its analogue in the previous section [44]. However, as shown in
the appendix, it is still one-loop renormalizable: the Casimir amplitude (3.10) is a regular
function of the coupling constantuP = ZP u0 defined by (A.13):

β21C(uP ) = −1

4
uP +O(y0uP , u

2
P ). (3.13)

An immediate consequence of the one-loop renormalizability is that the strong-coupling
regime is beyond the reach of the loopwise perturbation expansion (A.3) since the flow
equation (2.24) does not have a stable fixed point at negative values ofuP [18]. (The fixed
point u?P = y0/C0 > 0 for d < 2 is unphysical in this context since a repulsive interaction
between replicas translates into a purely imaginary random potential.) We come back to
this failure of perturbation theory in section 4.2.

The fixed pointu?P < 0 for d > 2 is to be identified with the roughening transition.
At this fixed point, the Casimir amplitude (3.10) takes a finite positive value without any
explicit dependence onR:

C? = −1

4

y0

C0
+O(y2

0). (3.14)

The scaling properties at the transition can hence be obtained exactly from the one-loop
renormalization group [18, 44]. For example, the displacement fluctuations are still only
diffusive:

ζ ? = 1/2 ω? = 0. (3.15)

This follows by comparing (3.14) with the scalingC ∼ R2ω/ζ at a generic fixed point given
by (1.13). Other exponents do depend ond. Conjugate toσ 2

0 is the local field

8η(t0) ≡
∫

dr′ η(r′, t0)δ(r(t0)− r′) (3.16)

which encodes the random potential evaluated along the string [47]. Small variations ofσ 2
0

(i.e., of uP ) are a relevant perturbation at the roughening transition. The dimension

y? = d − 2

2
(3.17)

is given by the eigenvalue of the beta function at the fixed pointu?P . The dimension of8η

is thereforex? = (4− d)/2. In the action (3.7), this field becomes the replica pair field
8αβ(t). The same dimensionx? then follows from (2.25) with the field renormalization
(A.13). One may also define the pair contact field9(t) ≡ δ(r1(t) − r2(t)) of two real
copies, i.e., two independent stringsr1(t) andr2(t) in the same random potential. It can
be shown that this field and its conjugate coupling constant also have dimensionsx? and
y?, respectively.
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The perturbative calculation can only be trusted ford < 4. The fact thatx? would
become negative ford > 4 is clearly unphysical. Moreover, physical quantities become
singular asd approaches 4; for example,C? ∼ √4− d [44]. This shows thatd = 4 is a
singular dimension for the roughening transition and ties in with the existence of an upper
critical dimensiond> 6 4 of the strong-coupling phase.

3.2. The strong-coupling regime

In the strong-coupling regime (i.e. for low temperatures or large disorder amplitudes), the
string has the disorder-induced fluctuations

〈(r(t)− r(t ′))2〉 ∼ |t − t ′|2ζ (3.18)

leading to anomalous scaling of the confinement free energy (1.13):

f (R) ∼ R(ω−1)/ζ (3.19)

(see references [36, 38]). The exponents satisfy the scaling relation (1.15). Superdiffusive
scaling (ω = 2ζ − 1 > 0) is believed to persist up to an upper critical dimensiond> (see
section 3.6).

In d = 1, the exponents can be obtained exactly from the replica approach [37]. The
system ofp strings is always in a bound state for integerp > 1. The binding energy in a
system of infinite widthR,

Ep = lim
L→∞

∂L(Fp(β0, σ
2
0 , L)− Fp(β0, 0, L)) (3.20)

can be computed by Betheansatzmethods; one finds

Ep ∼ p +O(p3).

Analytically continued top = 0 and inserted in (3.8), this givesF 3
c ∼ L; henceω = 1/3,

andχ = 2/3 by (1.15).
In higher dimensions, the strings form a bound state only forσ 2

0 > σ 2
0c. If we assume

thatEp is still analytic inp and has the form

Ep ∼ p +O(pk0+1) (k0 = 2, 3, . . .)

the same argument yields

ω = 1

k0+ 1
(3.21)

(see the discussion in [66, 67]). The exponents of the random system are indeed quantized,
as will be discussed in the context of the Kardar–Parisi–Zhang equation in section 4. The
quantization condition (4.1) is consistent with (3.21).

In the continuum theory (3.1), the large-distance scaling (3.18) and (3.19) is reached
in a crossover from diffusive behaviour on smaller scales. The crossover has characteristic
longitudinal and transverse scalest̃0 and r̃ beyond which the disorder-induced fluctuations
dominate over the thermal fluctuations. The dependence of these scales on the effective
coupling (3.12), namely

r̃2 = β−1
0 t̃0 =


(−g0)

−1/y0 (d < 2, g0 < 0)

exp(−C0/g0) (d = 2, g0 < 0)

(gc − g0)
−1/y? (2< d < 4, g0 < gc)

(3.22)
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with y0 = 2/(2− d) = −y?, can be obtained from the replica action (3.7); see equations
(2.31)–(2.33). The string displacement and the confinement free energy have the form

〈(r(t0)− r(t ′0))2〉 ∼ β−1
0 t0R̃(t0/t̃0) (3.23)

and

f 0 ∼ β−2
0 R−2F̃(R/r̃) (3.24)

with scaling functions that are finite in the short-distance limitst0 � t̃0 and R � ξ ,
respectively. In the opposite limit, comparison with (3.18) and (3.19) exhibits the singular
dependence on the bare parametersβ−1

0 andσ 2
0 contained in the scaling functions:

〈(r(t0)− r(t ′0))2〉 ∼ β−2ζ
0 t̃−2ω

0 |t0− t ′0|2ζ (3.25)

and

f 0 ∼ β−2
0 r̃−1R−1. (3.26)

These singularities can be absorbed into the definition of the renormalized quantities

t = (β/β0)t0 f = (β0/β)f 0 (3.27)

written in terms of the renormalized temperature

β−1 = r̃ω/ζ = t̃ ω (3.28)

(see the discussion in [45]). The renormalized displacement function and confinement free
energy remain finite in the continuum limit̃r → 0 (i.e. for β−1

0 → 0 or σ 2
0 → ∞), as

follows from inserting (3.27) and (3.28) into (3.25) and (3.26).
The existence of a zero-temperature continuum limit is crucial if the ensemble of ground

states generated by the quenched disorder is to have universal features. According to
equation (3.28), the renormalized temperatureβ−1 is an irrelevant coupling constant of
dimension−ω. This is why the renormalized theory may be called a zero-temperature fixed
point. It will be shown below thatβ−1 is a dangerousirrelevant variable which modifies
the correlations of other fields in a characteristic way [45].

3.3. A string and a linear defect

A single string coupled to a random medium and a linear defect has the partition function
(3.1) with the action

S[r, η] =
∫

dt

(
1

2

(
dr

dt

)2

+ η(r(t), t)+ g8(t)
)

(3.29)

containing the contact field8(t) ≡ δ(r(t)). The string configurations are determined by a
competition between two kinds of interaction. Point defects roughen the string and make its
displacement fluctuations superdiffusive. An attractive extended defect, on the other hand,
suppresses these excursions and, if it is sufficiently strong, localizes the string to within a
finite transverse distanceξ . As in section 2, the two regimes are separated by a second-order
phase transition where the localization lengthξ diverges. In contrast to temperature-driven
transitions, it involves the competition of two different configuration energies rather than
energy and entropy. Hence, the transition persists in the zero-temperature limit.

The properties of this zero-temperature phase transition have been controversial [73–76,
45]. Following the treatment of [45], we expand the defect contribution

1C(g, R) ≡ C(g, R)− C(0, R) (3.30)



On growth, disorder, and field theory 9925

to the zero-temperature Casimir amplitude

C ≡ R(1−ω)/ζ f (R) (3.31)

about the pointg = 0 given by the strong-coupling continuum theory. This leads to a
perturbation series formally analogous to (2.14):

1C(g, R) = −β−1R(1−ω)/ζ
∞∑
N=1

(−βg)N
N !

∫
dt2 · · · dtN 〈8(t1) · · ·8(tN)〉c. (3.32)

Of course, the perturbation series cannot be evaluated explicitly since the multipoint
correlation functions of the contact field at the zero-temperature fixed point are not known
exactly. However, one can still write down the one-point function

〈8(t)〉 ≡ 〈8〉 = R−x/ζ (3.33)

(with x = dζ ) and establish the short-distance structure of the higher connected correlation
functions.

Consider first the displacement function (1.11). It has the low-temperature expansion

〈(r(t)− r(t ′))2〉 = |t − t ′|2ζ + β−1|t − t ′|2ζ−ω + · · · (3.34)

assuming analyticity of the crossover scaling form (3.23) in the scaling variableβ−1. Hence
at zero temperature, equation (1.11) equals its thermally disconnected part〈r(t)− r(t ′)〉2.
The connected part can be shown to equal that of the Gaussian theory [38]:

〈(r(t)− r(t ′))2〉c ∼ β−1|t − t ′|. (3.35)

It appears as the leading correction to the scaling in (3.34).
In analogy to (2.10), the two-point function〈8(t)8(t ′)〉 is assumed to factorize for

|t − t ′| � R1/ζ into the one-point function〈8(t)〉 multiplied by theR-independent prob-
ability of returning to the origin, which is proportional to the inverse r.m.s. displacement
given by (3.34):

〈8(t)8(t)〉 ∼ ∣∣t − t ′∣∣−x(1− β−1d−1
∣∣t − t ′∣∣−ω + · · ·)〈8(t)〉. (3.36)

Again the leading singularity is due to sample-to-sample fluctuations of the minimal-energy
paths, while the correction term is due to thermal fluctuations around these paths. At
zero temperature, the field8(t) can be replaced by its thermal expectation value〈8(t)〉;
hence〈8(t)8(t ′)〉 equals its thermally disconnected part〈8(t)〉〈8(t ′)〉 and the connected
part 〈8(t)8(t ′)〉c vanishes, just as the connected displacement function (3.35) does. The
subleading term in (3.36) is the sum of〈8(t)8(t ′)〉c and a temperature-dependent correction
to 〈8(t)〉〈8(t ′)〉. An analogous argument applies to the singularities in any correlation
function 〈· · ·8(t)8(t ′) · · ·〉 as |t − t ′| → 0. This leads to the operator product expansion

8(t)8(t ′) ∼ Cβ−1
∣∣t − t ′∣∣−x−ω8(t) (3.37)

with a constantC > 0. Defining the contact field8(r′, t) ≡ δ(r(t)− r′), equation (3.37)
can be generalized to the spatio-temporal operator product expansion

8(r, t)8(r′, t ′) ∼ Cβ−1
∣∣t − t ′∣∣−x−ωH( ν|t − t ′||r − r′|z

)
8(r, t) (3.38)

producing a spatial singularity of the form

8(r, t)8(r′, t) ∼ β−1|r − r′|−d−ω/ζ8(r, t). (3.39)

The operator product expansion encodes the statistics of rare fluctuations around the path
of minimal energy [81, 76] as shown in figure 7. Notice that theleading singular term is
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Figure 7. The operator product expansion of contact fields for a string in a disordered medium.
The short-distance asymptotics of the pair of fields8(t) and8(t ′) is given by the single field
8(t) multiplied by a singular prefactor. The dashed lines indicate the string configurations
generating the singularity|t − t ′|−x−ω.

proportional to the irrelevant variableβ−1 and hence governed by a correction-to-scaling
exponent. This is why the temperature is called a dangerous irrelevant variable.

As before, the operator product expansion (3.37) determines the leading ultraviolet
singularities of the integrals in (3.32), which appear as poles iny ≡ 1− x − ω. The defect
contribution to the Casimir amplitude can again be written in terms of a dimensionless
coupling constant:

1C(g,R) = Rx/ζ 〈8〉
(
u− C

y
u2

)
+O(y0u2, u3) (3.40)

with

u ≡ gRy/ζ . (3.41)

Indeed, equation (3.40) remains finite in the limitβ−1→ 0 for fixedR andg. The pole can
be absorbed into the ‘minimally subtracted’ coupling constantuM = ZMu (which should
not be confused with the coupling (2.17) defined in perturbation theory about the Gaussian
fixed point). With

ZM(uM) = 1− C
y
uM +O(u2

M) (3.42)

the flow equatioṅuM ≡ ζR ∂RuM reads

u̇M = yuM − Cu2
M +O(u3

M). (3.43)

We conclude that an attractive linear defect is less effective in localizing a directed string
in a random system than in a pure system, in agreement with some previous approximate
renormalization group studies [73, 74, 76]. A weak defect is a relevant perturbation of the
zero-temperature fixed pointuM = 0 only for dimensiond < 1. It localizes the string with

ξ ∼ (−g)−ζ/y (g < 0). (3.44)

For the borderline dimensiond = 1, the theory is again asymptotically free, with

ξ ∼ exp(−Cζ/g) (g < 0). (3.45)

For d > 1, a finite defect strength|g| > |gc| is necessary to localize the string:

ξ ∼ (gc − g)−ζ/y? (g < gc) (3.46)

where

y? ≡ lim
uM→u?M

u̇M

u?M − uM
= −y +O(y2)
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is the eigenvalue of the flow equation at the non-trivial fixed point. The disorder-averaged
string density given by equation (2.28) has the short-distance singularityP(r) ∼ rθ with
θ = 2y/ζ +O(y2) < 0.

A weak repulsive defect is an irrelevant perturbation of the strong-coupling fixed point
for d > 1. In particular, it does not generate a ‘fermionic’ zero of the string densityP(r) in
the limit R→∞. This prediction of renormalized perturbation theory is consistent with the
scaling at a strong repulsive defect orbarrier, which can be obtained exactly ford = 1 [82].
An impenetrable barrier (g → ∞) is equivalent to a system boundary, leading to a long-
ranged depletionP(r) ∼ r of the string density (see section 3.4). A hardly penetrable barrier
has rare crossings that happen whenever the difference between the random energies on the
left-hand and right-hand sides of the barrier in a given longitudinal interval1t exceeds the
barrier penalty. Since the string configurations on one side consist of essentially uncorrelated
pieces of length∼R3/2, this difference scales as

1F(1t, R) = (1t)1/3Fd(1t R−3/2) ∼ (1t)1/2R−1/4 (3.47)

for 1t � R3/2. Hence the path remains on one side of the barrier for a typical longitudinal
distance1t given by (1t)1/2R−1/4 ∼ g. This determines the expectation value of the
contact field:

〈8〉 ∼ 1

1t
∼ g−2R−1/2. (3.48)

We conclude that the penetrabilityg−2 conjugate to8 is a relevant perturbation with
eigenvaluey = 1/3 at the barrier fixed pointg−2 = 0. It induces a crossover to the
delocalization fixed pointg = 0: the barrier becomes irrelevant on large scales.

3.4. A string and a wall

As mentioned above, a half-space Gaussian string(r1 > 0, r2, . . . , rd)(t) in contact inter-
action with a system boundary atr1 = 0 is equivalent to the stringr1(t) in full space
coupled to a defect atr1 = 0. In a random background, this is no longer the case. The
disorder potential couples the string coordinatesr1, . . . , rd , and the boundary has a non-local
influence on the string by cutting off all disorder configurations in the half-spacer1 < 0.
Alternatively, the half-space system can be understood as an unrestricted system with a
defect plane atr1 = 0 and ‘mirror’ constraintsη(r1, . . . , rd , t) = η(−r1, . . . , rd , t) on the
random potential [83].

We restrict ourselves here to the case whered = 1, where a half-space string with
the action (3.29) can be treated exactly by Betheansatzmethods [37] or by mapping
onto a lattice gas [84]. One finds a (de-)localization transition with the localization length
singularity

ξ ∼ (gc − g)−2 (g < gc). (3.49)

At the transition, the disorder-averaged string density (2.28) has the singularity (see p 317
of [40])

P(r) ∼ r−1/2R−1/2 for r̃ � r � R. (3.50)

Hence, the boundary contact field8b(t) ≡ δ(r(t)) has the expectation value

〈8b(t)〉 ∼ R−xb/ζ (3.51)

with xb = 1/3. As in section 3.3, we then obtain the operator product expansion

8b(t)8b(t
′) = Cbβ−1|t − t ′|−xb−ω8b(t)+ · · · (3.52)
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with Cb > 0. Hence, the wall changes the statistics of rare fluctuations. This operator
product expansion leads again to a beta function of the form (3.43) withyb = 1− xb − ω.

In d = 1, the interaction with the wall is a truly relevant perturbation with eigenvalue
yb = 1/3 at the (de-)localization point. This leads to a singularity (3.44) of the localization
length, which agrees with (3.49) and with the result of [43] obtained from a variational
scaling argument for the bound-state free energy. Forg > gc, there is a crossover to
the fixed pointu?M = yb/Cb + O(y2

b ) with exponentsx? = 1 − ω + yb + O(y2
b ) and

θ = x?/ζ − d > 0 describing a long-ranged depletion of the string densityP(r). This is
again in agreement with exact results [84] and numerical transfer matrix studies [85] but
the one-loop calculation underestimates the true valueθ = 1.

3.5. Strings with mutual interactions

The effective action

S[r1, r2, η] =
∫

dt

(
1

2

2∑
i=1

(
dri
dt

)2

+
2∑
i=1

η(ri (t), t)+ g9(t)
)

(3.53)

with the contact field9(t) ≡ δ(r1(t) − r2(t)) describes a pair of directed strings that
‘live’ in the same random medium and are coupled by short-ranged mutual forces [77–
80, 46]. In the case of flux lines, for example, this interaction is repulsive. Due to the
random potential, the centre-of-mass displacement of the strings does not decouple from
their relative displacement. The two-string system is therefore not equivalent to a single
string and a linear defect.

The effects of pair interactions turn out to be much stronger than in a pure system.
Qualitatively, this is easy to understand. At zero temperature, two non-interacting strings
in the same random potential share a common minimal pathr0(t). At small but finite
temperatures, it turns out that the strings still follow a ‘tube’ of widthr̃ aroundr0(t)

with finite probability. Hence, their overlap probability〈9(t)〉 remains finite in the limit
R → ∞, in contrast to that of non-interacting thermal strings,〈9(t)〉 ∼ R−dζ0. This
explains the great sensitivity of the system to repulsive forces. However, the strings make
large individual excursions from the tube. The disorder-averaged pair density (2.28) (with
r = r1− r2) has the form [81, 46]

P(r) ∼ β−1r−d−ω/ζ for r & r̃ andR→∞ (3.54)

dictated by the operator product expansion (3.39). A strong repulsion (g → ∞) forces
one of the strings onto the lowest excited pathr1(t) that has no overlap withr0(t) (with
fluctuations of the form (3.54) aroundr1(t) at finite temperatures). The pathsr1(t) and
r0(t) have an average distance of orderR, and the pair density should have a long-ranged
depletionP(r) ∼ rθ with θ > 0 for g →∞, just like that of free fermions ford = 1. At
the strong-coupling fixed point of non-interacting strings, the pair field9(t) is therefore a
relevant perturbation inducing the crossover to the ‘fermionic’ behaviour forg→∞.

This argument can be made quantitative [46]. We start from the expansion

1C(g, R) = −β−1R(1−ω)/ζ
∞∑
N=1

(−βg)N
N !

∫
dt2 · · · dtN 〈9(0)9(t2) · · ·9(tN)〉c (3.55)

of the Casimir amplitude (3.31) about the strong-coupling fixed point of non-interacting
strings (g = 0). Since the overlap probability of the two strings

〈9(t)〉 ∼ R−x/ζ (3.56)
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remains finite asR → ∞, the local field9(t) has dimensionx = 0. The connected
correlation functions of9(t) vanish at zero temperature, as do those of the contact field
8(t) of section 3.3. One obtains an operator product expansion of the form (3.37):

9(t)9(t ′) = C2β
−1|t − t ′|−ω9(t)+ · · · (3.57)

with C2 > 0. Its leading term is again a correction to scaling proportional to the dangerous
irrelevant variableβ−1. Renormalization of the perturbation series (3.55) then leads to the
flow equation (3.43) withy = 1− ω.

It follows that an attractive pair interaction always localizes the strings. The pair density
P(r, ξ) of the localized state has the form

P(r, ξ) ∼ β−1r−d−ω/ζP(r/ξ) for r & r̃ . (3.58)

The scaling functionP has a finite limit at short distances and decays exponentially on
scalesr & ξ . The localization lengthξ has the singularity

ξ ∼ (−g)−ζ/y = (−g)(1+ω)/2(1−ω) (g < 0). (3.59)

The transverse scaleξ (m) defined by themth moment of the pair density

ξ (m) ≡
(∫

dr rmP (r, ξ)

)1/m

(m = 1, 2, . . .) (3.60)

scales as

ξ (m) ∼ β−1/m(−g)−(ζ−ω/m)/y (g < 0). (3.61)

Recall that at an ordinary fixed point, all the scalesξ (m) have the same exponent as the
correlation lengthξ . The dangerous irrelevant variableβ−1 breaks this universality and
induces themultiscaling (3.61). A similar phenomenon occurs for directed strings with
thermal fluctuations in dimensionsd > 4 [58].

Repulsive forces lead to an asymptotic scalingP(r) ∼ rθ with θ = x?/ζ − d given
in terms of the dimensionx? = 2(1 − ω) + O((1 − ω)2) of the pair field at the non-
trivial fixed point. A numerical transfer-matrix study of a pair of strongly repulsive strings
(g→∞) confirms the long-ranged depletion of the pair density [85]. The exponentθ ≈ 2
is underestimated by the one-loop calculation.

The above considerations are valid only as long asd is below the upper critical
dimensiond> of a single string. This can be seen as follows. It is possible to show
that the ground-state pathr0(t) is unique (up to microscopic degeneracies of the order of
the lattice spacing) in almost all realizations of the disorder [38, 81]. This uniqueness is
also manifest in the pair density (3.54): for any fixedr0 > 0, the probability of finding the
strings at a relative distancer > r0 remains finite forR → ∞, and that limit value tends
to zero forβ−1→ 0 [46]:∫

r>r0

dr P(r) ∼ β−1r
−ω/ζ
0 . (3.62)

However, ford → d> (i.e.,ω→ 0), the pair distribution (3.54) shows a singular broadening:
for R → ∞ and fixedβ−1, the probability (3.62) approaches one. Consequently, the
overlap probability (3.56) goes to zero,〈9(t)〉 ∼ ω. This suggests that the statistics of
string configurations becomes more complicated ford > d>. The strings no longer cluster
in the vicinity of the minimal path as expressed by (3.62), but exploit multiple near-minimal
paths at any finite temperature. Their overlap〈9(t)〉 is expected to vanish forR→∞.
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3.6. The upper critical dimension of a single string

The theory of strings with pair interactions discussed in section 3.5 has an important
implication for the single-string system [47]: the upper critical dimension of a single string
is less than or equal to four. Asd> is approached from below, the exponentsζ and ω
tend to the Gaussian valuesζ = 1/2 andω = 0 continuously. Hence, the upper critical
dimension could serve as the starting point for a controlled expansion. The name ‘upper
critical dimension’ is, however, quite misleading, sinced> does not mark the borderline
with simple mean-field behaviour as in the standard theory of critical phenomena. On the
contrary, the state of the system in high dimensions may be even more complicated, having
presumed glassy characteristics [86, 31].

The existence of an upper critical dimension has been controversial. Numerical work
seems to indicate that a strong-coupling phase with non-trivial exponentsz < 2, χ > 0
persists for dimensionsd = 4 and higher [26–28]. However, the results ford > 3 are not
very reliable since the available system sizes are limited and corrections to scaling are not
taken into account [48].

Various theoretical arguments favour the existence of a finite upper critical dimensiond>
at or slightly below four. Most of these approaches rest on approximation schemes (such as
functional renormalization [29, 30] or mode-coupling theory [31]) whose status is not very
well understood. The same is true for a recent approximate real-space renormalization [87]
challenging these results.

The argument given here [47] is of a different nature; it is not tied to any of these
approximation schemes. An important ingredient is (3.61), a set ofexact relations in the
strong-coupling regime. These relations describe the bound state (3.58) of attractively
coupled strings in terms of the only independent single-string exponentω = 2ζ − 1.
We focus on the temperature dependence of the scalesξ (m). For fixed g, ξ (m) is
monotonically increasing with temperature according to (3.61). This is not surprising since
it is temperature-driven fluctuations of the strings around the pathr0(t) that generate the
pair distribution (3.58). At the roughening transition (i.e., forβ−1 = β−1

c ), the singularity
of ξ (m) changes:

ξ (m) ∼ ξ ∼ (−g)−ζ ?/y? with y? = (d − 2)/2 (3.63)

as discussed in section 3.1. With the natural assumption thatξ (m) remains a monotonic
function of β−1 for all β−1 6 β−1

c and fixed g, one then obtains the inequalities
y/(ζ − ω/m) > y?/ζ ?. These imply an upper bound on the free-energy exponent:

ω 6 4− d
d

. (3.64)

The resultd> 6 4 then follows immediately.
It is tempting to speculate about the nature of the strong-coupling regime in high

dimensions. Belowd>, the pair distribution of non-interacting strings at fixed temperature
has the finite limit (3.54) forR → ∞, and this limit distribution collapses toδ(r1 − r2)

for β−1 → 0. For d > d>, the pair distribution is expected to depend on bothβ−1 andR
in an essential way. Its asymptotic behaviour will then depend on the order in which the
zero-temperature limit and the thermodynamic limitR →∞ are taken. Similar properties
are familiar from glassy systems.

3.7. Discussion

Interacting strings in a random background turn out to have a rich scaling behaviour. In
one transverse dimension alone, there are no less than six universality classes characterized
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by of the exponentθ of the disorder-averaged string density and the renormalization group
eigenvaluey of the contact coupling. These universality classes describe

(i) the (de-)localization transition of a string at a linear defect (θ = 0, y = 0),
(ii) the (de-)localization transition of a string at an attractive wall (θ = −1/2, y = 1/3),
(iii) the (de-)localization transition of a pair of strings with contact attraction (θ =
−3/2, y = 2/3),

(iv) the scaling of a string at a barrier (θ = 1, y = 1/3),
(v) the scaling of a string at a repulsive wall (θ = 1, y = −2/3),
(vi) the scaling of a pair of strings with contact repulsion (θ = 2, y = −4/3).

Clearly, the list could be continued by including higher dimensions, long-ranged inter-
actions or disorder correlations etc. Recall from section 2 that without quenched disorder,
the six cases are described by just two universality classes, namely Gaussian strings
(θ = 0, y = 1/2) and free fermions (θ = 2, y = −1/2).

This scenario is consistent with an operator product expansion (3.37) of the contact
field, which is the basis for perturbation theory about the strong-coupling fixed point. The
existence of an operator product expansion is of conceptual importance since the correlations
in the strong-coupling regime are generated by global minimization of the free energy and
not by a local action. The operator product expansion explicitly contains the temperature
β−1 as dangerous irrelevant variable. This variable, which is proportional to the surface
tensionν of the associated KPZ surface, will prove dangerous in the growth problem as
well: it generates the dynamical anomaly discussed in the next section.

4. Directed growth

All of the methods and results on directed polymers in a random medium discussed in
the previous section have their correspondences in KPZ surface growth via the Hopf–Cole
transformation (1.7). In particular, the KPZ equation has an upper critical dimension less
than or equal to four (see section 3.6).

To discuss dynamical renormalization, we rewrite equation (1.1) as a path integral for
the height fieldh(r, t) and the response field̃h(r, t). It proves necessary to distinguish
carefully between renormalized fields and couplings defined in a non-perturbative way,
and perturbatively renormalized quantities defined, for example, by minimal subtraction.
The perturbative renormalization of the dynamic path integral is seen to be equivalent to
the replica perturbation theory of section 3: it captures the roughening transition but does
not produce a fixed point corresponding to the strong-coupling regime [18]. This failure of
perturbation theory is explained by the fact that the non-perturbatively renormalized coupling
constantu and the corresponding height fieldh (defined by conditions on correlation
functions at a renormalization point) have a singular dependence on their perturbatively
subtracted counterpartsuP andhP .

The strong-coupling regime thus calls for non-perturbative methods. In the second part
of this section, we analyse constraints on the effective growth dynamics imposed by the
consistency of correlation functions. The consistency relations again take the form of an
operator product expansion. The response fieldh̃ is found to obey an operator product
expansion similar to those of the previous section [45]. The resulting structure of the
response functions is tied to KPZ growth with additional deterministic driving forces. In
particular, a surface with a local variation−(g/λ)δ(r) in the deposition rate corresponds to
a directed string interacting with a linear defect (see section 3.3). It turns out that (forλ > 0)
a sufficiently enhanced deposition (g/λ < gc/λ) induces an increased growth rate even in
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the thermodynamic limitR →∞, while for g/λ > gc/λ the growth rate is asymptotically
independent ofg [88, 73]. These two regimes are separated by a non-equilibrium phase
transition, the analogue of the string (de-)localization transition.

Finally, we turn to the correlations of the height field [49]. These are assumed to obey
an operator product expansion as well. Consistently with the available numerical data, we
further assume that these correlations do not show multiscaling, unlike the correlations in a
turbulent fluid. This property constrains severely the possible form of the operator product
expansion. A discrete set of values of the roughness exponent emerges:

χ = 2

k0+ 2
with k0 = 1, 2, . . .. (4.1)

Only for these values does the KPZ equation admit solutions with adynamical anomalyin
the strong-coupling regime. It is argued on phenomenological grounds that the scaling of
growing surfaces should be governed by such solutions with an odd value ofk0. Hence the
exact values of the growth exponents for two- and three-dimensional surfaces are derived.

4.1. Field theory of the Kardar–Parisi–Zhang model

The path integral formulation [89] of the stochastic evolution (1.1), (1.2) is obtained in a
straightforward way. We rewrite the Gaussian distribution of the driving forceη(r, t):∫
Dη exp

(
−
∫

dr dt
1

2σ 2
η2

)
=
∫
Dη Dh̃ exp

(
−
∫

dr dt

(
−σ

2

2
h̃2+ h̃η

))
(4.2)

introducing the purely imaginary ‘ghost’ field̃h(r, t). Eliminatingη by using the equation
of motion, we obtain the (Îto-discretized) path integral

Z =
∫
Dh Dh̃ exp

[
−
∫

dr dt

(
−σ

2

2
h̃2+ h̃

(
∂

∂t
h− ν

2
∇2h− λ

2
(∇h)2

))]
(4.3)

the generating functional of the dynamical correlations. Ghost-field insertions produce the
response functions〈

Ñ∏
j=1

h̃(rj , tj )
Ñ+N∏
j=Ñ+1

h(rj , tj )

〉
=

Ñ∏
j=1

δ

δρ(rj , tj )

〈
Ñ+N∏
j=Ñ+1

h(rj , tj )

〉
(4.4)

whereρ(r, t) is an additional source field in the equation of motion:

∂th = ν ∇2h+ λ
2
(∇h)2+ η + ρ. (4.5)

There is a third way to express the KPZ dynamics. Writing the equal-time height
correlations in the form

〈h(r1, t) · · ·h(rn, t)〉 ≡ 〈h(r1) · · ·h(rn)〉t =
∫
Dh h(r1) · · ·h(rn)Pt (4.6)

the time dependence has been shifted from the field variablesh(r, t) to the configuration
weightPt [h]. The latter obeys the functional Fokker–Planck equation

∂tPt =
∫

dr

(
σ 2 δ2

δh(r)2
− δ

δh(r)
J (r)

)
Pt (4.7)

where

J (r) ≡ ν ∇2h(r)+ λ
2
(∇h)2(r) (4.8)



On growth, disorder, and field theory 9933

is the deterministic part of the current.
In the linear theory, the fieldsh(r, t) and h̃(r, t) have canonical dimensions−χ0 =

(d − 2)/2 andχ0 + d = (d + 2)/2, respectively, and the dynamical exponent isz0 = 2
(the basic scale is now that ofr).

A crucial role in the following will be played by the infrared divergencies of the height
correlations [49]. Their physical meaning can be seen already in the linear theory, which
has the response propagator

〈h̃(r1, t1)h(r2, t2)〉 = θ(t2− t1)
(2πν(t2− t1))d/2 exp

(
− (r1− r2)

2

2ν(t2− t1)
)

(4.9)

(θ(t) denoting the step function) and the height–height correlation function

〈h(r1, t1)h(r2, t2)〉 = σ 2
∫

dr dt 〈h̃(r, t)h(r1, t1)〉〈h̃(r, t)h(r2, t2)〉. (4.10)

However, the last expression is divergent in infinite space ford < 2 (i.e.,χ0 > 0). Therefore,
it depends strongly on the initial or boundary conditions. For stationary growth in a system
of sizeR, the dominant part in the limitR→∞ is

〈h(r1, t1)h(r2, t2)〉R ∼ 〈h2〉R ∼ R2χ (4.11)

where〈h2〉 ≡ 〈h2(r1, t1)〉 = 〈h2(r2, t2)〉 with periodic boundary conditions. The amplitude
(4.11) measures theglobal roughness of the surface, i.e., the size of its mountains and
valleys. The regularized height correlation, however, can be written in terms of height
differences measuring thelocal roughness:

〈h(r1, t1)h(r2, t2)〉R − 〈h2〉R = −1

2
〈(h(r1, t1)− h(r2, t2))

2〉R. (4.12)

The finite limit for R→∞
〈(h(r1, t1)− h(r2, t2))

2〉 = |r1− r2|2χ0G0

(
ν|t1− t2|
(r1− r2)2

)
(4.13)

shows (affine) scale invariance. In the interacting theory, the infrared regularization is
more complicated since the higher connected height correlations also developR-dependent
singularities. But the local statistics of the surface, measured by height differences, is still
expected to remain finite forR→∞, i.e., to decouple from the divergent amplitudes.

The interacting theory has an ultraviolet singularity as well. Taking the expectation
value of the equation of motion, we obtain the growth rate, which has the form

〈∂th〉R = λ

2
〈(∇h)2〉R ∼ a2χ−2+O(R2χ−2) (4.14)

for stationary growth. The dependence on the short-distance cut-offa can be removed by
the subtraction

(∇h)2→ (∇h)2− 〈(∇h)2〉∞ (4.15)

which affects the one-point function〈h(r, t)〉 but leaves the higher connected correlation
functions invariant. This normal ordering of the interaction field will always be implied in
the following. The nature of the cut-off-dependent term in (4.14) is clear from the mapping
onto directed strings. Via equation (1.7), the subtracted growth rate is directly related to
the Casimir term (3.31):

−λ〈∂th〉R = f (R) (4.16)

while thea-dependent term contributes to the non-universal part of the free energy.
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4.2. Dynamical perturbation theory

Perturbation theory for the KPZ dynamics can be set up in different ways.

(a) The standard formalism is a diagrammatic expansion of the path integral (4.3)
with interaction vertexh̃(∇h)2 about the Gaussian limitλ = 0. The propagators of the
Gaussian theory are the response function〈h̃(r1, t1)h(r2, t2)〉 and the correlation function
〈h(r1, t1)h(r2, t2)〉; see equations (4.9) and (4.10). Renormalization is usually based on
the expansion of the Fourier-transformed two-point functions〈h̃(−k,−ω)h(k, ω)〉 and
〈h(−k,−ω)h(k, ω)〉. This has been carried out to first [15, 16] and second order [90, 17];
see also the criticism in [81, 91]. In the appendix, we discuss instead the expansion for the
real-space response function〈h̃(r1, t1)h(r2, t2)〉 and the universal part of the growth rate
〈∂th〉R in order to exhibit the analogy with the replica perturbation theory of section 3.1.
Beyond leading order, however, calculations become cumbersome in this formalism.

(b) By performing the Hopf–Cole transformation (1.7) and the corresponding trans-
formation of the response field [45]

h = 2ν

λ
logφ h̃ = λ

2ν
φ̄φ (4.17)

the path integral (4.3) can be brought to the form [92]

Z =
∫
Dφ Dφ̄ exp

[
− 1

2ν

∫
dr dt

(
φ̄(∂t − ν ∇2)φ − σ

2λ2

2ν
φ̄2φ2

)]
(4.18)

which equals the replica action (3.9) introduced previously in reference [18] (withβ = 1/2ν
andλ = 1). We emphasize, however, that (4.18) is not a faithful representation of the growth
dynamics unless it is defined with boundary conditions enforcing the limitp→ 0; see the
discussion in the appendix. The theory is now Gaussian for finiteλ but σ 2 = 0. The
propagator〈φ̄(r1, t1)φ(r2, t2)〉 is again given by (4.9); the interaction vertexφ̄2φ2 arises
from the noise term̃h2. The resulting diagrammatic expansion is identical to the replica
perturbation theory of section 3 and can hence be renormalized exactly to all orders, as
shown in the appendix.

In both cases, the expansion parameter is again the dimensionless coupling constant
u0 = g0R

2y0 with

g0 = σ 2
0λ

2
0

(2ν0)3
(4.19)

where the fields and couplings of the bare theory are labelled by the subscript 0. The poles
in y0 can be absorbed into loopwise-subtracted fieldshP , h̃P and the coupling constant
uP = ZP u0 given by (A.13). There is no renormalization oft0 = tP , which would be
required in the strong-coupling regime according to (3.27).

The flow equation is again (2.24) with the fixed pointu?P = y0/C0 representing the
roughening transition for 2< d < 4. At the transition, the Casimir amplitude of the growth
rate takes a finite value regular iny0:

R2 λc

(2ν)2
〈∂tP hP 〉R =

1

4

y0

C0
+O(y2

0) (4.20)

which is directly related to the Casimir amplitude (3.14) of a string in a random medium.
The scaling exponents at the transition

χ? = 0 z? = 2 (4.21)

are independent ofd, in agreement with the finite-order calculations of [15–17]. These
exponents have been predicted previously by a scaling argument [93].
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4.3. Renormalization beyond perturbation theory

Of course, renormalization is not tied to a loopwise expansion and can be defined in a
non-perturbative way [18]. The correlation functions show crossover scaling from the
linear to the strong-coupling regime (d 6 2) and from the critical to the strong-coupling
regime (d > 2). The crossover has the characteristic scalesr̃ and t̃ given by (3.22) with
β−1 = 2ν.

For d 6 2, the response and correlation functions have the scaling form〈
Ñ∏
j=1

h̃0(rj , t0j )
Ñ+N∏
j=Ñ+1

h0(rj , t0j )

〉
= R−Nχ0+Ñ(χ0+d)GNÑ

(
rj − rk
R

,
t0j − t0k
Rz0

, u0

)
. (4.22)

Equation (4.22) can be written as the bare Callan–Symanzik equation(
R

∂

∂R

∣∣∣∣
λ0

+
∑
j

rj
∂

∂rj
+ z0

∑
j

t0j
∂

∂t0j
+ u̇0

∂

∂u0
−Nχ0+ Ñ(χ0+ d)

)

×
〈
Ñ∏
j=1

h̃0(rj , t0j )
Ñ+N∏
j=Ñ+1

h0(rj , t0j )

〉
= 0 (4.23)

with

u̇0 ≡ R ∂Ru0 = 2y0u0. (4.24)

For the infrared-regularized correlators, the explicit dependence onR vanishes in the
thermodynamic limit.

In the strong-coupling regime, these correlation functions develop anomalous scaling
and hence a singular dependence on the bare coupling constantu0. Renormalization consists
in absorbing these singularities into new variables:

h = Zhh0

h̃ = Z−1
h h̃0

t = Zt t0 (4.25)

u = Zu0 = Z−2
h Z−2

t u0.

TheZ-factors can all be written as functions ofu.
Under this change of variables, equation (4.23) transforms into the renormalized Callan–

Symanzik equation(
R

∂

∂R

∣∣∣∣
λ0

+
∑
j

rj
∂

∂rj
+ z(u)

∑
j

tj
∂

∂tj
+ u̇ ∂

∂u
−Nχ(u)+ Ñ(χ(u)+ d)

)

×
〈
Ñ∏
j=1

h̃(rj , tj )
Ñ+N∏
j=Ñ+1

h(rj , tj )

〉
= 0 (4.26)

with

u̇ ≡ R ∂Ru = 2y0u

1− u (d/du) logZ (4.27)

z(u) = z0− u̇ d

du
logZt (4.28)

χ(u) = χ0− u̇ d

du
logZh. (4.29)
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Notice that only two of theZ-factors are independent. The ghost-field renormalization is
tied to that ofh since the response function〈h̃(r1, t1)h(r2, t2)〉 always has dimensiond by
definition. Furthermore, Galilei invariance implies the relationZ = Z−2

h Z−2
t obtained by

inserting the exponent relationχ + z = 2 into (4.27), (4.28), and (4.29). A different but
equivalent Callan–Symanzik equation is derived in [17].

The renormalized variables (4.25) can be defined in a non-perturbative way by means
of two independent normalization conditions. These are imposed, e.g., on the stationary
two-point functions in an infinite system:

R2χ0〈(h(0, t)− h(R, t))2〉(u) = R2χ0〈(h0(0, t0)− h0(R, t0))
2〉(0) (4.30)

Rd〈h̃(r, t)h(r, t + R2)〉(u) = Rd〈h̃0(r, t0)h0(r, t0+ R2)〉(0). (4.31)

R is now an arbitrary normalization scale. An alternative to (4.30) is the normalization
condition

R2−χ0〈∂th〉R(u) = −1

2
u (4.32)

on the universal finite-size correction to the stationary growth velocity in a system of size
R. Comparing (4.30) and (4.31) with the asymptotic scaling of the bare functions obtained
from (4.22)

〈(h0(r1, t0)− h0(r2, t0))
2〉 ∼ r̃−2(χ−χ0)|r1− r2|2χ (4.33)

〈h̃0(r, t01)h0(r, t02)〉 ∼ t̃ d/z−d0/z0
0 (t02− t01)

−d/z (4.34)

we infer the asymptotic behaviour of theZ-factors:

Zh ∼ (r̃/R)χ−χ0 Zt ∼ (r̃/R)z−z0. (4.35)

The renormalized height correlation and response functions have a finite continuum limit
r̃ → 0. Of course, this does not imply that all observables are finite in this limit since
composite fields may generate additional singularities. However, as discussed in section 4.5,
the structure of composite fields of the KPZ theory is expected to be quite simple. All
negative-dimensional fields (for example, the monomialshk(r)) have scaling dimensions
given by the linear spectrum (4.51). Consequently, the transformations (4.25) do renormalize
the correlations of these fields.

The renormalized height fieldh(r, t) obeys again an equation of motion of the form (1.1)
but the coefficients become singular in the limitr̃ → 0. By substituting the renormalized
variables (4.25) into (1.1), (4.3) or (4.7), we obtain

ν = Z−1
t ν0 ' ν∗(r̃/R)χ

σ 2 = Z2
hZ−1

t σ 2
0 ' σ ∗2(r̃/R)d−2+3χ (4.36)

u = u0Z−2
t Z−2

h ' u∗
with finite limit valuesν∗, σ ∗2, andg∗. Galilei invariance is reflected in the asymptotic
scale invariance of the dimensionless coupling,u ' u∗. This is the non-perturbative strong-
coupling fixed point. The other coefficients become irrelevant asr̃/R→ 0. In particular, we
recover the scaling (3.28) of the renormalized temperatureβ−1 = 2ν. It is easy to verify that
the strong-coupling asymptotics (4.35) and (4.36) remains unchanged ford > 2 although
the scaling functions (4.22) now contain singularities marking the roughening transition.

We emphasize again that the existence of this finite continuum limit depends only
on the existence of a well-defined scaling regime at large distances. We have not assumed
perturbative renormalizability, i.e., that theZ-factors can be computed as power series inu0.
It is instructive, however, to compare the renormalized theory with the perturbatively finite
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theory of section 4.2. Recall that in a usualε-expansion, imposing normalization conditions
like (4.30), (4.31) is equivalent to requiring finiteness order by order in perturbation theory.
The respective coupling constants,u anduP , are related by a diffeomorphism that remains
regular in the limitε → 0 and is defined on a domain of interaction space that contains
the fixed pointsuP = u = 0 andu∗(u∗P ). This equivalence is lost in the crossover to the
strong-coupling fixed point. To see this, we integrate the flow equation (2.24) foruP in two
dimensions with the initial conditionuP (R0) = u1. The solution

uP (R) = u1

1− u1 log(R/R0)
(4.37)

diverges at a finite valueR = R1 ≡ R0 exp(1/u1). It follows immediately thatuP (R) is not
a good parametrization of the crossover. The pole ofuP (R) is only a ‘coordinate singularity’
[94] of perturbative subtraction schemes; any renormalized couplingu(R) is expected to
remain regular atR = R1. Hence the functionuP (u) has a pole at the valueu(R1) between
the fixed pointsu = 0 andu∗. Accordingly, the loopwise-subtracted correlation functions at
the normalization point become singular as well: perturbative subtraction fails to maintain
a smooth crossover of the large-distance regime.

4.4. Response functions in the strong-coupling regime

The correspondence between directed strings in a random medium and growing surfaces
extends to strings with additional interactions. We restrict ourselves here to the case of a
string and a linear defect discussed in section 3.3 to infer the properties of the renormalized
ghost-field correlations at the strong-coupling fixed point.

The action (3.29) translates into the growth equation

∂th = ν ∇2h+ λ
2
(∇h)2+ η − g

λ
δ(r) (4.38)

(see references [88, 73]). The extra term describes a spatial inhomogeneity in the average
rate of mass deposition onto the surface. The Casimir amplitude (3.30) of the free energy
is that of the growth rate:

1C(g,R) = −λR−χ+z(〈∂th〉R(g)− 〈∂th〉R(0)). (4.39)

For g/λ < 0 (d 6 1) andg/λ < gc/λ (d > 1), translational invariance is strongly
broken. The string bound state corresponds to a surface state with a macroscopic stationary
mountain

H(r) ≡ 〈h(0, t)〉 − 〈h(r, t)〉 (4.40)

generating an enhanced growth rate even in the limitR→∞.
The inhomogeneity in equation (4.38) contributes a term

−(g/λ)
∫

dt h̃(0, t)

to the dynamic action in (4.3). Hence, the perturbation theory (3.32) for the Casimir
amplitude (3.30) can be reproduced in the dynamical formalism [45]:

1C(g,R) = λ lim
L→∞

∂L

〈
exp

[
− (g/λ)

∫
dt h̃(0, t)

]
h(r, L)

〉
. (4.41)

The two series are related term by term via the mapping (4.17) [45]:

(βλ)m−1〈8(t1) · · ·8(tN)〉c = lim
L→∞
〈h̃(0, t1) · · · h̃(0, tN )h(r, L)〉. (4.42)
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Equation (3.38) translates into an operator product expansion for the ghost fields:

h̃(r, t)h̃(r′, t ′) = λC|t − t ′|−(χ+d)/zH
( |t − t ′|
|r − r′|z

)
h̃(r, t) (4.43)

which produces an equal-time singularityh̃(r, t)h̃(r′, t) ∼ |r− r′|−(χ+d)h̃(r, t). It is quite
plausible intuitively that the response to a pair of nearby sources reduces to the response to a
single source multiplied by a divergent factor. This form of the operator product expansion
follows also from the mode-coupling approach of [76].

4.5. Height correlations in the strong-coupling regime

In the following, we discuss the renormalized and connected equal-time height correlations

〈h(r1, t) · · ·h(rn, t)〉 ≡ 〈h(r1) · · ·h(rn)〉t (4.44)

in the strong-coupling regime, following [49]. An infinite surface growing from a flat initial
stateh(r, 0) = 0 develops height correlations depending on the differencesrij ≡ ri − rj
and the correlation lengthξt ∼ t1/z increasing with time. (In a finite system of sizeR, the
correlation length will eventually saturate at a valueξ ∼ R. We restrict ourselves here to
unsaturated growth, i.e., to valuesR � ξt .) In the scaling regime

r̃ � |rij | � ξt (i, j = 1, . . . , n) (4.45)

the height correlations will generically become singular as some of the points approach each
other. Ford < d>, these singularities should be power laws. They are assumed to follow
from an operator product expansion

h(r1) · · ·h(rk) =
∑
O
|r12|−kxh+xOCOk

(
r13

|r12| , . . . ,
r1k

|r12|
)
O(r1) (4.46)

which is an identity expressing anyn-point function as a sum of(n−k+1)-point functions in
the limit |rij | � |ril| � ξt (i, j = 1, . . . , k andl = k+1, . . . , n). The sum on the r.h.s. runs
over all local scaling fieldsO(r). Each term contains a dimensionless scaling functionCOk
(a simple number fork = 2) and a power of|r12| given by the scaling dimensionsxO and
xh = −χ (such that the overall dimension equals that of the l.h.s.). The fieldOk with the
smallest dimension,xk, determines in particular the asymptotic behaviour of thek-point
functions asξt →∞,

〈h(r1) · · ·h(rk)〉t ∼ 〈Ok〉t ∼ ξ−xkt . (4.47)

The amplitudes〈Ok〉t = 〈Ok(r)〉t diverge withξt , i.e., xk < 0. They measure the global
roughness, which increases as the surface develops higher mountains and deeper valleys.
Local properties of the surface should, however, behave quite differently. For example, the
gradient correlation functions are assumed to have a finite limit:

lim
ξt→∞
〈∇h(r1) · · ·∇h(rn)〉t ≡ 〈∇h(r1) · · ·∇h(rn)〉. (4.48)

On writing

h(ri )− h(r′i ) =
∫ r′i

ri

ds · ∇h(s)

the same property follows for the height difference correlation functions

〈(h(r1)− h(r′1)) · · · (h(rn)− h(r′n))〉t . (4.49)
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This implies a feature familiar from simulations: one cannot recognize the value ofξt from
snapshots of the surface in a region much smaller thanξt .

The stationarity condition (4.48) severely restricts the form of the height correl-
ations (4.44). This can be seen as follows. The operator product expansion (4.46) induces
an expansion for the gradient fieldv ≡∇h of the form

v(r1) · · ·v(rk) =
∑
O
|r12|−kxv+xO C̃Ok

(
r13

|r12| , . . . ,
r1k

|r12|
)
O(r1) (4.50)

with new scaling functionsC̃Ok and the dimensionxv = −χ + 1. (Both sides of (4.50)
are tensors of rankk whose indices are suppressed.) The fieldsO on the r.h.s. govern
the time-dependent amplitudes〈v(r1) · · ·v(rk)〉t ∼ 〈O〉t ∼ ξ

−xO
t in analogy with (4.47).

Hence, the stationarity condition (4.48) allows in (4.50) only fieldsO with a non-negative
scaling dimensionxO, such as1 (the identity field),(∇h)2(r), etc. This in turn restricts the
possible terms in (4.46) to the following.

(a) Singular terms involving fieldsO(r) with xO > 0. In particular, we call the coef-
ficient function of1 the contractionof the fieldsh(r1), . . . , h(rk).

(b) Regular terms, where the coefficient|r12|−kxh+xOCOk is a tensor of rankN in the
differencesr1i (i = 2, . . . , k). Such terms do not violate (4.48) since they have a vanishing
coefficientC̃Ok in (4.50) forN < k. They can readily be associated with composite fields
of dimensions

xk,N = −kχ +N. (4.51)

The leading (N = 0) term involves the (normal-ordered) fieldOk(r) = hk(r) and governs
the asymptotic singularity (4.47) withxk = xk,0 = −kχ . The higher terms correspond to
fields with k factorsh(r) andN powers of∇.

The leading terms of (4.46) are shown in figure 8.
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Figure 8. The operator product expansion for ak-tuple of KPZ height fields. The lines indicate
the contraction of the fields, i.e., the coupling to the identity1. Partial contractions would not
contribute to connected correlation functions. Subleading singular and regular terms are omitted.

It is useful to introduce the (normal-ordered) vertex fields

Zq(r) ≡ exp[qh(r)] (4.52)

which are the generating functions of the fieldshk(r). Equation (4.46) then implies the
operator product expansion

Zq1(r1)Zq2(r2) = exp

(∑
k,l

C1
k,lw

k
1w

l
2

)
Zq1+q2(r1)+O(CO 6=1

k,l ) (4.53)

whereCOk,l ≡ COk+l (0, . . . ,0, r12/|r12|, . . . , r12/|r12|) with the firstk arguments equal to 0
andwi ≡ qi |r12|χ [95]. This is a generalization of Wick’s theorem. In an expansion of
the exponential, each termC1

k,lw
k
1w

l
2 represents a contraction ofk + l fields h. Subleading
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singular terms (with positive-dimensional fieldsO) and regular terms (with fields containing
height gradients) are omitted. Equation (4.53) determines the asymptotic behaviour of the
vertexn-point functions:

〈Zq1(r1) · · ·Zqn(rn)〉t ∼ exp

(
ξ
χ
t

n∑
i=1

qi

)
. (4.54)

If
∑

i qi = 0, they have a finite limit〈Zq1(r1) · · ·Z−q1···−qn−1(rn)〉. Since these are precisely
the vertex correlators that generate the height difference correlation functions (4.49) and
since the vertex operator product expansion is analytic in theqi , this leads back to the
stationarity condition (4.48).

The operator product expansions (4.46) and (4.53) with the linear dimensions (4.51) are
at the heart of the field theory for KPZ systems. They describe the following structure of
height correlations.

(a) The single-point amplitudes

〈hk〉t ∼ ξkχt (4.55)

are the moments of a probability distribution,

〈hk〉t =
∫

dh hkP1,t (h). (4.56)

The time dependence of the distribution takes the form

P1,t (h) = ξ−χt P1(hξ
−χ
t ) (4.57)

expressing global scaling of unsaturated growth. Recall that by normal ordering equ-
ation (1.1), we have eliminated the non-universal part of the average height,〈h〉t ∼ t .

(b) Since (4.46) does not have singular terms with negative-dimensional operators, the
local correlation functions (4.48) and (4.49) decouple from the global amplitudes (4.55). In
particular, powers of the height differenceh12 ≡ h(r1)−h(r2) reach stationary expectation
values forξt →∞ determined by the contraction term in (4.46),

〈hk12〉 ∼ |r12|kχ . (4.58)

These can be written as moments of a stationary probability distribution

〈hk12〉 =
∫

dh12 h
k
12P2(h12, |r12|) (4.59)

which has the scaling form

P2(h12, r) = r−χP2(h12r
−χ ). (4.60)

Equation (4.58) can be verified exactly ford = 1 and seems to be consistent with the
currently available numerical data also for higher dimensions.

It is instructive to compare this structure with models of turbulence. Burgers’ equation
(1.4) with force correlations

η(r, t)η(r′, t ′) = εr2
0δ(t − t ′)1

( |r − r′|
r0

)
(4.61)

over large distancesr0 developsmultiscaling: for example, the longitudinal velocity diff-
erence moments

〈[v‖(r1)− v‖(r2)]
k〉 ∼ |r12|−kxv+x̃k r−x̃k0 (4.62)

have ak-dependent singular dependence on|r12| andr0 for

r0/R� |r12| � r0 (4.63)
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whereR ≡ r4/3
0 ε1/3/ν denotes the Reynolds number [96, 35]. This so-called inertial scaling

regime should be compared to the KPZ strong-coupling regimer̃ � |r12| � ξt . According
to (4.62) local and global scaling properties are no longer decoupled. Similar multiscaling
is present in Navier–Stokes turbulence. Kolmogorov’s famous argument predicts the exact
scaling dimension of the velocity field,xv = −1/3, from dimensional analysis [97]. This
determines the scaling of the third moment in (4.62) sincex̃3 = 0. The higher exponents
x̃4, x̃5, . . . < 0 cannot be obtained from dimensional analysis. Assuming the existence
of an operator product expansion (4.50), the term (4.62) is generated by the lowest-
dimensional fieldÕk with a singular coefficient. A similar operator product expansion is
discussed in [98]. Multiscaling thus implies the existence of a (presumably infinite) number
of composite fields with anomalous negative dimensions. For the velocity vertex fields
exp[qv(r)] of Burgers turbulence in one dimension, Polyakov has conjectured an operator
product expansion similar to (4.53) [99]. The distinguishing feature of KPZ surfaces is the
absence of multiscaling expressed by (4.48).

4.6. The dynamical anomaly and quantized scaling

The operator product expansion (4.53) and the dispersion relation (4.51) have to be consistent
with the underlying dynamics (4.7). However, as explained in [99] for Burgers turbulence,
the equation of motion for the renormalized correlation functions is quite subtle due to
anomalies dictated by the operator product expansion. To exhibit the anomalies for the
height correlations [49], we introduce the smeared vertex fields

Zaq (r) ≡ exp

(
q

∫
dr′ δa(r − r′)h(r′)

)
(4.64)

(whereδa(r) is a normalized function with support in the sphere|r| < a) and the abbrev-
iationsZai ≡ Zaqi (ri ), Zi ≡ Zqi (ri ).

Using (4.6) and (4.7), it is straightforward to derive the equation of motion

∂t 〈Za1 · · ·Zan〉t =
n∑
i=1

qi〈Za1 · · ·JZai · · ·Zan〉t (4.65)

where

JZai ≡ [qiσ
2δa(0)+ J (ri )]Zai . (4.66)

The singularity structure of the current is determined by (4.46) and (4.36):

JZai = g∗Ẑi + a2χ−2

( ∞∑
k=1

cka
kχqki

)
Zi +O(aχ ) (4.67)

for a, r̃ → 0 with a/r̃ kept constant. The field̂Zq(r) ≡ (∇h)2Zq(r) denotes the finite part
of the operator product(∇h)2(r)Zaq (r) for a→ 0, andẐi ≡ Ẑqi (ri ). The finite dissipation
term(∇2h)Zqi (ri ) becomes irrelevant in this limit sinceν ∼ aχ . The singular part of (4.67)
is a power series inqi with asymptotically constant coefficients

c1 = σ ∗2adδa(0)+ ν∗c1,1+ g∗c2,1

ck = ν∗c1,k + g∗c2,k (k = 2, 3, . . .).

The terms of ordera(2+k)χ−2 originate from the contractions∇2h(ri )h(r
′
1) · · ·h(r′k) ∼ 1 and

(∇h)2(ri )h(r′1) · · ·h(r′k) ∼ 1. (Their respective coefficientsc1,k and c2,k are complicated
integrals involving the scaling functions in (4.46), the regularizing functionsδa(ri − r′j ),
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and the ratioa/r̃.) Of course, divergent terms have to cancel so that equation (4.65) has a
finite continuum limit:

∂t 〈Z1 · · ·Zn〉t =
n∑
i=1

qi〈Z1 · · ·JZi · · ·Zn〉t (4.68)

with

JZi = lim
a→0
JZai . (4.69)

For generic values ofχ , this implies thatJZi = g∗Ẑi . However, ifχ satisfies the condition
(4.1) for some integerk0, the dissipation current contributes an anomaly:

JZi = g∗Ẑi + ν∗c1,k0q
k0
i Zi . (4.70)

Equations (4.68) and (4.70) govern in particular the stationary state of the surface. For
d = 1, the stationary height distributionP [h] is known:

P ∼ exp

(
−σ

2

ν

∫
dr (∇h)2

)
. (4.71)

It equals that of the linear theory, thus restoring the up–down symmetryh(r) − 〈h〉t →
−h(r) + 〈h〉t broken by the non-linear term in (1.1). The exponentχ = 1/2 satisfies
(4.1) with k0 = 2 but the up–down symmetry forces the anomaly to vanish (c1,2 = 0).
In higher dimensions, this symmetry is expected to remain broken in the stationary
regime. The surface has rounded hilltops and steep valleys, just like the upper side of
a cumulus cloud (argued in reference [100] to be a KPZ surface). Hence, the local slope
of the surface is correlated with the relative height, resulting in non-zero odd moments
〈(∇h)2(r1)[h(r1) − h(r2)]k〉. However, this is consistent with equations (4.68) and (4.70)
only for odd values ofk0, where

〈Ẑq(r1)Z−q(r2)〉 − 〈Ẑ−q(r1)Zq(r2)〉 = −(ν∗/g∗)c1,k0q
k0〈Zq(r1)Z−q(r2)〉 (4.72)

and hence for odd values ofk > k0

〈(∇h)2(r1)[h(r1)− h(r2)]
k〉 = −(ν∗/g∗)c1,k0〈[h(r1)− h(r2)]

k−k0〉. (4.73)

The directedness of the stationary growth pattern thus requires a non-zero anomalyc1,k0 with
an odd integerk0. The roughness exponent is then determined by equation (4.1). The values
k0 = 3 for d = 2 andk0 = 5 for d = 3 give the exponents (4.74) and (4.75) quoted below.
These appear to be consistent with the numerical resultsχ ≈ 0.39 andχ ≈ 0.31 [25, 26],
respectively, and with the experimental valueχ = 0.43± 0.05 for d = 2 [33].

4.7. Discussion

The scaling of strongly driven surfaces has been determined by requiring consistency of the
effective large-distance field theory subject to a few phenomenological constraints. These
are the existence of a local operator product expansion (4.46) and of a stationary state
(4.48) that is directed (i.e., has no up–down symmetry). The stationarity condition has an
important consequence: the decoupling of local and global scaling properties. The latter
can be expressed by the time-dependent height probability distribution at a single point, the
former by the stationary distribution of the height difference between nearby points.

The Galilei invariance of the dynamic equation conspires with these constraints to
allow only discrete values of the roughness exponent in two and three dimensions:
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χ = 2/(k0 + 2) with an odd integerk0. Comparison with numerical estimates then gives
the exact values

χ = 2/5 z = 8/5 for d = 2 (4.74)

and

χ = 2/7 z = 12/7 for d = 3. (4.75)

The underlying solutions of the KPZ equation are distinguished by a dynamical anomaly
in the strong-coupling regime: the dissipation term contributes a finite part to the effective
equation of motion (4.68) despite being formally irrelevant. The anomaly manifests itself
in identities like (4.73) between stationary correlation functions, which can be tested
numerically.

There are at least three directions of future research where these concepts and methods
can be of use. As mentioned in the introduction, the field of stochastic growth is rather
diverse, and the theoretical cousins of the KPZ equation could be analysed in a similar way,
aiming at a better understanding of these non-equilibrium universality classes. In contrast
to the KPZ equation, some of these systems do show multiscaling [101], which makes their
field-theoretic description certainly more complex.

Further applications to the theory of disordered systems are equally important. The
present theory should be extendable from a directed string to higher-dimensional manifolds
in a random medium.

Finally, this theory highlights both the theoretical similarities and differences of surface
growth and fluid turbulence. While it is quite surprising that the scaling exponents of an
interacting dynamical field theory can be predicted exactly in two and three dimensions,
there is one other such case in a related system: the exact Kolmogorov scaling of the third
velocity difference moment in Navier–Stokes turbulence. The higher velocity difference
moments show multiscaling (see section 4.5). For the simpler case of Burgers turbulence,
dynamical anomalies are intrinsically connected to the multiscaling exponents [102]. This
link is expected to be important in a wider context of turbulence.

Perhaps some of these fascinating scaling phenomena far from equilibrium are not as
inaccessible as they have appeared so far.

Appendix

This appendix contains some details about the renormalization of the replicated string system
(section 3.1) and the dynamic functional (section 4.2).

We start from the replica partition function

Z =
∫
Dφ Dφ̄ exp

[
−
∫ L0

0
dt0

∫ R

0
dr

(
φ̄(∂t0 −∇2)φ + g0φ̄

2φ2
)]

(A.1)

with the effective coupling constant (3.12), obtained from (3.9) by making the change of
variablest0 → β−1

0 t0. The fieldφ is real valued with the constraintφ > 0; the field φ̄
is purely imaginary [92]. The normal-ordered interactiong0φ̄

2φ2 conserves the number of
strings. To evaluate (A.1), we take periodic boundary conditions for the components ofr
and define

Zp = 〈p, r|Z|p〉 (A.2)

with the initial state

|p〉 ≡ (1/p!)

[∫
dr φ̄(r)

]p
|0〉
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at t0 = 0 and the final state

〈p, r| ≡ 〈0|φp(r)
at t0 = L0. Correlation functions〈· · ·〉p are defined in a similar way. With an appropriate
normalization of the propagator, these boundary conditions normalizeZp(g0, L0 = 0, R) =
Zp(g0 = 0, L0, R) = 1 for any value ofp.

The Casimir amplitude is defined by analogy with (2.4) and (2.12). Its expansion in
terms of the dimensionless couplingu0 ≡ g0R

2y0

1Cp(u0) = −R−2
∞∑
N=1

(−g0)
N

N !

∫
dt02 · · · dt0N 〈82(0)82(t02) · · ·82(t0N)〉cp (A.3)

is a sum involving connected pair field correlations in thep-string sector of the unperturbed
theory (u0 = 0). The integrals in equation (A.3) are infrared regularized by the system width
R; their ultraviolet singularities are determined by the short-distance structure of the pair
field correlations and have to be absorbed into the coupling constant renormalization. Hence
consider theN -point function 〈82(t01)) · · ·82(t0N)〉cp as the pointst01, . . . , t0N approach
each other. More precisely, we definet0 andτjk by t0j − t0k = t0τjk and let

t0/R
2→ 0 (A.4)

with τjk and the ‘centre of mass’t ′0 = N−1∑N
j=1 t0j remaining fixed. The asymptotic

scaling is given by thep-independent operator product expansion

82(t01) · · ·82(t0N) =
N+1∑
m=2

t
−(N−m+1)d/2
0

[
CmN(τ1, . . . , τN−2)8m(t

′
0)+ · · ·

]
(A.5)

where theCmN are scaling functions of theN − 2 linearly independent distance ratiosτjk,
the dots denote subleading terms down by positive integer powers oft0/R

2, and we have
defined the normal-orderedm-string contact fields

8m(t0) ≡
∫

dr φ̄m(r, t0)φ
m(r, t0). (A.6)

For m = N = 2, equation (A.5) reduces to (2.11); i.e.,C2
2 = C0. The operator product

expansion dictates the leading singularities of the integrals in (A.3):∫
dt0 t

N−2
0

N−2∏
l=1

dτl 〈82(t01) · · ·82(t0N)〉p

=
N+1∑
m=2

∫
JmN t

m−3+y0(N−m+1)
0 dt0 〈8m(t

′
0)〉p + · · · (A.7)

with

JmN =
∫ N−2∏

l=1

dτl C
m
N(τ1, . . . , τN−2). (A.8)

The diagrammatic representation of the perturbation series (A.3) is discussed in detail
in reference [44]. At any integer value ofp, the series is somewhat simplified since

〈8m〉p = 0 for m > p. (A.9)

For p non-integer, all values ofm contribute, e.g., to (A.7). Hence, the series becomes
complicated in the random limitp → 0. Its pole structure aty0 = 0, however, remains
simple. Consider the term in (A.5) withN = m = 2, corresponding to the diagram of



On growth, disorder, and field theory 9945

figure A1(a). The loop has the valueR2y0c(y0)/y0 with c(y0) = C0(y0) + O(y0). The
pole originates from the universal short-distance singularity in (A.7), while the finite part
depends also on the infrared regularization. Hence, we obtain to one-loop order

1Cp(u0) = −Rd〈82〉pu0

(
1− c

y0
u0

)
+O(y0

0u
2
0, u

3
0) (A.10)

with Rd〈82〉p = p(p−1)/4. The pole can be absorbed into the definitionuP = ZP u0 with
the Z-factor (2.18), which leads to the beta function (2.23) and the field renormalization
8P = Z̃P8 with (2.21).

t t

(a)              (b)

Figure A1. Singular diagrams contributing to the finite-size free energy1Cp(u0) in the
expansion (A.3). The lines denote unperturbed single-line propagators〈φ̄(r1, t01)φ(r2, t02)〉,
the dots pair contact vertices82(t0). (a) A one-loop diagram containing a primitive pole iny0.
(b) An N -loop diagram containing a pole iny0 of orderN − 1.

It is not difficult to discuss higher orders. The ultraviolet singularities of theN th-order
integral (A.7) are contained in the coefficientsJmN or arise from the integration overt0. In
the first case, they are due to aproper subdiagramand hence already absorbed into the
renormalized coupling constant at lower order. Only the divergences from the integration
overt0, with JmN denoting the regular part of (A.8), may contribute to theprimitive singularity
at orderN . Inspection of (A.7) then shows that a pole aty0 = 0 only appears form = 2.
However, there is only one diagram per order of this kind, which is shown in figure A1(b).
Since this diagram factorizes into loops of the kind shown in figure A1(a), it contributes a
pole iny0 of orderN−1. Therefore the pole at orderN = 2 is the only primitive singularity
in the series (A.3) for the free energy; analogous arguments apply to the expansions of the
contact-field correlation functions. It follows that the renormalization can be carried out to
all orders; see also references [59, 60]. The loops of figure A1 form a geometric series.
Summing this series defines theZ-factors [43]

ZP = 1− c

y0
uP Z̃P = du0

duP
=
(

1− c

y0
uP

)−2

(A.11)

and the flow equatioṅuP = y0uP − cu2
P . The Casimir amplitude1Cp becomes a regular

function ofuP :

1Cp(uP ) = p(p − 1)

4
uP +O(u2

P ). (A.12)

The couplinguP defined by (A.11) is not unique. Any family of diffeomorphismsuP →
u′P (uP , y0) with fixed pointu′P (0, y0) = 0 will preserve the regular functional dependence
of observables such as (A.12). In particular, the linear transformationuP → (c/C0)uP
leads to the flow equation (2.24) and theZ-factors

ZP = c

C0

(
1− C0

y0
uP

)
Z̃P = C2

0

c2

(
1− C0

y0
uP

)−2

. (A.13)
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We may also substituteC0(y0 = 0) for C0(y0) in (A.13) and (2.24) so that the dependence
of the flow equation ony0 is contained only in the linear term. This scheme has been
called ‘minimal subtraction’ in reference [18]. However, theZ-factors (A.13) still have a
regular part asy0 → 0 generated by the functionc(y0). Eliminating this part requires a
non-linear transformation ofuP and introduces cubic and higher-order terms into the flow
equation [91]. Of course, these terms are spurious; i.e., they do not generate higher-order
terms in expressions like (2.25) for local observables. (In the present case of a single
coupling constantuP , the value of theC0 drops out of these expressions as well. In more
general cases with several coupling constants, ratios of operator product coefficients do play
a role; see the discussion in reference [1].)

The replica trick is unproblematic within perturbation theory, since it reduces to
convenient bookkeeping of the averaging over disorder. Equations (A.13), (2.24) are
independent ofp, and in equation (A.12), the dependence onp reduces to the combinatoric
prefactor. Hence, the random limit1C = limp→0 Cp/p is trivial and leads to equations (3.13)
and (3.14).

The exponents (3.15) can also be obtained in a different way. They follow from the
fact that the two-string interaction̄φ2φ2 does not renormalize the ‘mass term’φ̄φ at any
order. Consider the (normal-ordered) density field8(t0) ≡ φ̄φ(r = 0, t0), which has the
two-point function

〈8(t0)8(t ′0)〉cp(u0, R)

=
∞∑
N=0

(−g0)
N

N !

∫
dt01 · · · dt0N 〈8(t0)8(t ′0)82(t01) · · ·82(t0N)〉cp. (A.14)

Its short-distance asymptotics is related to the probability of strings returning to the origin
r = 0. In the linear theory,

〈8(t0)8(t ′0)〉cp ∼ |t0− t ′0|−dζ0 (A.15)

for |t0 − t ′0|/R2 � 1. Any perturbative correction to this exponent arises from the
renormalization of the fields8(t0) and8(t ′0). The renormalization of8(t0) is due to a
short-distance coupling of the form

8(t0)82(t01) · · ·82(t0N) = t−Nd/20 C1
N(τ1, . . . , τN−1)8(t0)+ · · · (A.16)

for t0/R2→ 0 (with t0j − t = t0τj , t0j − t0k = t0τjk for j, k = 1, . . . , N , andτ1, . . . , τN−1

denoting a basis of the fixed ratiosτj , τjk), and there is a corresponding expression for
8(t ′0). However, it is obvious that the product on the l.h.s. couples only to contact fields
of at least two lines, and thereforeC1

N = 0 at all ordersN . The singularity (A.15) remains
unchanged,ζ ∗ = ζ0 = 1/2. The strong-coupling form (3.37) of the singularity cannot be
reached by perturbation theory.

Now we turn to the dynamic path integral. After one makes the change of variables
t0 → ν0t0, h0 → (ν0/σ

2
0 )

1/2h0, and h̃0 → (σ 2
0/ν0)

1/2h̃0, equation (4.3) takes the normal
form

Z =
∫
Dh0 Dh̃0 exp

[
−
∫

dr dt

(
−1

2
h̃2

0+ h̃0

(
∂t0h0− 1

2
∇2h0− λ0

2
(∇h0)

2

))]
(A.17)

with λ2
0 = −g0. As discussed in reference [92], the transformation (4.17) leads back to

(A.1), rendering dynamical perturbation theory identical to replica perturbation theory. The
path integral (A.1) has to be supplemented with boundary conditions corresponding to the
random limitp → 0. In this limit, the boundary condition (A.2) describes the one-point
function of an initially flat surface,〈h(r, t0 = 0)〉 = 0. At any integer value ofp, the
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dynamical correlations are artificially truncated:〈h̃(r1, t) · · · h̃(rm, t)h(r, L)〉p = 0 for all
m > p by (A.9).

In the context of growth dynamics, the representation (A.17) has an advantage over
(A.1): it contains explicitly the most interesting observable, the height fieldh. The price
to pay is that the perturbation theory becomes more complicated. The differences from
replica perturbation theory are twofold: (i) there is the cubic vertexh̃(∇h)2; (ii) the vertex
h̃2, the image of the replica interaction̄φ2φ2, no longer has incoming lines. These vertices
can therefore be integrated out, giving the standard diagrammatics with the two kinds of
propagator (4.9) and (4.10).

We now discuss the renormalization of (A.17) and show its equivalence to replica
renormalization up to one-loop order. The real-space response function has the diagrammatic
expansion shown in figure A2(a). To orderu2

0, the expansion reads

Rd〈h̃0(r, t0)h0(r, t0+ R2)〉(u0) = Rd〈h̃0(r, t0)h0(r, t0+ R2)〉(0)+O(y0
0u0, u

2
0). (A.18)

The one-loop diagram does not have a pole atd = 2 since its short-distance singularity
cancels with a geometric factor 2− d [90, 17, 91]. Constructing the strong-coupling fixed
point for d = 1 requires taking into account the resulting finite renormalization of the
response function [17]. For the critical fixed point aboved = 2, however, it can be ignored.

= + + ...

3333
3333
3333

= + + ...

(b)

(a)

Figure A2. Diagrammatic expansions generated by the dynamic functional (4.3). The lines
with one and two arrows denote the unperturbed response function (4.9) and the unperturbed
correlation function (4.10), respectively. Dots represent the verticesh̃(∇h)2; each incoming
line to a vertex has to be differentiated with respect tor. (a) The response function
〈h̃(r1, t01)h(r2, t02)〉. The one-loop diagram is regular aty0 = 0. (b) The stationary growth
rate〈∂t0h0〉R . The boxed subdiagram contains a simple pole aty0 = 0. A further diagram with
a loop like that in (a) is regular aty0 = 0 and has been omitted.

The expansion for the growth velocity is shown in figure A2(b). The tadpole diagram
at orderλ0 has the form

λ0

[
I (R)− lim

R→∞
I (R)

]
= −λ0

2
R−d (A.19)

with

I (R) =
∫

dr′ dt ′0 [∇r〈h̃0(r
′, t ′0)h(r, t)〉R(u0 = 0)]2. (A.20)

The second term in (A.19) is generated by the normal ordering (4.15) and cancels the
ultraviolet divergence ofI (R). At order λ3

0, the boxed subdiagram contributes a pole
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originating from the integration region where the two vertices approach each other. Hence,
we have to this order

R2−χ0〈∂t0h0〉R(u0) = −1

2
u

1/2
0

(
1− C0

y0
u0+O(y0

0u0, u
2
0)

)
. (A.21)

The pole can be absorbed into the definition of the variableshP = ZPhh0, h̃P = Z−1
Phh̃0,

tP = ZP t t0, uP = ZP u0, with

ZPh(uP ) = 1+ C0

2y0
uP +O(u2

P ) (A.22)

ZP t (uP ) = 1+O(u2
P ) (A.23)

ZP (uP ) = 1− C0

y0
uP +O(u2

P ). (A.24)

This reparametrization respects (4.25) and renders both the response function and the growth
rate regular asy0→ 0:

Rd〈h̃P (r, tP )hP (r, tP + R2)〉(uP )
= Rd〈h̃0(r, t0)h0(r, t0+ R2)〉(0)+O(y0

0uP , u
2
P ) (A.25)

R2−χ0〈∂tP hP 〉R(uP ) = −
1

2
u

1/2
P (1+O(y0

0uP , u
2
P )). (A.26)

It leads to the beta function (2.23) and to the exponents

χ? = 2− z? = χ0− u̇P d

duP
logZPh(uP )

∣∣∣∣
u?P

= O(y2
0). (A.27)
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