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1. Introduction

The aim of this article is to give a survey of the presentstateof the Kramersproblem. Originally.
Kramersconsideredthe escaperateof a Brownianparticleout of a deeppotentialwell. His final results
areapplicablein the regimesof strongandextremelyweak friction. The problemof bridging the region
betweenthesetwo limits remainedunresolvedfor morethan four decades.Meanwhile, greatprogress
hasbeenachievedin extendingthe Kramersapproachto multidimensionalsystems.On the otherhand,
with lowering of the temperaturethe activated decay of metastablestatesis suppressedand the
quantumtunnelingbecomesthe dominantdecayprocess.Interestin theseproblemswas renewedin
connectionwith the phenomenonof macroscopicquantumtunnelingwhich founda physical realization
in experimentson Josephsonjunctions.At sufficiently high temperaturethesedevicesalso provide a
laboratorysystemfor studyingthe classicalBrownian motion in tilted periodic potentials(the so-called
washboardpotential). Being qualitatively different from both single- and double-well potentials,the
periodic potentialdisplays a wide spectrumof new fluctuation-inducedphenomena.

In the main body of this paperwe will focus on deriving somerigorous results for a numberof
physically importantsystems.Since most of the work is original, and attempting to do justice to all
thosewho contributed to the field is beyond our scope,it is reasonableat this point to give a short
commentaryon the history of the problemsunderconsideration.

The modernparadigmof the theory of decay ratesincludeson an equalbasisthe conceptsof the
activation escapes[11 and the quantum-tunnelingescapes[2]. Quantum-tunnelingcorrections to
activatedescaperateswerefirst consideredby Wigner [3]. Almost at the sametime Eyring developed
the transitionstatetheory (TST) [41,an importantconceptualstepfor chemistry.Theseconsiderations
did not takeinto accounteffectsof friction, andwere thus applicablein awide rangeof friction strength
for which thermal noise is sufficiently strong to thermalizethe escapingparticles, but friction is still
considerednot to affect particle motion acrossthe top of the potential barrier. The explicit role of
friction was first discussedby Kramerswhohasshownthat for sufficiently weakfriction the escaperate
is suppresseddueto depletionof the well population,whereasfor strongfriction it is suppresseddue to
the slowing down of the particle motion at the top of the barrier [5]. At this stageof developmentthe
researchin the field was summarizedby Chandrasekhar[6].

An importantbreakthroughwas achievedin the multidimensionalKramersproblemwhen Landauer
and Swansoncalculatedthe escaperatein the limit of strongdissipation[7]. However,most influential
in the field were the articles by Langer who reducedthe calculation of escaperatesto an analytical
continuationof the free energy[8, 9]. Mathematicalproceduresdevelopedin thesepapershaveproved
to be very useful in the solution of a large numberof physical problems.An alternativeapproachto
similar problemswas proposedby Miller, who consideredthe semiclassicallimit of quantumTST and
substantiallyclarified the physical aspectsof the problem [10].

For a rather long time the prospectof experimentallyconfirming theseresults seemedremote, a
situationwhich changedwith the discoveryof the Josephsoneffect [11]. In the simplest model of a
resistively shuntedJosephsonjunction the behavior of the junction can be modelled in termsof the
motion of a classicalparticle in a tilted washboardpotential in the presenceof friction and thermal
noise [12]. From this time on, investigationsof fluctuation-inducedeffects in Josephsonjunctions
representa major part of the furtherdevelopmentof the Kramersproblem.

Already in the Kramerswork the limits of extremelyweak and strong friction were investigated
separately,by different mathematicalapproaches.Intuitively, it was clear that the solution for the
weak-friction limit requireda specialtechnique.The first stepin that direction was madeby Iche and
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Nozièreswho pointed out that in this regime the Fokker—Planckequationcan he reducedto an integral
equation[13]. In particular,theyhaveInvestigatedsome propertiesof the solutionof this equation(or a
systemof such equations)andsucceededto extendKramers’ weak-friction-limit result to a double-well
potential. In their secondpapertheseauthorshavewritten down a systemof integralequationsfor the
case of a washboardpotential and discussedqualitatively the fluctuation-inducedvoltage—current
characteristicsof a Josephsonjunction [141.Since the case of strong friction is much simpler, the
calculationswere first done in the limit of overdampedjunctions [15].The finite-friction casewas
investigatednumerically by Riskenand Vollmer usinga matrix continued-fractionmethod [161.They
also found analytically the particle distribution function for the running state[17] (seealso ref. [14]).
formulatedthe problem of the lifetime of the runningstateand calculatedthe thresholdcurrent which
separatesthe fluctuation-inducedand deterministicbranchesof the voltage—currentcharacteristic[18].
The problemof the lifetime of the resistivestatewas also discussedby Ben-Jakoband coauthors[19]
and a useful expressionfor the retrappingcurrent distribution in terms of the lifetime of the resistive
statewas given by Baroneet al. [201.The lack of an analyticalapproachstimulatedwork on numerical
simulations both of single-well escapes[21] and of fluctuation-inducedphenomenain Josephson
junctions [221.

A particularly important year for the theory of the quantumdecayof metastablestateswas 1981.
During that year Wolynessolvedthe quantumversion of the Kramersproblem in the regimeof strong
friction from the high-temperatureside I231~Affleck trackedthe crossoverfrom thermalactivation to

quantumtunneling for the escaperate of thermalizedparticles [24]; Caldeira and Leggettproposeda
general approachto dissipative quantum tunneling 125!, which openeda wide fIeld of researchin
systemswith intermediate-to-strongfriction. To mentiononly a few of the immensenumberof works in
this field, we refer hereto the articleson dissipativetunnelingat finite temperature[26, 271 and to an
extensionof Affleck’s approachto a dissipativecase[28] with the use of Miller’s technique110!.

Meanwhile, the underdampedKramersproblemremainedunsolved. In order to get an interpolation
betweenthe already known results. Büttiker, Harris and Landauer[29] have insertedan additional
term in the energy-diffusionequation,derived earlier by Kramers,and applied this equationto the
calculationof the averageenergyof escapingparticles[30]. From thesepapersandfrom the resultsof
very careful numericalstudies[31, 321 it was concludedthat the behaviorof the decayrate for weak
friction is nonanalytic,andthe amplitude of the first correctionto the Kramersresult was found with
high accuracy[31. 32]. Nearly at that time the researchon systemswith memoryfriction resultedin an
extensionof Kramers~approachto the Brownian motion with long-time memory 1331 and BElLs
approachto the non-Markovian casewith memory damping (34]. A review of activity around the
Kramersproblem was given by Hänggi [35J.

Independentlyof Iche and Nozières. the presentauthor also proposed the reduction of the
Fokker—Planckequationto an integral equationin the energyvariable.The first paper[36]containeda
short descriptionof this approach.the Gaussiankernel of the integral equationand somemathematics
which later turned out to he usefulfor the solution of the quantum version of the Kramersproblem.
The most important result here was the conclusionthat in the classicallimit the kernelsof integral
equationsare universalGaussianfunctions,which are specifiedby a sole parameterfor eachpotential
well. An exactsolutionof the Kramersproblemwas describedin detail both for single- anddouble-well
potentials[37]. The considerationswere extendedto the study of fluctuation-inducedphenomenain a
tilted washboardpotential. We producedresults for the zero-temperaturevoltage across a biased
Josephsonjunction, the fluctuation-inducedvoltage—currentcharacteristics,the lifetime of a zero-
voltagestateandthe partial probabilitiesof the phasejumpsby 2~n(where n is an integer)[38].These
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resultswerecomplementedby the calculationof thelifetime of the resistivestateand of the retrapping
current distribution [39].

Larkin and Ovchinnikov havegiven a solution of the Kramersproblem in the presenceof quantum
mechanicaleffects [40]. In contrastto the classicallimit, the resultingkernelsof integral equationsare
nonuniversaland dependon the overall shapeof a potential.Later this approachwas extendedto the
caseof Josephsonjunction [41]. The generalproblem in this caseis rathercomplicateddue to a large
number of parametersinvolved, and thus explicit results have only been given for the retrapping
current distribution [42].

Our main aim is to give a detailedand hopefully pedagogicalderivationof a numberof physically
important results.Explicit referenceto previouswork will be given only when necessaryfor the clarity
of the exposition. For an exhaustive up to date list of referencesand a discussionof the various
approachessee the review of Hãnggi [43].

In the remainingparagraphswe outline the contentsof the article. In section 2 we summarizethe
resultsfor the Brownian motion in deeppotentialwells with emphasison the underdampedregime.
Discussionof the physical aspectsof the problemis given in parallelwith thepresentationof the results
obtainedin Kramers’ pioneeringpaper.Themain conclusionof theseconsiderationsis that the escape
rate of a Brownianparticleout of a potentialwell is governedby different mechanismsin the limits of
weak and strongfriction, and hencea solution of the Kramersproblemin thesetwo limits can only be
achievedby developingdifferentmathematicalapproaches.Our generalline of reasoningis as follows.

In the underdampedlimit the particle’s trajectoriesare only slightly perturbedby dissipationand
fluctuations.The energydistributionfunctionsfor the particlesat differentpointsof a potentialwell are
relatedthrough the Greenfunction of the Fokker—Planckequation.Whencomplementedby boundary
conditions, theseintegral relationscan be converted into an integral equation for the energydis-
tribution function for particlesat the top of the barrier.The resultingone-sidedconvolutionequation
with a Gaussiankernel can be easily solved by the Wiener—Hopf method, leading to an explicit
expressionfor the escaperate in the underdampedregime.The shapeof the potentialwell entersthe
result through a sole parameter:the energyloss duringoneoscillationfor a particle startingat the top
of the barrier. The same parameterdeterminesthe averageenergyof the escapingparticles. By
combining this result with Kramers’expressionfor the overdampedregimewe arrive at an expression
for the escaperate valid in the whole rangeof dampingstrengths.Also in section2 we derive the
lifetimes of the Brownian particlein particularminima of a double-wellpotential,which are thenused
to calculate the rate of relaxationof a nonequilibriumpopulation in the two minima. This section is
concludedwith a short exposition of theoretical [441and experimental[45] results on the activated
decay of the zero-voltagestatesin a Josephsonjunction shuntedwith a delay line. The experiments
haveshown that the lifetime of the zero-voltagestatesoscillatesas a function of the delay-linelength
[~51~Theseresultsgive the first direct evidencefor the oscillationof a particle in a well before escape
which is implied by Kramers’senergy-diffusionmodel for the escapefrom a metastablestate.

The approachbasedon the Wiener—Hopfequationsis extendedto the quantumcasein section3.
The changesdue to the energy level quantizationnear the bottom of the potential well, quantum
penetrationof the potentialbarrier andthe modificationof the kernelof theWiener—Hopfequationin
the presenceof quantumfluctuationsarenaturally incorporatedinto the schemedevelopedearlier. A
principal differenceof the final expressionfor the escaperatefrom that in the classicalcaseis the lack
of universality,sincethe escaperate now dependson detailsof the shapeof the potential. (However,
for two typical potentialsthis differencedoesnot exceeda few percent.)In the overdampedcasefor
which the friction coefficient is comparableto the oscillationfrequency,the distributionof particlesin a
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potentialwell deviatesfrom the Boltzmanndistribution and dependson the magnitudeof the friction.
An explicit expressionfor the particle distribution in coordinateandmomentumis derivedfor a slowly
varying potential. It is shown that the interactionwith the high-frequencymodesof the thermalbath
results in large zero-point fluctuationsof the particle momentum.The escaperatein the overdamped
regime is calculatedwith the use of an analytic continuationof the free energy.

Section 4 containsan investigationof a variety of fluctuation-inducedphenomenain Josephson
junctions.Thelatter systemcan be modelledby the Brownianmotion of aparticle in a tilted washboard
potential, the height of which is hi~/e,whereJ~is the critical current of the junction. To describethe
dissipativepropertiesof thejunction we adoptthe modelof a resistively shuntedjunction, in whichcase
the coefficient of viscousfriction is 1/RC,whereR is the shuntingresistance,C’ is the capacitance.The
tilt of the cosinepotentialis governedby the externalcurrentI. As an introductory stepwe considerthe
voltage—currentcharacteristicsin the absenceof thermalnoise. For 1< 1 1~IRCu1.whereci is the
Josephsonplasmafrequency.the junction can only exist in a zero-voltagestate,analogousto the small
oscillations of the Brownian particle at the bottom of a potential minimum. In the opposite case
(I> 13, in addition to the zero-voltagestates,the resistivestatealsobecomespossiblein analogywith
the solution in which the particle is flying above the potentialbarriers. In the presenceof thermalnoise
the averagevoltage V(I) (calculatedin an exponentialapproximation)remainsnearly zero for I <

whereasin the 1> 1 case V(1) is drastically changedcomparedto the correspondingrunning-state
voltage V(I) due to fluctuation-inducedswitchings betweenzero-voltageand running states. At
sufficiently large values of I the effects of thermal noise become negligible and V(I) V(J) at
1> 1 2.63/)). In this regime the junction spendsmost of the time in the runningstate.By using the
sameexponentialapproximationwe also calculatethe retrappingcurrentdistribution, which describes
the probability for the junction to switch from the runningstateinto a zero-voltagestatein the process
of the slow decreaseof the externalcurrent I. This distributionturns out to be Gaussianwith a typical
width of order eT/hRCQ. Below the threshold current 1, if fluctuation-inducedtransitions of the
Brownianparticle betweendifferentpotentialminima are takeninto account,the averagevoltage V(1)
becomesnonvanishing.although exponentiallysmall.

The mathematicalformulationof this problemis in termsof a systemof two integralequationsof the
Wiener—Hopftypefor two distributionfunctionswhich describethe particlesescapingout of a potential
minimum acrossthe left- andright-handsidesof the barriers.(Due to periodicity of the problem,these
functions are identical for all the barriers.) With some modifications, this approachcan also be
exploited in calculating the preexponential factor for the voltage—current characteristicsabove
threshold. Exactly at threshold. I = I, the function V(J) undergoesa finite break in its logarithmic
derivative. In a similar way we can also calculate the preexponentialfactor for the lifetime of the
running state.

Also in section 4 we consider the Brownian particle escape rate out of a particular potential
minimum. This problemis equivalentto the calculation of the lifetime of a zero-voltagestateand its
solution requiresthe investigationof an infinite system of integral equations,due to the presenceof
nonequivalentminima of the potential. In spite of this problem being rathercomplicated,a closed
solution can still be found, and allows us to calculatethe partial jump probabilitiesbetweendifferent
minima and the probability for the junction to go over from a zero-voltageinto the running state.
Again, the generalizationof theseresults to the quantumcase is straightforward.However, the final
expressionsarecomplicated,sincetheydependon the additional parameterhQ/2irT, a measureof the
quantumeffects. Accordingly, a detailedexpressionis only given for the retrappingcurrentdistribution
which in the ultraquantumregime, hi’)> T, has a width of order e/RC. We concludewith a brief
summaryand discussionof our resultsin section5.
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2. Lifetime of a classical Brownian particle in deep potential wells

2.1. Formulation of the problemand review of Kramers’ results

The starting point in Kramers’ model is the Langevin equation

m d2xldt2= —mydx/dt — dU(x)Idx+ ~(t), (2.1)

wherex is the positionof a particlewith the massm, y is the dampingcoefficient, ij(t) is a stationary
Gaussianforce associatedwith the coupling to a viscous thermalbath,

= 2myTh(t— t’).

Equation (2.1) is equivalentto the Fokker—Planckequation,

aF p aF a ‘ dU / aF~1
—+— _LF_+y~p~mT_)j0, (2.2)Bt m8x 3p dx ap

for the distribution F(p, x, t) of an ensembleof noninteractingBrownianparticleshaving momentum
p mdx!dt and position x. We begin with the simplest example of the metastablestate when a
Brownian particleonceescapedover the barrierhas no chanceto return.The correspondingone-well
potential U(x) is depictedin fig. 1.

The zeroof the potentialis chosento be at the barrier top locatedat x = 0. The boundarycondition

F(p,x,t)—*0 asx—*~, (2.3)

reflects the initial condition that therewere no particlesat the outerside of the barrier at t = 0. From
nowon it will be assumedthat the depthof the well U)) is largeenoughcomparedto T. The ratio flU

11
is the principal smallparameterof theproblem. A Brownianparticletrappedinto a deeppotentialwell
residestherefor an exponentiallylong time, exceedingall relaxationtimes. That is a basic point in a
theory of the rate of activatedprocesses,as it allows a sensibledefinition of the decayingstate and

~ uk)

X1 x,,

Fig. 1. Schematicrepresentationof a single-well potential. No particlesenterthe potential well in the underdampedregime.
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introductionof the conceptof lifetime. The problem of the lifetime of a particlein a potentialwell can
then he formulatedrigorously in mathematicalterms.

Relaxation of an arbitrary initial distribution of particles interactingwith a thermal bath is a
two-stageprocess.After a comparativelyshort time the distributionof particlesinside the potentialwell
andin a vicinity of the barrierapproachesits steady-stateform. The nextstageof relaxationis a purely
exponentialdecayof the distribution as a whole. causedby escapesof the particlesover the barrier,

F( p. x, t) = F( p. x) exp(- t/T). (2.4)

The steady-statedistribution F( p. x) can he found from the equation

F ~ aF ~ F dU / aF\1
—+ lF~+ylpF+mT~)l0. (2.5)

m ax ap L dx \ , ]

which is obtainedby inserting eq. (2.4) into eq. (2.2). The solution of eq. (2.5) is nonnormalizable,
J F(p, x) dp dx = x, as F(p, x) diverges at x—*x. One encountersthe sameproblem also in the
quantum-tunnelingtheory [50]. The straightforwardsolution of eq. (2.2) with any reasonableinitial
condition as in eq. (2.3) is well normalizableandtendsto the solution(2.4) for large times.The larger
the x, however,the slower is the approachto the solution(2.4). Belowwe considerF( p, x) only inside
the well andin a close vicinity of the barrier.

Nearthe bottomof the potentialwell the potentialU(x) can be representedby a harmonicoscillator
of frequency11 = 1U”(x~)/ml’ -. x~1being the location of the potential minimum,

U(x) — U9 + ~m(2(x — x~3-

The normalizeddistribution function F( p. x) in this region of variablesis only slightly perturbedby
escapesover the barrier and retainsthe Boltzmann form,

E(p. x) F~1(p.x) (fiI2~T)exp(—(z + U13/TI. —z> T. (2.6)

~p/2m + U(x). (2.7)

where ~- is the total energy. taken with respectto the barrier top. and F~1(p. x) is the equilibrium
function. Taking into accountrare escapeswe can write

F(p.x. t) = N(t)F(p, x), N(t) ~exp(—t/T).

N(t) is the numberof particles in the well. The main contributionto the normalizationcondition,

dx F(p, x. t) dp = N(t).

comesfrom a narrow region nearthe bottom of the well. x — xm~ fI~(T/m)’’
2.In thesetermsthe

escaperate I IT can be lookedupon as the lowest eigenvalueof eq. (2.5) undergiven restrictionson the
function F( p. x). This approachis developedin full detail in the sectiondevotedto the calculationof
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the lifetime of a running state.In order to get a deeperphysical insight into the problem we will
proceedin the presentsection in quite a different way, calculating explicitly the flux of escaping
particles.

The flux of particles,

J= f ~-F(p,x,t)dp, (2.8)

calculatednearthe barrier top, doesnot dependon x as long as U(x)l ~ U0. The conservationof the
numberof particles, dNldt = —J, yields the relation betweenthe lifetime r of a particle and flux J,

1/TJIN. (2.9)

Below we shall use this relationto calculate lIT. The first term in eq. (2.5) is negligibly small. Hence,

the steady-statedistribution obeysthe equation
R~~ (2.10)

with the boundarycondition(2.6) andasymptotics(2.3). In the generalsituationthe aboveformulated
problem cannotbe solved analytically. However, making useof the small parameterTI U11, in other
words, for sufficiently deeppotentialwells, onecan apply differentapproachesin the regimesof weak
andstrong friction and derive in this way an expressionfor r, applicableat arbitrary values of y.

It was shown by Kramersthat for large y eq. (2.10) needsto be solved only near the top of the
barrier. In this region the potential U(x) is parabolic,

U(x) — fmw
2x2,

and eq. (2.10) goesover into an equationwith linear coefficients,

R~~ — ~- [_mw2xF + y(pF + mT ~-~)]0. (2.11)

For this equationKramershasfound an exact solution of the aboveformulated problem,

F(p,x)~exp(-2mT~mw2x2) f exp(- ~ (2.12)

x—Ap/nu.~2

A = (w2 + ~y2)t12— ~y. (2.13)

In view of condition (2.3), the upper limit of integration is chosento be infinity. The integral in eq.
(2.12) saturatesat

ApImw2—x>>(yATImw2)t12. (2.14)
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In this region of variablesthe function F(p, x) approachesan equilibrium one.The solution (2.12) has
enabledKramersto find the escapeprobability per unit time. Namely,one can find the normalization
factor in eq. (2.12) by comparisonwith eq. (2.6) under condition (2.14). Then, using eqs. (2.8) and
(2.9) one obtains

I Ir = (i’lI2~)[( 1 + y214w)’ 2 — yI2w] exp(—U
6IT). (2.15)

This expressionfor the escaperate from a potentialwell has the following features
(I) It is exponentiallysmall in the parameterUIT.
(2) It is proportional to the frequency£1 of small oscillationsnear the bottom of the well, which

entersthe problemthrough the normalization conditionfor the equilibrium function F(((p. x).
(3) The factor (1 + yI4w)~ 2 — yI2w Aiw is closely related to the increment of the particle

motion nearthe top of the barrier, since the solution of the dynamic equationgives x(t) ~ exp(At).
It will he shown below that point I holds for all expressionsfor r above some temperature.

determinedby quantumeffects. The factor .u1127r has to he changedin the quantumregime,when the
separationof the energylevels hQ becomescomparableto T. The factor AIw describesexplicitly the
slowing down of the particledynamicscausedby friction. This factor deviatesfrom unity only at y
As y diminishesit becomesunity, and the correspondingresult is frequently referredto as the TST
expression[41.

The total flux J in eq. (2.8) is the difference of the fluxes ~R andJ1 carried by right- and left-going
particles,

~Rj = J O(±p)~F(p,0)dp.

To the flux J~contribute the particles which are returning after crossing the barrier. The explicit
expression(2.12) for F(p, x) enablesus to estimate the relative drop of the flux causedby the
recrossings.

= 1 —(1 + y14w
2) 2 (2.16)

This result gives a quantitativeconfirmation of the intuitive feelingthat the origin of the recrossingsis
the interaction of a particle with the thermal bath. It is worth noting that the ratio f~‘~Rdoesnot
dependon the temperatureT.

The rigorous condition of validity of the aboveobtainedresultswill be given below. A simplified
conditionis that solution (2.12)should approachthe equilibrium distribution at such valuesof x. where
the inverted-oscillatorapproximationfor the potential still holds. One should bear in mind that at
sufficiently large negativemomentap the function F( p. x) will alwaysdeviatefrom the equilibrium one
due to depopulationof this region of the phasespace[seeeq. (2.12)]. The condition(2.6) shouldonly
he satisfiedfor energiesbelow the harrier top. when

pi2m— Imw2x2<0.

This inequality togetherwith eq. (2.14) yields

—x> ~ ~.17)
w(w—A)
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The lastconditiongives an estimateof a spatialregion,wherethe equilibrium distributionof particlesis
only negligibly perturbedby their escapesover the barrier. At largeandmoderatedampingy> w the
condition (2.17) taking accountof eq. (2.13) yields —x>(TImw2)’2.This meansthat F(p,x) deviates
from the equilibrium function in a rathernarrow region of x, where U(x)! ‘— T ‘c~U

11. However, in the
underdampedregime, when y ‘~ w, condition (2.17) simplifies to

—x>>(wly)”
2(T/mw2)t2,

and F(p, x) becomesa nonequilibriumdistribution in a much broaderregion, so that with y—~Othe
inverted-oscillatorapproximationfor U(x) shall inevitably be broken.The width of a typical potential
well is of the orderof magnitudeof about(U

111mw
2)h!2.The conditionof validity of eq. (2.15) for r in

the underdampedregimethen becomes

y>>wTI U
11. (2.18)

To concludethe discussionbasedon the solution (2.12), we write down the equationfor r~t in the
underdampedlimit of eq. (2.15),

1Ir(f2I2~r)exp(—U11IT),w>y>>wTIU11. (2.19)

We havederivedthe lower limit of validity of thelast equationin a ratherformal manner.Now it is
worthwhile to discussthe physical meaningof theseresults.It can be seeneasilythat in the limit of
y—*ü the integral in eq. (2.12) goes over into O(p — mwx)where 0(p) is the standardstepfunction.
The distribution F( p, x) describes,therefore,the equilibrium flux of particles towardsthe barrierand
the flux of particlesreflectedfrom the barrier. It is physically evident, that at y = 0 no equilibrium flux
towards the barrier is possible, as a nonvanishinginteraction with the thermal bath only enables
particles to climb up the energyscalefrom the bottom of the well to the top of the barrier. Equation
(2.15) is inapplicablein the limit y—*O, becauseit ignoresthe effectsof depopulationbelow the barrier
top.

Consideringthe motion of a Brownian particle in the extremelyunderdampedregime as almost
conservativewith a very slow diffusion on the energyaxis, Kramersobtained[5]

hr = (ySIT)(ulI2ir)exp(—U0IT), y ~ TIS, (2.20)

whereS is the action per oscillation of a particle at the energytop,

S = 21 [—2mU(x)]
t’2dx,

andx~is the left-handside turningpoint, U(x~)= 0. By order of magnitudeS— (]
11Iw. Note, that in

contrastto eq. (2.20),whereSdependson the shapeof thepotentialas awhole,eq. (2.15) involves the
shapeof thepotentialwell only throughits curvaturesat the initial minimumandat the barrier top. The
frequencyLi is inevitably involved in both eq. (2.15) and eq. (2.20), as it is a measureof the phase
spaceavailableat the initial minimum,andthusof the particle densitywhich hasto be depletedby the
flux streamingover the barrier. The region of validity of eq. (2.20), y ~ TIS—~wTI U11, does not
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overlap with that of eq. (2.15) [see eq. (2.18)1; they are separatedby an interval of damping
y -~ wTiU1~.

To calculater in this region meansto bridge up the whole rangeof y, andthus, to obtaina complete
solution of the problem. In a seriesof papers.attemptshavebeenmadeto solve the outlined problem
(see.e.g.. ref. [35] and referencestherein). Unfortunately,theseattemptsinvolve unjustified assump-
tions about the distribution function, and results obtained in such a way representonly ad hoc
interpolationsbetweentwo Kramers’ results.In the subsequentsectionsa rigorous relationshipfor
valid at arbitrarydampingis found. No modelassumptionshavebeenused,the only smallparameterof

the problembeing TIU1. In what follows we shall systematicallyneglectalgebraicallysmall corrections
of order TIU)( comparedto 1. retaining only the leading order term in a low.temperatureexpansion.

It is convenientto factorizethe decayrate into two parts, i.e.,

lIr = A(Li1
12~)exp(—U/T) . (2.21)

The dependenceon the couplingto the heat bathis absorbedinto the factorA, while the secondfactor
describesequilibrium propertiesof the systemand does not require knowledgeof the dynamics. It is
shown below that in the underdampedregimeA dependssolely on 6 yS. the loss of energyper
oscillationof a particle with energyclose to the harrierheight. The anticipatedexpressionfor A should
describethe crossoverfrom the asymptotics

A~6IT~l, (2.22)

to the asymptotics

A~l. T<~6~U,, (2.23)

(see eqs. (2.20) and (2.19)]. On the other hand, at 6 U and w y, the preexponentialfactor A
dependsonly on the ratio ylw.

A = (I + y214w2)1 2 -- yI2w. (2.24)

as can he seenfrom eq. (2.15). At y ~ w the last expressiongives A I. This meansthat eqs. (2.23)
and(2.24) havea commonregion of applicability. TIw U

0 ~ y~ w. whereA I. Hence,onecan bridge
the rangesof underdampedand overdampedregimesin a very simple manner:oncea functional form
of A describingthe crossoverbetweeneq. (2.22) andeq. (2.23) is known, the naiveproductof it with
eq. (2.24) will give the preexponentialfactor A at arbitrary damping in the low-temperaturelimit
7/U11~I.

2.2. The Greenfunction for the Fokker—Planckequation

The purposeof this section is to demonstratethat the underdampedBrownian motion in a deep
potentialwell can he adequatelydescribedin termsof a Greenfunction of the Fokker—Planckequation.
In the nextsection thisapproachwill be usedto derive an integralequationwherethe kernel is given by
a Greenfunction. In accordancewith Kramers’ results we assumethat the flux over the harrier is
carried by particleswith energiesF in a close vicinity of the harrier top. e~~ T. The scale of the
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potentialenergyexceedsboth the thermalenergyT andthe friction-inducedenergyloss per oscillation
6, i.e., U11> T,6. Therefore,the deterministicdynamicsof the escapeprocessis only slightly perturbed
by friction and the random force. As the total energyr [seeeq. (2.7)] is the most slowly varying
quantity, it is convenientto useit as a new variable insteadof the momentump. The pricewe payfor
this convenienceis that nowwe have to treatthe right- andleft-going particlesseparately.To this end
we introducethe indices + and —. The Fokker—Planckequation(2.10) may then be transformedvia
substitutions

p = ±{2m[e— U(x)]}
t2~p+(E,x),

aIapl~~= mtp~(r,x) alaxL., aIax~
11= aIax~r+ (dUldx) aIaE~r, (2.25)

fRL(E, x) = F[p+(z, x), x].

To proceedfurther we observethat one can put r = 0 in the relationshipfor p~(r,x). Indeed,our
basic trajectory correspondsdirectly to £ = 0, and the leading contributions to the escapestemfrom
particles in a narrow rangeof energies r~— T. Furthermore,the main part of the trajectorylies inside
the well, where U(x)~> 4 In this approximationthe Fokker—Planckequation(2.10) takes on the
form

afRLlax= ±[—2mU(x)]
2y(aIaE)(fRL+TafRLIaE), (2.26)

with coefficients independentof e. Close to the left-handturning point, whereall the particlesare
reflected,we have

fR(E,x)=fl(E,x), x—xtl<<~xH (2.27)

whereascloseto the barrier topfR = fL only for r <0. The functionfL vanishesfor e> 0, as thereareno
particlesgoing over the barrier into the well.

Equation(2.26) takeson a moreconvenientform after introductionof the actions = s(x) alongthe
basictrajectory.The relationshipbetweens andx is definedby the differential equation

dsldx= ±[—2mU(x)It’2 (2.28)

where the sign + or — correspondsto the sign of the particle velocity, so that s is monotonically
increasingalong the trajectory. We then arrive at the equation

af(r,s)Ias=y(alae)[f(e,s)-i- Taf(r,s)Iar], (2.29)

which describesdiffusion and uniform drift in the energyspace.Note, that the propagationalong the
basictrajectory is parameterizednot by time or position, as in morefamiliar cases,but by the actions.
Equation (2.29) enablesus to find a relationshipbetweenthe functionsf at different values of the
action s,

f(r, s)= f g(r — £‘, s — s’)f(e’, s’) dr’, (2.30)
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whereg is the Greenfunction of eq. (2.29) which satisfiesan initial conditiong(E — F’, 0) = 6(r — F’).

Solution of eq. (2.29) for g gives

g(E—E’,s)=(4~Tys)~2exp(—(F—E’+ys)2I4Tys]. (2.31)

Quite naturally, the Gaussian random force inducesthe Gaussiandistribution of variation of the
energy.The meanenergyloss ~ (~r F — F’) is connectedwith the meansquarevalue of ~r —

by the fluctuation—dissipationtheorem.

K(~F (~F))2~ 2TK~ =2Tyz,

where the brackets K ,~ denote averaging over the distribution (2.31). The advantageof the
introductionof the actions, insteadof usingthe particle positionx, is that s increasessteadilyalong the
oscillatorytrajectory, whereasthe assignmentof x is insufficient to specify differentcyclesof motion.

We have restricted ourselvesto the calculation of the Green function of eq. (2.29). A general
solutionof this equationshouldbe periodic in s for £ <0. For positive£ this solution is subject to the
conditionthat no particlesenterthe potentialwell from outsidethe barrier. Thesetwo solutionsmust
be matched at r = 0. A detailed investigationof the function f(F, s), basedon a seriesexpansion
combinedwith numericalcalculations,was presentedby Riskenand coworkers[51].

A word of caution about the indices R and L. which were suppressedin eq. (2.30). is necessary.In
the simplestcasewe insert the functionJ~into the integrandof eq. (2.30). In the left-handside of this
equation we then get the function f before the left-side turning point x~.and the function fR after
reflection of the particles.The situationat the harrier top is somewhatmore complicated,becauseonly
particleswith energyr <0 are reflected,whereasthosewith r > 0 escapeover the barrier. An obvious
implication of eq. (2.30) is that in the underdampedregime the distribution of the particlesthroughout
the potentialwell can easily be found from the distribution at a certainx. The transformationfrom the
action s to the positionx is definedby eq. (2.28). In view of the oscillatorynatureof the motion in a
potentialwell it is rather likely that, if complementedby a properboundaryconditionto accountfor the
escapeof particlesfrom the well, the integralrelationship(2.30) may well he transformedinto a closed
integral equation.

2.3. Integral equationfor the distribution Junction

In this sectionwe useeq. (2.30) to derive an integral equationfor the distribution function, which
under certain conditions is equivalentto the original Fokker—Planckequation(2.10). One of these
conditions, y <w, alreadyderivedabove,is necessaryfor the validity of eq. (2.30). In this regime.eqs.
(2.28) and (2.30) determinethe distribution function f(x, F) within the whole potential well if this
function is known at a certainpoint in the well.

To transformthe relationship(2.3(J) into an integralequationwe needadditional information about
the behaviorof the potentialU(x) outsidethe barrier. Thesimplestsituationis that of asingle potential
well, when,after surmountingthe barrier, the particlesneverreturn to the well. In this caseeq. (2.16)
gives an estimateof the probability of recrossingcausedby interactionwith the heatbath,f

1 ‘~R y
2I

8w2 < 1. Hence.we shall neglectthe recrossingsover the harrier. In terms of the functionsfRL(E, x)
this meansthatf

1 (r. 0) = 0. Closeto the harrier top the flux of the left-goingparticlesarisesonly dueto
reflectionsfrom the harrierof the right-goingparticleswith r <0. This gives the following relationship
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betweenfR andfL:

fL[E,x(r)1=fREe,x(E)1, for r<0; fjr,O)=O, for r>0, (2.32)

wherex(s) is the root of the equation

U(x) = F, Xm <x <0, (2.33)

corresponding to the right-side turning point at a given energy e. It should be emphasized that eq.
(2.32) plays the role of a boundarycondition, because(1) it interrelatesthe functionsfR and f1 at
negative energies;(2) it specifies the problem by the condition that thereshould be no left-going
particlesdirectly at the barrier top. Particleswith different £ are reflectedat different valuesof x(e).
For rj — T, however,the rangeof x(e) is very narrowcomparedto the size of the potentialwell,

x(— T)l (2TImw
2)t~2~ xJ.

We assume,therefore, that all theseparticles propagatealong trajectoriesvery close to the basic
trajectory (r=0) and can be describedby the sameGreenfunction (2.31).

At a first glanceone could doubt whetherthe motion of all the particles can be describedby the
function (2.31) as particleswith differentenergiesoscillatewith differentperiods.Moreover,the period
of oscillationdivergesas ln(U

11/jr]) as r—~0.The solution is that we considera probabilisiticproblem
andareinterested,therefore,in theevolutionof the distributionfunction ratherthanin the dynamicsof
individual particles. Oscillationswith certainperiodsdo not enterthe problem,sincethe probabilistic
evolution, governedby eq. (2.31), dependsonly on the action s along the basic trajectory. In more
technicalterms, if we introducethe action S(r) per oscillation,

S(s)=~{2m[e_U(x)]}t12dx, r<0,

we obtain for S(r) at smallenergiesapproximately

S(0)—S(r)~2ii~sj/12(r)=(~jIu2)ln(U0I!rJ),H<<U11,

where12(r) is the energy-dependentoscillationfrequency.We can safelyneglectthe differencebetween
5(0) and 5(s), as it gives small correctionsof the order T/U11 ~ 1. In this way we arrive at the basic
parameterof the problem,

S S(0)= 1[_2mU(x)jt/2 dx = 2J[—2mU(x)]
t12 dx,

which has alreadyappearedin eq. (2.20) in the discussionof Kramers’ results.
The purposeof theconsiderationswas to explainwhy eq. (2.30) with the actions = S, corresponding

to r = 0, could be exploited to describethe evolution of f(r, s) with rI — T. Now we will proceed
further with thederivationof an integralequation.The relationship(2.32) will be of crucial importance
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in this derivation,as it connectsthe distribution of the left-going particlesJ at the right-side turning
point of the barrierwith the distributionof the right-goingparticles.We beginwith the introductionof a
new function,

f(F) =J~(r,0). for s>0: f(s) fR[~’ x(s)], for r <0, (2.34)

wherex(s) is definedin eq. (2.33).The functionf(s) describesthe rate of escapefor s >0 andthe rate
of reflection at the harrier for £ <0. The reflectedparticlesbuild up a distributionof left-going particles

J’~. [seeeq. (2.32)]. Theseparticlespropagateto the left-hand turningpoint, wherethey are reflected
again. At this moment the function J changesover into the function fR [seeeq. (2.27)]. Propagating
acrossthe well theseparticlesshould reachthe barrierandreproducethe initial distributionf(r). That
is precisely the condition with which eq. (2.30) has to he complemented,to be transformedinto a
closedintegral equationfor the functionf(s). Evidently, evolutionof the particledistributionin vicinity
of the closed basic trajectory is governedby Green’sfunction

g(s — s’) ~g(F — r’, 5) = (4ir6T) I 2 exp(--(r — s’ + 6)I4T6]. (2.35)

where 6 yS is the energy loss per oscillation. Now we are in the position to write down our
fundamentalintegral equation.

f(s) = f g(s - s’)f(s’) ds’, (2.36)

where the lower limit of Integration is extendedto infinity in view of the rapid convergenceof the
integral. Equationsof this typewere first introducedby IcheandNoziéres[13]andby Leuthäusser[52],
hut without specifyingthe expressionfor g(s —

The boundarycondition for f(s) deepin the potential well is

+ U13IT(. -u> T. (2.37)

With eq. (2.37), thedistributionfunction is normalizedto oneparticle in the well (seeeq. (2.6)]. Then.
by virtue of eqs. (2.8), (2.9) the decayrate is given by

(2.38)

Here we haveused the identity n~p dp dsandwe havetakeninto accountthat in the underdamped
regime only positive momentacontribute to the integral in eq. (2.8). Equations(2.35)—(2.38)are
completelyequivalentto the original eqs. (2.2), (2.6) and (2.8)—(2.I0) in the region of y= wTIU9,
when6 — T. In the extremelyunderdampedregime,6 ‘~ T, eq. (2.36)simplifiesdown to the differential
equation

6(dldr)(f + T dflds) 0, 6 < T, (2.39)
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subjectto the boundaryconditions(2.37) and

f(0)=0, (2.40)

Integrationof eq. (2.36) over positive £ yields in the sameapproximations

1Ir——8TdfIds~11. (2.41)

The solution of eq. (2.39) with the boundarycondition (2.40) is given by

f(s) = (QI2~T)[exp(—sIT)— 1] exp(—U11IT). (2.42)

Equations(2.39)—(2.42)were first derivedby Kramers,his final resultfor r beingeq. (2.20). Next we
proceedby solving eq. (2.36) for arbitrary 8 — T.

2.4. The Wiener—Hopfmethodin the Kramers problem

To calculatethe escaperate1 Ir one needsto solve eq. (2.36)with the boundary condition (2.37)and
then to calculate the integral in eq. (2.38). Equation (2.36) representsa one-sidedconvolution
equation.To solve it by the Wiener—Hopfmethod [53]we introducethe one-sidedFourier transforma-
tions

~(A) = exp(U0IT)J f(r)0(±s)exp(iAsIT)ds. (2.43)

Comparisonof eqs. (2.21), (2.38) and (2.43) yields

A=~(0). (2.44)

The boundarycondition (2.37) showsthat ~<(A) hasa pole at A = —i,

~~(A)rm—iI(A +i), A+iI~1. (2.45)

After Fourier transformationof eq. (2.36) we arrive at a Wiener—Hopfequation

~(A) + qs(A)= g(A)q~(A), (2.46)

where

g(A) = exp[—6A(A + i)IT] (2.47)

is the Fourier-transformedcounterpartof eq. (2.35). It is convenientto rewrite eq. (2.46) as

(A)+G(A)~(A)=0, (2.48)
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G(A)~1 —exp[—6A(A+ l)IT] . (2.49)

The functions ~p~(A)and ~(A), definedby eq. (2.43), are analytic in the upperand lower complex
half-planesof A. the only exceptionbeing the pole (2.45) of ~ (A).

To explain the Wiener—Hopf method in some detail, we rewrite eq. (2.48) as ln[—~~(A)]=

In ~ (A) + In G(A), and with the use of the Cauchy theorem decomposeIn G(A) into two terms,
In G (A) and In G - (A), analytic in the correspondinghalf-planesof A. arriving at the equation

ln[—(A)(—lnG~(A)=ln~ (A)+lnG (A), (2.50)

lnG’(A)~±~ J A~~~)dA’. (2.51)

The functionsG+ ( A) are entire functionswhich haveno zerosin the half-planesIm A > 0 andIm A <0
and tend to unity when A—*x. Naturally, we have

G’(A)G (A)~G(A). (2.52)

As thefunctionson the left- andright-handsidesof eq. (2.50)are analyticin differenthalf-planesof the
complexA, theyshouldbe equalto an entire function, which is to be chosento satisfyeq. (2.45). In this
way we arrive at the following solution of eq. (2.48):

— iG (A)G (—i) iG (—i) -

~ (A)— A+i ~ (A)=— G(A)(A+i) (2.~3)

Inserting of eq. (2.53) into eq. (2.44) yields

A = G (0)12. (2.54)

Here we have used the fact that G(i) is complex-conjugateto G(0), which can be verified by
displacementof the integrationcontour in eq. (2.51) to the straight line Im A’ = —iI2. Equation(2.54)
togetherwith eqs. (2.51) and (2.49) gives an exact solution of the Kramersproblem in the under-
dampedregime.

2.5. Lifetime of the Brownian particle in a single well

Insertion of eq. (2.51) for G (A) into eq. (2.54) yields the final result for the preexponential
factorA.

A(6IT)=exp(iJln{l_exp[_6(A2+ ~)IT]} A2+ ~) (2.55)

This expressioncan be representedin severalequivalentforms,
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iv/2

A(LI) = exp(~J In[1 - exp(—LI/4cos2x)]dx) (2.56)

=exp(—~ierfc[~(nLI)h/2j) (2.57)

~ ~-n) /-~~
= LIexp~-) n!(2n + 1) ~) j~ (2.58)

whereLI—81T, and

erfc(x) ~2 Je~2dy

is the error integral, ~(z) is the Riemannzetafunction. The seriesin LI in eq. (2.58) convergesinside
the circle LI] = 8ir. The asymptoticsof A(LI) may be obtainedfrom eq. (2.57) for LI> I andfrom eq.
(2.58) for ~

A(LI) 1 — 2(irLI)t2 exp(—LI/4), LI> 1, (2.59)

A(LI) LI[1 + ~(‘)(LI/)t2J LI — 0.82LI32, LI ~ 1 . (2.60)

In ref. [54] instead of ~ —1.46035, the value 1.46 was calculatedby numericalmethods. The
dependenceof A on LI is shown in fig. 2.

As one could haveexpected,A(LI) is nonanalyticat LI = 0 reflecting the fundamentalchangeof the
propertiesof the system with the changeof the sign of y.

The final expressionfor the lifetime of a Brownian particlein a single potentialwell can be written
down explicitly as a productof eq. (2.55) and eq. (2.15),

= ~- [(i+ ~r)t2 — Y ]A(”~~S) exp(—U
0/T). (2.61)

A(~ /

Fig. 2. Dependenceof the preexponentialfactor A in eq. (2.21) on the reduceddissipationi ySIT’~bIT.
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In the intermediate-to-overdampedregime, yS> T, eq. (2.61) differs from eq. (2.15) only by terms
—exp(—ySI4T). In the intermediate-to-underdampedregime, y ~ w, the factor (2.24) yields in eq.
(2.61) a relative error of orderylw, which, at yS T, is of the order T1U11. Hence,the productof eq.
(2.55) and eq. (2.15) correctly yields the leading-orderterm in a low temperatureexpansionof the
particle lifetime at arbitrary damping. Equation(2.61) dependson five quantitiesU11, 12. w. S and y.
which completelyspecify the metastablestateof a Brownian particle in a single potentialwell.

2.6. Energydistribution of’ escapingparticles

The distribution of the escapingparticles is given by the inverse Fourier transformation,

f(s) = 4
2T exp(—U

1!T) J ~ ‘(A) exp(—iArIT) dA, (2.62)

where~ (A) is given by eqs. (2.51) and (2.53). Unfortunately, only the numericalevaluationof the
integral in eq. (2.62) is possible,since~ ~(A)cannotbe representedby a simpleanalyticform. This can
already be seenfrom the complicatedstructureof eqs. (2.56)—(2.58) for the preexponentialfactor
A(LI), which equals~ (A) at A = 0. A comparativelysimple expressioncan be obtainedonly for the
averageenergyof escapingparticles

~j f(s)sds/J f(r)ds.

Using eq. (2.43) we find [37]

=1+~ J(I_2cos2x)ln[1_exp(_LII4cos3x)jdx, (2.63)

where,as before, LI 6IT. The dependenceof ~IT on the ratio 6IT is shown in fig. 3.

~

/

1 2 3 4 5 -

Fig. 3. Dependenceof the averagedenergyof cscapmngparticleson the reduceddissipationJ yS/T~dT.
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In the limiting casesone obtains

~=I—2(irLI)t2exp(—LII4), LI>1, (2.64)

~ —~(J~)(LIIir)t2~0.82LI’12,LI’~1. (2.65)

For 6> T the distributionf(s) is a canonicalone and the meanenergyi~is given by ~ = T. For 6 ~ T
the averageenergyof the escapingparticles is small and so is f(s) at s > 0,

~=(6T)’2, f(0)=(126IT2)exp(—U
111T).

The last expressiongives an estimateof f(0), which has earlier been assumedto be vanishingly small
[seeeq. (2.40)1.

An attempt has been made to solve Kramers’ problem at 6 — T by inclusion in eq. (2.39) an
additional loss term due to escapeout of the well [29]. In the extremelyunderdampedregime this
approachyields

ABuL(LI)~LI LI
312, EBULLI , LI~1.

The parametera, introducedin the papersby Büttiker, Harris andLandauer[29, 30] hasbeenchoser.
to be unity, in order to achieveA = 1 at 6 > T. We note, that theseresultsdiffer from eqs. (2.60) an~
(2.65) only by a numerical factor ~(~)]lT_t/2~O.82, which is rather close to unity. However, the
distinction betweenthe two approachesis clearly emphasizedby their results for LI> 1. The results
given by eqs. (2.59) and (2.64) exhibit a sharpdropoff of corrections—exp(—LI14), whereasthoseof
BHL yield relativecorrectionsof the order of LI

2.7. Double-wellpotential

Now we return to a moregeneralsituationwhen beyondthe barrierthereis anotherwell of a finite
depth,as shownin fig. 4. In this casethereis a finite probabilityfor the particleto return into the initial
well I aftervisiting the final well 2. This probability is non-negligibleonly in the underdampedregime,
whenthe particleshavingenteredwell 2 loseenergyso slowly, that after severalroundtripsfluctuations
may still throw them back over the barrier into well 1.

To take accountof thisprocesswe introduce,in analogywith eq. (2.34), the distributionsf (s) and
f
2(s) of the particles,moving towardsthe barrier from the respectivewells. In analogywith eq. (2.35)
we also introducethe Greenfunctionsof the Fokker—Planckequationin the double-well system,

g1(s— s’) = (4~T)t1
2 exp[—(s — s’ + ~)2I4~T], ~ yS

1IT,

whereS~is the action per oscillationof the particle with e= 0 in well j (j = 1, 2),

S~ 21 [—2mU(x)]’
2 dx, S

2 2J [—2mU(x)]
t’2 dx.
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v U(x)

Fig. 4. Schematicrepresentationof a double-well potential.

To write down a systemof integral equationsfor the functionsf1(s), f2(s) in analogywith eq. (2.36),
one should take into accountthat thereare now two distinct contributionsto, say,f~(~)•Oneof them
stemsfrom the particles reflectedat the barrieroneperiod earlier with thedistributionf1(s)0(—s); the
other is due to the particleswhich havepassedover the barrier one period earlier with distribution
f2(s)0(s).The full system of equationsis then

f(s) = f g~(s- s’)[f1(s’)0(—s’) +f2(s’)O(s’)] ds’,

f2(s) f ~(s s’)[f2(s’)0(—s’)+f~(s’)0(s’)jds’.

The boundarycondition (2.37) for f1(s) still holds after substitutionof 12 by I2~and U11 by U1,
whereasf2(s) has no Boltzmanntail deepin well 2, since initially therewere no particlesin this well.
Following definition (2.43), we introducethe Fourier transforms~(A) and ~/(A) of f1(s) andf2(s)
respectively.Thesenew functionsobey the systemof equations

(A) + ~/(A) = [1- G(A)][~/(A) + ~/ (A)].
(2.66)

~(A) + ~(A) = [1- G2(A)][~(A) +

G1(A)1—exp[—i1A(A+i)]. L11~61IT. (2.67)

As above,~1’(A) is analytic in the upperhalf-plane,whereas~~(A) is analyticin the lower half-plane
but for a pole at A = —i with the residue—i. The functions (A) and ~~(A) areanalytic in the upper
and in the lower half-planeof A.

The system(2.66) is reducedinto the two independentWiener—Hopfequations,

~ (A) + [G(A)G2(A)IG2(A)]~ (A) = 0. ~I’
tm(A) + 11’(A) = 0,
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wherewe haveintroducedthe new functions

~(A)~1(A)— ~2(A), ~‘(A)~ G1(A)~1(A)+ G2(A)~(A),

G12(A) 1 — exp[—(LI1 + LI2)A(A + i)j.

We are only interestedin the equationfor ~(A), since the flux over the barrier is given by

= f [f(s) -f2(s)Jds. (2.68)

We thus arrive at

A=(0)-q~(0)=q,~(0). (2.69)

After factorizationof G1(A), G,(A) and G12(A) similarly as in eqs. (2.51), (2.52) one obtains

G~(-i)G~(-i)G~(A)G~(A) (2.70)
(A+i)G~2(—i)G~7(A)

anda similarexpressionfor q/(A). Fromeqs.(2.69)and (2.70) it follows that the preexponentialfactor
A(LI1, LI2) for a double-well potential in the underdampedregimemay be expressedby the function
A(LI) introduced earlierby eqs. (2.55)—(2.58),

A(LI~, LI2) = A(LI1)A(LI2)IA(LI1 + LI2). (2.71)

The result takes on such a simple form by virtue of the kernels G1(A), G2(A) andG12(A) given in terms
of the samefunction(2.49)with differentparametersLI 6/T. In the extremely underdamped limit, LI1,
LI. ~ 1, this expressiongives [13]

A(LI1, LI2)~LI1LI2I(LI1+ LI2).

For asymmetricdouble-wellpotentialLI1 LI2 = LI, the expansionof eq. (2.71) for LI ~ 1 takesthe form

A(LI, LI) (LI/2)[1 + (2— \/~)~‘(~)(LI/ir)
t’2]

Numerically (2 — ~/~)~(~) —0.855456. The value —0.859 for this coefficient was given earlier by

Riskenand Vollmer [17]. The more accuratevalue —0.8554 was calculatedin refs. [54, 31].
2.8. Populationrelaxation in a double-wellpotential

The final relationshipfor the escaperatein a double-wellpotentialout of the metastablestateI may
be written as the productof eqs. (2.71) and (2.15), yielding

I 12 (~( 2 \t12 1 A(ySIT)A(yS IT)
~ ~ 2w] A[y(S

1+S.,)IT] exp— 1
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This result holdsat arbitrary damping y. The final stateof the particle is specifiedby the parameter52

only. which influences the decay rateout of state I only in the underdampedregime. Equation(2.72)
takeson the form of eq. (2.61) for a single potential well at 52 > S~.For a symmetric double-well
potentialone finds S~= S.,. Becausethe differenceof the depthsof the initial and final potential wells
doesnot enterthe calculations,the friction-dependentpart of the preexponentialfactor is symmetricin
the well indices. Equation (2.72) with ~ and U1 substituted by 122 and U. gives the rate of
fluctuation-inducedtransitionsr2 from well 2 into well I. An oscillatoryapproximationat the bottom
of the well is by no meansrestrictive. In the caseof an arbitrary well one only needsto normalize
correctly the equilibrium function (2.6).Thus,our resultsdescribecompletelythe activateddecayrates
Out of a one-dimensionalmetastablestate.

The lifetimes r~and ~, derivedby solving the Kramersproblemshould be usedas elementaryrate
constantsin the phenomenologicalequationsfor the well populations,

dN~/dt=—N1/r1 + A2Ir.,, dN+Idt —N.,/r+ +

Theseequationsconservethe total population N1 + N+. Their solution is given by

N — N1 (0){ I + ((2~ /12+) exp[(U+ — U1) I ‘I — tIrj} + N+(0)[1 — exp(— tlr)](t) — 1 + (ul~IQ+)exp[(U. — U)IT]
where

I — 1 + I ~ ~2 ~t.2 y ~A(yS1IT)A(yS+IT)
— T1 T2 — L~ 4w2) 2w

1 A[y(S
1 + S,)IT]

x [(121127r)exp(—UtIT)+ (uI+/2~)exp(—U,/T)], (2.73)

is the relaxationrate of a nonequilibriumpopulationof the two wells.
We have derived explicit solutions of the Kramers problem for a single-well and a double-well

potential. In the nextsectionswe generalizetheseresultsto quantumBrownian motion. Moreover, in
section4 we will derive a rich spectrumof resultsboth for classicalandquantumBrownianmotion in a
washboardpotential.These achievementsdemonstratethe high efficiency as well as the wide rangeof
applicability of the techniquedevelopedhere.With this experienceonewould expectthat anyproblem
of that kind can be given an explicit solution. However, consideringa simple modification of the
single-wellproblemarrivesat the conclusionthat this is not true. Incidentally,we can easilywrite down
a systemof two integral equationsfor a single-wellpotential with barriersof finite heighton both sides
of the well. In the standardway theseintegralequationscan be transformedinto a systemof equations
for four functions ~‘ +(A). The trouble becomesevident at the next stagewhen one tries to find a
combinationof thesefour functionscorrespondingto the total flux acrosstwo barriers. In contrastto
the double-well problem. where the total flux is obtainedas the differenceof the fluxes from the two
wells, in the double-barrierproblem the total flux is given by adding two fluxes. This physical
circumstanceradically changesthe analytical structureof the equationsand rendersthe double-barrier
problemunsolvable.

2.9. Experimentalverification of Kramers’ energy-diffusionmodel

In the precedingsectionswe havepresentedthe theoreticalresultsfor the decayrate of metastabic
states. In most experimental works the nature of the observed activated decay, e.g.. chemical
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dissociation,is verified by observationof the Arrheniusactivationlaw, in otherwords, the exponential
dependenceof the decay rate,

lIr=(f2/2rr)Aexp(—U111T),

on temperatureT. However, in this caseonegets no informationon the couplingof the particle to the
heat bath,since only the prefactorA dependson this coupling. Becauseof the predominanceof the
exponentialfactor, measurementsof the prefactorA are notoriously difficult. To extractunequivocally
the friction dependencefrom the measureddecayrate,one mustchangethe dampingindependentlyof
other relevantparameters.

At the presenttime, uniqueexperimentsappropriatefor this purposeare observationsof the decay
of the zero-voltagestate of a Josephsonjunction [46—48].In the caseof a Josephsonjunction, the
degreeof freedomx describesthe phasedifferenceacrossthe junction andthe massm correspondsto
C(hI2e)

2,whereC is the capacitanceof thejunction. Further,the potentialis a tilted periodic potential,

U(x) = (hI~/2e)[cos(x)— (I/I~)x],

where I is the biascurrent and l~the critical currentof the junction.
The zero-voltagestate of the Josephsonjunction correspondsto the case where1< I~,and the

particle is trappedin one of the minima of the potential.The decay of this metastablestate can be
observedwith sizableprobability only when the bias currentis close to the critical current,l~— ~

Then, shifting the origin of x to a local minimum, the relevant part of the potential is very well
approximatedby a cubic potential

U(x) = ~,m122x2(1— xIx
0),

which has a barrierof width x~1and height U11 = ~4m12
2x~.The potentialparametersare relatedto the

parametersof the current-biasedJosephsonjunction via

12 = (2eI~/hC)t2(1— j/j)t14 = (232hI~I3e)(1— j/J)3/2

In the modelof a resistively shuntedjunction, the friction coefficient is given by 1IRC, whereR is the
resistance.So long as RCI2 < (]

01T, the decaylies in the region of moderate-to-largedamping.In the
opposite limit, RC[2>> U11/T, the preexponentialfactor A is small and dependson the shunting
resistance,A ~(1IRCfl)U0/T. Under these conditions, the particle motion in the potential U(x)
representsoscillationswith afrequencydependenton the particleenergyaccompaniedby a slow energy
diffusion. This limit was consideredby Kramersand is discussedin section2.1.

The shuntingresistancecan be substitutedby a more sophisticatedshuntingcircuit. In this way a
possibility arises to changein a controllable mannerthe particle coupling to the heat bath. If a
Josephsonjunction is shuntedby a delayline, the friction becomestime-delayed,which is describedby
a non-Markoviandampingkernel [49].The delaytime of the friction dependson the lengthof the delay
line. This allows for the determinationof the decayrate of the zero-voltagestateof a current-biased
Josephsonjunction as a function of the delaytime without affecting other junction parameters.The
theory on his effect has beendevelopedby Grabertand Linkwitz [44].
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Their starting point is the generalLangevin equation

dU(x) I
mx+ dx + j ds y(t — s)x(s) =

wherey(t) is a non-Markoviandampingkernel and r1(t) a Gaussiannoise force with vanishingmean.
The noise correlation function ~-q(t)rj(s)) = mTy(]t — s]) is related to the damping kernel by a
fluctuation—dissipationtheorem.

Considera Josephsonjunction shuntedby an ideal delay line with a capacitanceper length C and
an inductanceper length L~.The line has a length / and is terminatedby a resistanceR,. Then, the
applied bias current splits into threetime-dependentpieces: a supercurrenti~cos(x), a displacement
current C dV/dt through the junction capacitanceC and a time-dependentcurrent !~. through the
shuntingdelay line. This last current is relatedto the voltage V acrossthe junction by [49]

I~(t)= ~- [V(t)+2~ (~:-~-~-:)“v(t-~!

where R~= (C*IL*)I is the characteristicresistanceof the delay line and v =(L*Ct)
2 the

wave-propagationvelocity. Translatingthis into the equivalentmodel of a dampedparticlemoving in
the field of force, one obtainsthe dampingkernel [441

+ 1 2/ R.—R

y(t)2y~a”6(t—nr). ~Rf’ T~ 0 R~+R,’

wherea is the reflection coefficient of the line.
In the weak-dampinglimit the energy-distributionfunction f(s) obeys a Fokker—Planckequation

(dlds)6(s)(I + T dlds)f(s) = 0. (2.74)

In contrastto eq. (2.39), 6(s) is now consideredenergy-dependent,

6(s)m~y(]t-s])dx(s, t)dx(s,s),

wherethe integrationhas to be carriedout over the full cycle of motion. The trajectoryx(s, t) for the
motion of a particle in a cubic potential in the absenceof friction can be found in terms of elliptic
functions. The final answerfor 6(s) is 1441

6(s) = (U(
1IQC)D(5IU(l),

whereQ~is the quality factor of the delay line,

D(r) 216~
5(r)(1— a2) ~ . 2 2

sinh [~n~(r) Ip~(1 — r) 1 — 2acos[ irn~i(r)dIx
11] + a
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The last expressiondependson the reducedlength of the delay line, dIx0, the reflection factor of the
line a and the function ~ifr), which describesthe dependenceof the oscillation frequencyon the
reducedenergyr = s/U11, li(s) 121a(sIU1)). Neglectingexponentiallysmall terms, the solution of eq.
(2.74) gives the following expressionfor the preexponentialfactor:

1 — f exp(—rU0/T)dr

AQCJ D(1-r)

Numerical calculationsfor U0! T= 10 and a = ±1/2,1/3 haveshownthat the coefficientA displays
dampedoscillationsof largeamplitudeas afunction of the delay-linelength [441.The modulationof the
lifetime of the zero-voltagestateby changingthe length of a delayline was measuredfor A 1/4 and
U11IT~10 ±3 [4~1.In the limits of the experimental uncertainty of the system parameters,the
experimentalresultsagreequite satisfactorilywith the theoreticalpredictions.The amplitude,period,
phaseandtailing off of themodulationconstitutethefirst directevidencefor the oscillationof a particle
in a well before escape,which is implied by Kramers’ energy-diffusionmodel for the escapefrom a
metastablestate.

3. Distribution andescaperate of quantumBrownianparticles

3.1. Escape rate of thermalizedparticles

To considerthe decayof metastablestatesin the quantumregime,onehasto take into accountthree
differentcontributionsto the final result.First of all, the asymptotics(2.37) for the functionf(s) deepin
the potentialwell mustbe modified. To do that onejust has to recallthat in anoscillatory potentialthe
energylevelsequal (n + 1/2)/112, where n is an integer.The normalizeddistribution function is then
given by

f(s)=sinh(11I1I2T)(irh)
texp[—(s+ U

11)/T], —s>T. (3.1)

This expressionwill serveas a boundarycondition for f(s) calculatedtaking escapesinto account.
Similarly to eq. (2.21), we introducethe preexponentialfactor A as a factor, reflecting effects of

dissipation,starting from the expressionfor the escaperate of thermalizedparticles,while neglecting
friction. Quantumeffectsbecomemanifestin this processthroughthe quantumpenetrationprobability
[1+ exp(—2~sIhw)]

tfor a particle with energy s. Close to the barrier top the discretenessof the
energylevelsmay be overlooked,since the frequencyof oscillationsvanishesas s] —~0. In this way,
usingeq. (3.1), we obtain

I f f(s) ds w sinh(hQ/2T)
— = I = . exp(—U

0IT). (3.2)r i 1+exp(—2irs/hw) 2irsin(hw/2T)

The lowest-orderquantumcorrectionto this preexponentialfactor was first obtainedby Wigner [31.
The expression (3.2) for I /r does not contain any dependenceon the friction coefficient y.

Therefore,it correspondsto the intermediatefriction regime, Tw/U0 ‘~ y ~ w (we assumethat (1 -~ w).
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In the underdampedregime, y~wTIU1, as well as in the overdampedregime, y-~w, relation (3.2)
mustbe modified by taking into accountthe interactionof the Brownian particle with the heat bath.
This is the third factor modifying the expressionfor lIT. Dissipationwill be accountedfor if we write
I Ir in the following form:

wsinh(h[212T) 12
— = A 2~sin(~wI2T) exp(—UIT) = ~— A,0 exp(—U/T), (3.3)

where the factor A accountsfor dissipationeffects on the flux of thermalizedquantum particles,
whereasthe factorA~0~describestotal modificationof the resultcomparedto classicalTST. In the next
sectionsthe preexponentialfactor A is calculatedboth in the underdampedandoverdampedregimes.

3.2. Derivation of the transition probability

In contrast to the calculation of escape rates in the classical regime when we started from the
Langevinequation(2.1) or the Fokker—Planckequation(2.2), in the quantumregimeone hasto start
by specifying the Hamiltonian of the problem. We are particularly interestedin the decayrate for
systemsshowingviscous friction in the classicalregime. Thoughthis condition is not sufficient to define
the systemparticle+ heat bath in a uniqueway, it is nonethelesssufficiently restrictiveto uniquely
determinethe effective actionof the particle,obtainedby integrationover variablesdescribingthe heat
bath.This conclusionis very important,as it meansthat all modelsof the heat bath areequivalentas
far as the resultsof the escaperateareconcerned,providedthesemodelsreproducethe sameLangevin
equationin the classical limit.

In this paperwe study two differentmodelsof the heat bath. In the underdampedregime,we take
into accountthe interactionof a particlewith the heatbath by incorporatingaterm describingeffectsof
the Johnson—Nyquistnoise into the Hamiltonian. In the overdampedregime, we shall use a more
physical model assumingthat the role of the thermal bath is takenover by a string coupled to the
particle and tightenedin a direction perpendicularto the direction of motion of the particle.

To consider the quantumproblem in the simplestway, we follow as closely as possiblethe route
described in the classical case. There. the first stepwas the derivation of the kernel g(s — s’). In
contrastto the Gaussianfunction (2.35). which can be written down from almost intuitive considera-
tions, in the quantumcasewe proceedin a systematicway proposedby Larkin and Ovchinnikov [40].
The starting point is the Hamiltonian

= j~
2/2m~ U(x) + x~(t).

wherethe last term describesan interactionwith the heatbathwhich is linear in theparticlecoordinate
x. The noise operator~(t) is written in the Heisenbergrepresentationwith respectto the heat-bath
degreesof freedom. We assumethat ~(t) is Gaussianwith the Johnson—Nyquistcorrelator,

(t)~(t’)~ exp[iw(t — t’)J dt’ = my~w[coth(hw/2T)— 1], (3.4)

where the subscript T denotesaveragingover heat-bathstates. As was already shown in section 2,
escapingparticles have energiess — T. By virtue of the inequality T ~ U

11, we can calculate the
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quantumtransitionprobabilitiesin a semiclassicalmanner,startingfrom the classicaltrajectoryx(t) for
s = 0. It is definedby the implicit relation

t(x) = ± J [—2U(x’)!m]~2 dx’, (3.5)

wherex~is the left-hand turning point and the signs + and — correspondto positive and negative
velocities of the particle respectively.The particlestartsfrom x = 0 at t = —~ andreturnsto this point
for t_~~x(seefig. 1).

The amplitudeof a quantumtransition from the state s’ to the states in one cycle of the particle
motion in the potentialwell under the influenceof the noise ~(t) is given by

A(s, s’) = (s]~exp(_iJ ~(t)1(t)dtIh)]s’),

where(s] and s’~arethe unperturbedwave functionsand ‘t denotestime ordering.The probability of
transitionsfrom s’ to s is thengiven by g(s, s’) = ~]A(s, ~ In what follows we calculateg(s, s’)
and verify that g(s, s’) = g(s — s’). Applying a perturbationapproximationto A(s, s’), we find the
first-ordercontributionto g,

gt(s — s’) = 6(s — s’) — 6(s — s’) J w(s)ds+ w(s — s’), (3.6)

wherew is the quantumtransitionprobability in perturbationtheory,

2 ,w(s — s ) = 2rr](s]x]s )] my(s— s ){coth[(s — s )/2fl —1). (3.7)

In the semiclassicalapproximation the matrix element (s]x]s’) can easily be expressedvia the
Fourier componentof the classical trajectoryx(t). To this end we write the normalizedsemiclassical
wave function,

x

1 t/2
= (2~hv(s )) exp(iJ p(s,x’)dxYh),

wherev(s,x) and p(s,x) are the velocity and momentumof a particle with the energys at a given
valueof the coordinatex. We assumethat s — s’] ‘~ U(x)] andexpandthe exponentin the productof
the functions s’ ~ and (s] in s — s’, taking s’ = s elsewhere,which resultsin the expression

1 ~ dx (.(s-s’) I dx’
(e(x]s ) = ~ v(s,x) xexpy ~ J v(s,x’)

= J x(t) exp[i(s — s’)t/h] dt. (3.8)
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The integral over s in eq. (3.6) gives the perturbative contributionof the first vacuum loop. The
Gaussiannatureof the Johnson—Nyquistnoise (3.4) leadsto the situationthat summingup over all the
vacuum loops results in a general factor exp(—J~+w(s)ds) in the expressionfor g(s — s’). The
perturbationseries is thereforeof the form

g(E_E’)exp(_fw(s)ds)(w(s_s’)+~fw(s_s”)w(E”_s’)ds”

+ ~ f w(s — T”)w(s” — s”)w(s” — s’) dc’ dc” + ‘‘‘) . (3.9)

Fourier-transformingthis expression,

h(A)~f h(s)exp(iAs/T)dc. (3.10)

and performing the summationon its right-handside yield [40]

g(A)=exp[w(A)— w(0)] . (3.11)

Though both w(0) and w(A) are divergent, their difference is finite, which justifies the aboveformal
manipulations.

It is convenientto separatethe factor6IT from w(A) and to representg(A) in the following form:

g( A) = exp[—(6/T)Z(A + i/2. hw/2rrT)]

wherew is a typical frequencyof the motion. At A = i/2 the function Z(A, y) vanishesin accordance
with the fact that the interactionwith the heat bathtendsto relax the particledistribution function to
f(s)crexp(—c/T).At A = —i/2 the function Z(A, y) vanishesdueto particleconservation.The function
Z(A, y) dependson the shapeof U(x) through theFourier transformation(3.8) of the basictrajectories
x(t) [seeeq. (3.5)] and is calculatedin the next section for two typical potentials.

3.3. Integral equation and its solution

In order to write down an integral equationsimilar to eq. (2.36), one has to recall that in the
quantumsituationthepenetrationof a potentialbarrierbecomesa probabilisticprocessspecifiedby the
penetrationcoefficient. The energiesof escapingparticlesare distributed in a narrow range, s] -~ T ~
U1. so that the potentialcan be approximatedby a parabola.A particlewith energys’ is reflectedfrom
the parabolicpotential barrier U(x) —mw

2x2!2with probability [1+ exp(—2i~s’!hw)] whereasits
penetrationcoefficient equals[1+ exp(21r5’/Ilw)] [55]. The reflectedparticlesaftera cycle of motion
in the potentialwell will reproducethe distribution function f(s).

Using the transitionprobability (3.9), we can state the equationforf(s),

I g(s-s’)f(s) = 1 1 + exp(2~s’//1w)f(s)ds.
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Contributionsto the escaperatecomeonly from particlespenetratingthe barrier,so that the lifetime r
is given by the equation

I f f(e)ds 312

rJ l+exp(-2~e!hw) ~

After the substitution

~(s) f(s)[1 + exp(2~rs!hw)j. (3.13)

the Fourier transformation(3.10) gives the finite-differenceequation

(3.14)

where q~(A) is the Fourier transformof the function f(s). Equation (3.14) hasto be solved with the
boundarycondition

~(A)= —iTsinh(111212T)exp(—U111T)Irr/i(A+i), A +i~~ 1, (3.15)

which follows from the asymptotics(3.1). The function G(A) grows monotonicallyboth in the upper
and in the lower half-planesof A, so that both direct and inverseiterationsof eq. (3.14) result in
divergentinfinite products.

In orderto solve this equationwe factorizeG(A) into a productof the functionsG~(A)and G7A)
accordingto eqs. (2.51), (2.52), respectively.These functionsdecreasein the upper and the lower
half-planesof A and can be used,respectively,by inverseand direct iterationsof eq. (3.14). One can
checkdirectly that the auxiliary function obtainedin this way,

1 GC(A+2rrinT!hw) (3 16

~ / G~(A) ,r=t G(A2rrinT/hw) ‘ -.

satisfIesthe following relation:

~(A-2~riT!hw)-~ ~(A)G~(A)G(A)++ ~(A)G(A). (3.17)

Substitutingeq. (2.51) into eq. (3.16) and performing the infinite summationyield

/ /1w 1 lnG(A)

~(A)=exp~4.Tj dA tanh[hw(A — A’)!2T])’ Im A<0.

Comparisonof eq. (3.14) with eq. (3.17) andeq. (3.15)showsthat ~(A) differs from iji(A) by afunction
which changesits sign upon shifting A by 2~riTIhwand has a pole at A = —i. It is obviousthat this
function is simply given by 1!sinh[/lw(A + i)12T]. Thus, the solutionof eq. (3.14) with the boundary
condition(3.15) is given by

— — isinh(h1l/2T)w4~’(A)exp(—U11/T)
~(A) 2~sinh[hw(A+i)/2T]~(—i) . (3.18)
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3.4. Escaperate in the underdampedquantumregime

The lifetime T is relatedto ~(A) by the equation

IIrtp(—2iriT/hw), (3.19)

which follows from eq. (3.12) using the substitution(3.13) andthe Fourier transformation(3.10). For
the preexponentialfactorA(6/T. hw!2irT), definedby eq. (3.3),eqs. (3.18)and(3.19) finally yield the
expression

A(i. v) = exp( j y sin ~y ln{I — exp[—LIZ(A, y)]} dA) (3.20)
cosh27rAy — COS rry

which is written in a form slightly different from the original result [40]. In the extremelyunderdamped
regime. LI ~ 1. the innerexponentin eq. (3.20) can be expandedup to the term linear in LI, which gives

A(LI,hwI27rT)~(i)1~’~a(~wI21TT),LI~1, (3.21)

I lnZ(A,y)dAa(v)~exp1vsin~v I- i cosh2TrAy — cosnv

These expressionsshow quite clearly that, with decreasingtemperatureT, contributionsof quantum
tunnelingpredominateover the effects of depletionof the distributionfunction, Therefore,the escape
rate extrapolatedto T= T

1 = hw/2n becomesindependentof dissipation. At large temperature,
T>hw, eq. (3.21) gives the classicalresult, ALI.

Furtherprogressis only possiblefor explicit potentialsU(x). We shall considerboth a cubicpotential
and a cosinepotential. For the cubic potential,

U(x) = — ~mw
2x2(l — x/x

1),

eq. (3.5) gives x(t) = .r1/cosh
2(w!/2),

11 . 2sx
I x(t)exp(istlh)dt= . I2n~i (hw~sinh(irsIhw)

and taking accountof eq. (3.7) we obtain

15 1 (coshx — cos2Ax)xt dx
Z(A. ~‘)= j ‘ . 2 ‘ (3.22)

2n v + sinhx sinh (xlv)

In a similar way. for the periodic potential

U(x) = (mwx~I2n)cos2(nx/x
1)
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lo0’v+s

.5

Fig. 5. Dependenceof the preexponentialfactor A,,,, in eq. (3.2) on Fig. 6. Function a(y) enteringeq. (3.21) for the casesof a cosine
the reduced dissipation i yS/T~5/T at several values of the potential (uppercurve) and cubic potential (lower curve).
quantumparametery hl2I2irT.

we obtain x(t) = (2x1/n) arctan(expwt),

I I . ix1 1 1 (coshx — cos2Ax) dx~ J x(t)exp(ist/h)dt= 2scosh(ns/211w) Z(A, y~
8Y J xsinhxcosh2(x/2y)

(3.23)

It can easily be checkedthat in the classicallimit, hw/2nT=y—~0,both expressionsfor Z(A, y) go
over to Z,

1 = A
2 + 1/4 [seeeq. (2.47) for g(A)]. Resultsof numericalcalculationsof

A~O~(LI,y)~ A(LI, y) (3.24)

arepresentedin fig. 5 for the caseof a cosinepotential,when11 w. The correspondingresultsfor a
cubic potential differ only by 3—4%.

The resultsfor a( y) arepresentedin fig. 6 for both typesof the potentials.Note that the procedure
of solution of eq. (3.14) hasbeendevelopedin refs. [36, 56, 57]. Unfortunately, in thesearticlesthe
noisewas assumedto be classical.Hence,the resultsobtainedthereareonly applicablein the limit of a
very wide potentialwell.

3.5. Distribution function in the overdamped quantum regime

In the classical overdampedregime the escaperate is governedby the viscous dynamics of the
Brownianparticlenearthe top of the barrier.To examinethe quantumsituation,we shall introducethe
heatbathexplicitly in the form of an infinite string,attachedto the particleandtightenedperpendicular
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to the axis of particle motion [58]. The dynamicsof this systemis governedby the equations

in dxldt2 = —dU(x)ldx + ps ~ t)I!lz~,.~, (3.25)

IFX(Z, t) /~2— ~2a2x(z.1)1 ~z2 = 0. (3.26)

wherex(z, t) is the displacementof the string, x(t) x(0. t). Neglectingthermalnoise,the motion of
the string is completelyspecifiedby the particle motion,sincefor wavesemanatingfrom the particlewe
havex(z.t) = x(z — st). From this relationone obtains

~x(z, t)/0zI~= —(I Is) dx/dt.

Substitutionof this result into eq. (3.25)showsthat, in the classical limit, the actionof the string on the
particleis equivalentto theeffect of a viscousmediumwith the coefficientof friction y = ps/rn. wherep
is the linear density of the string ands is the velocity of the wavestraveling along the string. In the
quantumcaseonly this combinationof p ands entersthe final results.Due to introductionof the string.
the numberof degreesof freedombecomesinfinite but this inconvenienceis compensatedby the fact
that we obtain a conservativedynamical system which can be quantizedin the usual manner.The
approachpresentedhereis applicableto anymedium with linear response.

We considerthe quantumregime using the action for the system particle+ string,

s = f { ~ (~~.t))2 + Ulx(0, 1)1 + ~ ~ [~(0x~~. t) ~ + ~~2( 8x(z. t))2] dz} dt. (3.27)

This is equivalentto the system(3.25), (3.26), with the only difference that t now denotesimaginary
time. Eliminating the string variables by solution of the dynamic equationsfor a given trajectory
x(t) x(0, t) of the particle, we arrive at the effectiveaction [26],

r / 1, 1

s f (~(~))2~ U[x(t)]+ ~ siflj~t~t/;]# dl’)dt. (3.28)

First we derive the partition function Z( T) of quantumBrownian particles in a potentialU(x) at
temperatureT. The partition function can be expressedin terms of the path integral

Z(T) = Jexp{ -S[x(t)] /h} D[x(t)j, (3.29)

over trajectoriesx(t). If the temperatureis small comparedto the typical drop in the potential, in
calculatingthe integral in eq. (3.29)we can assumethat the potentialU(x) is quadraticnearthe point
x = x~,

U(x) —U
11+ ~rnu1(x— x,,,)

The coordinate of the particle is representedby a Fourier series with respect to the Matsubara
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frequencies,

x(t)=xm+a11+~(ancoswnt+bnsinwnt),w~=2nrnTIh. (3.30)

In practicalcalculationsit is sometimesconvenientto return to eq. (3.27), andto substituteinto it the
string trajectory,

x(z, t) = xm + a11 + ~ [a~cosw~t+ b~sin w~t] exp(—zw~tIs).

For the action S we obtain

S = — + ~ Q
2a~+ E (w~+ yw~+ fl2)(a~ + b~).

The pathintegral in eq. (3.29) is thusreducedto Gaussianintegralsover thea~andb,, andcan easilybe
calculated,

Z(T) Q~’F(1— hA~I2nT)F(1— 11A72nT)exp(U
0/T), (3.31)

= — ± (~y

2 —

where we haveomitted a factor independentof y and 12. Note that A~is complex for y <212 and
negative for y > 211, which makesZ(T) finite at any real value of the parametersy and (1 and for
T>0.

The normalizeddistribution of particles in the coordinatex is given by the expression

N(x) = Z’(T) fexp{_S[x(t)]/h} D[x(t)], (3.32)

whereintegrationgoesover all trajectoriessubjectto the boundaryconditionsx(0) = x(11!T) x. At
sufficiently small T only a closeneighbourhoodof thepoint x contributesinto the integral in eq. (3.32),
and the potential U[x(t)} can be expandedup to secondorder nearthis point,

U[x(t)] U(x) + U’(x)[x(t) - x] + ~ U”(x)[x(t) - x12.

The Fourier seriesfor x(t) now takesthe form

x(t) = x + a
1) + E (a~cosw~t+ b~sin w~t),

where the Fouriercoefficientsa~must satisfy the condition

~ a~=0. (3.33)
n = 1)

Calculating the action S as the function of the coefficients a~and b~and integrating over these
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coefficients taking accountof the condition (3.33) gives the particle distribution [59],

N(x)= Z’(T )L2()J.[l h.1 (x)/nrT]J’ll ~t(x)inT] (3.34)

i U(x) U ‘(x)j>< exp~——~— + [I — (T(X)] ——-—

7

~ ~ I (3.35)

rn -+ w~+ y~w,j+ U’(x)/rn

where A and A are the roots of the equation

:12 + yA + U”(x)/m =0. (3.36)

Expression(3.28) is applicable in the regionsof x where U”(x) exceedssome(negative)boundary
value U~,correspondingto the rightmostpoleof o’as a function of U”(x). As the region whereU”~U~
is approached,the particledensityN(x) is determinedby trajectoriesthat are increasinglymoredistant
from x, so that the quadraticapproximationfinally becomesinapplicable. At y = 0, we have

u(x) = [2TIIIQ(x)j tanh[h11(x)I2T], 12(x) [U”(x)/mjt 2 , U~ = —m(nrT/h)2

The equilibrium distributionfunction f(p. x) is relatedto the densitymatrix p(x.x’) by the Wigner
transformation

f(p.x)= j p(x+v/2.x—vI2)exp(ipy/h)dv. (3.37)

The densitymatrix p(x.x’) in its turn is given by the path integral

p(x~x’)=fexp{-S[x(t)]Ih} Djx(t)j, (3.38)

and the trajectoriesx(z, t) correspondto the motion of the particlefrom a point x at t 0 to the point
x’ at t=h/T,

x(0)=x, x(h/T)=x’. (3.39)

In calculatingthe integral in eq. (3.37) we againassumethat the potential U(x) is quadraticnearx. In
the case of a harmonic oscillator, the expressionobtainedbelow for f(p, x) is exact. To account
explicitly for the particlemotion from the point x to the pointx’, the trajectoryx(t) must be written as

x(t) = x + (x’ — x)tTl~+ 0)) + ,~, (a,, cosw~t+ b,, sin w~t).

while the motion of the string is periodic.

x(z, t) = (x’ + x)12 + Os) + ,~ {a,, cosw,,t + [b, — (x — x’)Inn] sinw~t}exp(—zw~ls).
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After substitutionof theseseriesinto the expressionfor the actionS onehasto calculateintegralsin
the a,, and b~. Integration in the a~, subject to condition (3.33), reproduceseq. (3.34) for N(x).
Integration in the b~gives a Gaussianfunction of x — x’. After the transformation(3.37) one finally
obtains

—1(2 2f(p, x) = N(x)[2nmT~(x)] exp[—p I2mT~(x)], 3.40

2 . (3.41)
~=-+ w~+y~w~~+U(x)!m

It is evident that the sumfor ~(x) is logarithmically divergentfor n—*x. To obtaina finite resultone
should, e.g.,takethe internal structureof the string into account.Assumingthat the maximumenergy
of the string phononsis s,,, 5’ T, one obtains~(x) ‘-‘- y ln(syIT). The divergenceof the expressionfor
p2 ~ mT~(x)reflectsthe largeamplitudeof the quantumfluctuationsof theparticle momentump under
the influenceof the interactionwith the heatbath. A similar phenomenonhasalreadybeenobservedin
the caseof a largeparticle interactingwith a Fermi gas [60].

3.6. Escaperate in the overdampedquantum regime

The aim of the presentsectionis to generalizeeq. (2.24) to the quantumregime.This problemwas
first solvedby Wolynes [23]. Later,his resultwas reproducedby a differentmethod[59]. Here,weshall
follow a standardprocedureof calculationof llr, developedby Langer [8, 9] (seealso refs. [61, 26]).
The startingpoint is the relationbetweenthe decayrate 1IT(E) of a quantumeigenstatewith energyE
and the imaginary part of the energyeigenvalue,lIr = (2 Im E)Ih. After averagingover the equilib-
rium distribution one obtains

Ilr”(2lmF)lh, (3.42)

where F is the free energy, F T ln Z. For a stable potential the partition function Z is real and
1!r = 0. Analytic continuation in the parametersof the potential producesan exponentiallysmall
imaginarycontributionto Z, relatedto the finite heightof the potentialbarrier.The expressionfor hr
given above is written down assumingthat the main contributionto the escaperate comesfrom decay
of the quantizedlevels, since only in this casethe conceptof the complex eigenvaluemakessense.

Earlierwe showedthat at T—11w, the contributionof the subbarrierpenetrationis of thesameorder
of magnitudeasthe contributionof the overbarrierescapes.The latterprocessis not takeninto account
in the aboveexpressionfor lIT, hence, this expressionis only of limited validity. At sufficiently high
temperature,whenthe overbarrierescapesbecomeimportant,it hasto be modified. This questionhas
been discussedin detail by Affleck [24]. Expression(3.2) for the escaperate becomessingular at a
temperatureT

0 = hw!2n, since at lower temperaturesthe decreaseof the penetrationcoefficient,
D — exp(2ns/hw),at large negative energiesyields in competitionwith the increaseof the particle
population,f(s)— exp(—sIT), andthe integralfor the particleflux divergesat largenegativeenergies.
It is almost obvious that in the dissipative case the role of w is played by the parameter
A~= (w

2 + ~~2)1/2 — yI2w, which describesthe particlemotion nearthe barrier top [9]. The rangeof
applicability of the anticipatedresult for lIT is thengiven by theinequality T > hA~72n. Therefore,one
can concludethat, in accordwith Langer [9], in the high-temperaturerangethe expressionfor the



3$ V.!. Melnikos, Tire Kranrers problem: fifts’ years of development

escaperate is

l/r=(/1A’/nr)Z1(fl/Z(T), T>hA~I2n, (3.43)

whereZ(T) is given by eq. (3.31).The correctnessof eq. (3.43) is also supportedby theargumentthat
all subsequentcalculationsare carried through in a quadraticapproximation,whenin the eigenmode
representationthe systemparticle+ string becomesa set of harmonicoscillators.The eigenvalueA is
just the imaginary frequencyof the single unstablemode. Only this mode is responsiblefor escapes
over the barrier, whereasall the other modesdeterminethe particle density at the barrier.

To calculate Z1(T) we expand the action S quadraticallynear the barrier top. In terms of the
coefficients of the Fourier series,

x(t) = a~+ ~ [a,,cos(w~t)+ b, sin(w,,t)]

the action takesthe form

~ (3.44)

where again w
2 — U”(O)Im. The integrals in the a,, and the b~, with n >0, can be done in the

standardway. On the otherhand,the integral in a
11 over the real axis is divergent.To renderit finite,

one hasto shift the contourof integrationinto the complexplane[8],

iZ1 = 11 f da,,dh,,f do11 exp(—S/h), (3.45)

The final result for Z~(T)can easily be obtainedby comparingeq. (3.45) with eq. (3.31). These
expressionsdiffer only in two points: (1) a factor 112 appearsin Z1, sincetheintegrationin a11 goesover
a semiaxis only; (2) the parameter12 should be replaced by —iw. Substitution of the resulting
expressionfor Z~into eq. (3.43) gives

= ACI2F(I —hA~I2rrT)F(1—11AJ2rrT) exp(—U IT) (3.46)

T 2nwF(1 —TtA~I2nrT)F(1 —11AJ2irT) II

= — ~y ±(~y

2 .~~2)t 2 ~ = /~ ±(~y2 ~~2)l 2

When the temperaturedecreases,the singularity in rt arisesonly when 1(1 — IIA72nrT) becomes
infinite, so that the region of applicability of eq. (3.46), T> T

11 = hA ~/2nrT,is wider than that of eqs.
(3.34) and (3.40). To calculate the flux at temperaturesclose to T1) and below, the deviationof the
barrier from parabolicshapemustbetakeninto account.The crossoverfrom eq. (3.43) to eq. (3.42) in
a narrowregion, 1 — hiA~l2irTI—(TI U11)’

2, hasbeentreatedby Affleck in a conservativecase[24] and
by Larkin and Ovchinnikov in the presenceof dissipation[26]. At large temperatures,the expression
obtainedfor r’ becomesthe Kramersexpression(2.15).while in the limit y ‘~ w, 12, usingthe relation
f(1 + z)F(1— z) nzlsin nz, eq. (3.46) can be reducedto eq. (3.2).
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It should be noted that the result for I Ir is valid in a wider rangeof parametersthan the result for

the particle densityN(x). Indeed,calculationof u(x) at x = 0 gives
/ 11w \2( y2 \‘[ / hA~ / hA~1y’

~=l1~k—~)~1+~—~) [~_ ~
whereçl’(z) is the digammafunction. It follows from this expressionthat the function t/i(—IIA I2nrT)
has a pole at T = hA I2ir. Hence,at a certain value of T > hA I2n, the parametero’ enteringthe
particle distribution N(x) goes to infinity. The physical reasonof the differencebetweenthe validity
regionsof eqs. (3.34) and(3.46) is quite clear: while all particlespenetratingthe barrierup to x = 0 do
contribute to the particle density, only those particles which have penetratedthe whole barrier
contributeto the escaperate. An intuitive guessthat the latter quantity shouldbehavein a lesssingular
manneris quantitativelysupportedby the aboveconsiderations.

4. The Brownian particle in a tilted periodical potential; fluctuation-induced phenomena in Josephson
junctions

4.1. Basicequationsfor a resistivelyshuntedjunction

Initially, the treatmentof decay of a metastablestate of a Brownian particle was formulated by
Kramers[5] for the problemof dissociationof a molecule.As such Kramersdid useseveralsimplifying
assumptions.The point is that the Fokker—Planckequationor its equivalentLangevinequationdriven
by Gaussianwhite noise,is valid only for the descriptionof a slowly vibrating moleculewhich interacts
with a gasof light particles.This conditionis difficult to satisfy in real situations.Anothersimplification
of the model presentedin section2 is the assumptionof a one-dimensionalpotential. Molecules,in
addition to vibrational degreesof freedom, possessalso rotational ones, and this circumstance
complicatessubstantially the processof dissociation. Consequently,the Kramers model can only
qualitatively describechemicalreactions.

However, there exist physicalobjects of quite a different nature which under certain conditions
manifestaccuratelythe featuresprescribedby the Kramersmodel. As was indicatedby Josephson[11],
the physical stateof a contactof two superconductorsseparatedby a thin layer of a normal metal is
specified by a parameterq’ that gives the difference of the order-parameterphasesof the two
superconductorsin contact. The supercurrentthroughthe junction is given by the relation

1=I
1cosp, (4.1)

whereI~is the critical currentof the junction. The voltageV acrossthe junction is connectedwith the
time derivative of ~‘ by the Josephsonrelation,

V= (hI2e) dço/dt. (4.2)

These relations show that at 1<1~the junction will remain in the superconductingstate, when
= const. and V= 0. At larger currents, I> I~,the superconductingstate is no longer stable. To

describethe junction statein this regime,oneneedsto take into account,apartfrom the critical current
1~someother parametersof the junction.
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In a relatively simple mannerthis can be achievedwith the modelof a resistivelyshuntedJosephson
junction [12] which assumes that the nonlinearelement,describedby eqs.(4.1) and(4.2), is shunted by
a resistance R and a capacitanceC. The total currentthrough the junction is then given by the sum of
the supercurrent (4.1) and the normal current VIR + C dVldt. At finite temperature T the resistorR
generates a fluctuatingcurrentI,(t). Taking accountall thesefactors,the parameter~(t) is governed by
the equation

C ~ + ~ -~ + -~- [I~sin ~ + I + IT(t)1 = 0, (4.3)

where I is the externalcurrent controlledby the experimenter,IT(t) is a Gaussianfluctuating current
satisfying

(JT(t)I/ (t’) = (2 TlR)~(t-- t’). (4.4)

and the angularbracketsdenotethe thermalaverage.From eq. (4.3) it follows that in the absenceof
dissipation, i.e. R—~, the frequencyof smalloscillationswith I = 0 is given by 12 = (2eI~IhC)1‘. This
quantity is known as the Josephsonplasma frequency. If the current I is assumedto he given, the
problem of the junction static current—voltage characteristicsreduces to solving eq. (4.3) and
subsequentlyaveragingthe Josephsonrelation (4.2). i.e..

V(I) = (hI2e)KdtpIdt~. (4.5)

The Langevin equation (4.3) with the Gaussiannoise (4.4) is equivalentto the Fokker—Planck

equationfor the distribution function F(~, ~).
hF 4e aU(~)hF 1 h /4e . hF (4.6)
d~ C d~ d~ RC d~ C d~

where U(~p)is the potential energyof a particle in the tilted washboardpotential,

U(~)= (hi/~I2e)(cos~ — 1 — IspII~) . (4.7)

This potential is depictedin fig. 7.
The time derivative in eq. (4.6) hasbeenomitted, for only the steadystate is of interestfor the

following. The function F(~, ~) must be periodic in q. and normalized, i.e..

F(~+ 2n,~)= F(~,~). J d~ ~ ~)d~= 1. (4.8)

The averagejunction voltage is given by the integral

V(I) = J ~d~f F(~, ~)d~= ~ f ~ ~) d~, (4.9)

where account is taken of the fact that under stationary conditions the flux is independentof the phase.
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~f~(v)
\~—- ~R(v)

~u~÷u/2\~j~/

Fig. 7. Effective potential for the Brownina particle. fR and f, arethe energydensitiesfor the right- and left-going particles. U, = 1(1,/c and
U= rrh!/e.

it is obvious that for 1< 1~the tilted periodic potential has a seriesof minima. Similarly to section2,
one can considerfluctuation-inducedescapesof a Brownian particle placed initially into one of the
minima. However, the periodic potential is qualitatively different from a single-well or a double-well
potential and providesa richer picture of fluctuation-inducedphenomena.To makeour presentation
more transparent,we consider in the next section the voltage—currentcharacteristicsin an under-
dampedJosephsonjunction in the absenceof noise.Thena seriesof fluctuation-inducedeffectswill be
considered.The resultsgiven beloware nearlyexhaustivein what concernsthe classicalregime. In the
quantumregime we haverestrictedourselvesto the calculationof the retrappingcurrent distribution.

4.2. Dissipativephasedynamicsin Josephsonjunctions

At sufficiently low temperaturesfluctuation-inducedeffects are smalland the noisecurrent l.1(t) in
eq. (4.3) can be neglected.On the otherhand,in assumptionof high-Q junction,i.e. RCII ~‘ 1, effects
of dissipationand externalcurrentI can be treatedin a perturbativemanrAer. Therefore,our starting
point is the unperturbedclassicaltrajectory. With zero friction (R—* cx~)and without noise [l~(t) 0]
and zero tilt (I = 0) one finds d

2~/dt2= ~ sin ~s, The first integral of this equationis

= (~1Je)[U/4Q2)(d~/dt)2+ ~(cos~ — 1)] , (4.10)

wheres specifiesthe energyof aparticlemoving in a washboardpotential.For £ <0 the particleorbits
in a finite region andthe junction is in a zero-voltagestate.For e > 0 theparticleflies overthe potential
barriersand the junction is in the runningstate.At finite R the energys of the Josephsonjunction is
dissipateddue to the Ohmic losses,

ds/dt = —V2IR= —(h2I4e2R)(d~Idt)2. (4.11)

The unperturbedsolutionfor cp(t) given by eq. (4.10)hasthe propertycp(t + 2n/w) = 2n + ~(t). The
frequencyw dependson s andis given by the equationw = n~Qs(es/hI~), where

s(y) ~2( J ~ ~2)’ y = ~. (4.12)



42 V.!. Melnikor. l’he Krarner.s’ prohlerrr: hits’ tears’ of deve!opore,ti

For its asymptotic behaviourwe find

s(y) 2~2/ln(4lv), y < 1. (4.13)

+ I/4y+7/64y2), y~I. (4.14)

When shifted by 2ii~ in the tilted potential (4.7) (1 � 0), the particle gains the energy ~hIIe. At the
sametime the loss of energycausedby the Ohmic dissipationcan he obtainedby integration of eq.
(4.11) over the time interval 2irlw. With the use of eq. (4.10) we obtain the following expressionfor
the loss of energy

~ I (th)th 6r(t), v~eslh1~. (4.15)

where 6 is the loss of energyper period for a particle moving preciselyat the level of the potential
maximum(s= 0),

6— ~ (‘2h~2(..fll;2 ~hJ,, 211212 4hJ~

R\e) \C! — C — e2R eRCIl’

and the function r(y) is determinedby the equation

2

r(~) (v + sin2~2 d~. (4.16)

Asymptotically,we have

r(y)~l+ ~vln(4Iy). y<l. (4.17)

r(~’) ~vl 2(1 + I/4v —3/64v2), ~ 1. (4.18)

The energys(I) of a particlein a runningstate is determinedby the balancebetweenthe energyloss
6(s) due to friction and the energy gain irh lie due to the bias. This resultsin

r[es(I)IhI~] I/Ill , 10 = e6lrrti = 4I~IirRCu). (4.19)

From the inequality r( y)> 1 it follows that the runningstatesonly exist under the condition / > ‘1)~The
averagedpotential V(I) can be determined from eqs. (4.2) and (4.5) with the use of eq. (4.10), i.e.,

V(I)=-~=~=--~-s(~’fl (42()

2e\dt/ 2e 2~e’\ hI ~‘

From eqs. (4.20) and (4.19) we obtain the current—voltagecharacteristics,

V(I) = 0, 1< ‘II’ V(J)= R/
11v(1111), I> 1)5~ (4.21)
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wherethe function v(~j) is determinedvia the implicit relations

v(q)=s(y)14, i~=r(y). (4.22)

For currentsI close to I~one obtainsfrom eq. (4.13) and eq. (4.17) [38] (seealso ref. [62])

1(V) II) + 111(7T
2R1

012V)exp(— rr
2RI

0I2V) , V ~ RI11

To calculateV(I) at largecurrents,I ~‘ 1~,,we substituteinto eq. (4.22) the asymptoticresult for s(y)

and r(y) given by (4.14) and (4.18). This gives
V(I) RI[l — ~ rr (1~II)] i ~ . (4.23)

A plot of the current—voltagecharacteristicsV(I) is shownin fig. 8.
Fromthis, as well asfrom eq. (4.21) andthe asymptotics(4.23), it follows that thevoltage V(I) is a

nonanalyticfunction which vanishesfor 1< I~,grows nearlyjump-like whenI exceedsI)) (dashedline in
fig. 8) and approachesthe Ohmic law quite rapidly for 1> 1~.We shall distinguishhereafterbetween
valuesof the currentI below-threshold,1< 1~,and above-threshold,1> 1~.It is clear that for 1< ‘1) a
zero-voltagestate is the only option for the junction. For I> I~ the junction becomesbistable and
thermal fluctuationscan switch it betweenthe zero-voltagestatesand the runningstate.The notation
V(I) will be retainedfor the voltagegiven by eq. (4.21), the averagevoltagecalculatedtaking account
of thermal fluctuationswill be denotedas V(I). Below we shall showthat for 1< ‘II the voltage V(I) is
nonvanishing,thoughexponentiallysmall. The strongnonanalyticityof V(I) is smoothedout in sucha
way that the derivative of V(I) in I performsa finite jump of an exponentiallysmall magnitude.For

I> 1) the junction would_spendlong periodsof time eitherin a zero-voltageor the runningstates.At I
close to 1)) the voltage V(I) is exponentiallysmall, since the junction spendsmost of the time in a
zero-voltagestate.With increasingI the time spentin the runningstatewill grow, andfor sufficiently
large currents the effects of fluctuations can be neglected,since the random switchings into a
zero-voltagestate becomeextremelyrare. It will be shown that V(I) nearly coincideswith V(I) for
currentsI> I,, where I~ 2.63I~is a new thresholdvalue of the current I.

v/v0

:~

Fig. 8. Current—voltagecharacteristicsfor therunningstate.
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4.3. Fluctuation-inducedcurrent—voltagecharacteristics; an exponentialapproximation

Thermal fluctuationsaffect the current—voltagecharacteristicsof a Josephsonjunction in two ways.
For 1< I), a finite but exponentiallysmall voltage V(I) has its origin in randomjumpsof the phase~
betweenminima of the potentialenergyU(~).The calculationof V(I) undertheseconditionsis given in
the nextsection.For I> ‘II the thermalfluctuationsinduce transitionsbetweenthe junction stateswith
V= 0 and V= V(I) (see dashedline in fig. 8). The physical picture is in this casethe following: let
initially V= 0, which correspondsto finding the particleat the bottom of a potential well. After a time

-— 12 ‘ exp(U111T) the particleis expectedto be ejectedfrom the minimumandbe set in motion at an
averageenergys(I) determinedby eq. (4.19). We note that the activation time r.,, can be regardedas
weakly dependenton the bias current I. In contrast,the time TI of the trapping of a particlefrom the
running state dependsstrongly on the energys(I). hencealso on the current /, so that

12~exp[a(I/111)U11/T]. (4.24)

where a(i~) is a function to be definedbelow. Thus, the device that averagesV(t) over thetime intervals
> t> u2’, will readeither V= 0 or V= V(1). The timesof transitionfrom V= 0 to V= V(I) form

a Poisson random processwith parameterr,, while the reverse transition time is on average T.

Averagingover a time I ~ r,, r, we get

V(I)~V(I)ri(r, + r).

Clearly, for r., <TI the fluctuationschangethe junction voltage only slightly. On the contrary, for
> we get in an exponential approximation

In V(l) (U1IT)[a(I1I) — lJ.

It thus follows that, with thermalfluctuations takeninto account,a new characteristicvalue I~of the
current I appears.definedby the conditiona(11I11)= I. For 1</i the voltage V(l) dependsexponen-
tially on I. whereasfor I> I~.when r, > r, the fluctuationshave little effect and V(I)= VU). To find
the function a(ij) and to determinethe current I~we must solve the kinetic problem.

In the presenceof thermalnoise. the distributionf(s) of the particles in energy is concentratedin
two regions: around the energys(I) and near the bottom of the well. We determinef(s) from the
following considerations.When a particle is displacedby 2~’in the potential (4.7) it losesan amountof
energy6(s) [seeeq. (4.15)1 dueto friction andgains an amountof energyU~irhie dueto the tilt of
the potential. In addition, thermal fluctuations broaden the distribution function by an amount
[6(e)TI’

2. In close similarity to eq. (2.36). the periodicity condition for the stationary function f(s)
takesthe form of the integral equation

f(s) = ~ j f(s’) exp{ — [s--c’ — U + 6(s)12I46(s)T}ds’. (4.25)
[47r8(s)TJ

The variation scaleof the function 6(s) is s =- U~~ — s’~-~ [6(s)T)]12. This enablesoneto searchfor



V.!. Mel’nikov. The Kramers problem:fifty yearsof development 45

a solutionof eq. (4.25) in the form

f(s)=exp(_J~~ds),

with A(s) varying on the scale s -— U~.Substitutingthis expressioninto eq. (4.25) and calculatingthe
integral under the assumptionof a slow variation of A(s), we obtaina quadraticequationfor A,

A[A + UI6(s) —1] = 0. (4.26)

The root A = (1 correspondsto f(s) = const.This solutiondoesnot satisfythe boundaryconditionf—~0
as ~ Thus we must discardit.

The secondroot A = 1 — UI6(s) gives the physical solution,

f(s) C, exp[_ ~ (i- ~)) ~]. (4.27)

This expressionwas first obtainedby Iche and Noziéres [14] and by Risken and Vollmer [17]. The
maximumoff(s) is reachedat an energys(I) determinedby the relation (4.19). The constantC, is
determinedfrom the conditionf(0) — exp(—U~IT). For theparticledensityat the energys(I) we obtain
the following relation:

s41)

In f[s(l)] — —~ + J (~f~ ~) ~ . (4.28)

It follows from eq. (4.9) that the averagevoltage is proportionalto the flux of particles,which in an
exponentialapproximationcoincideswith f[s(I)], the maximaldensityof the flux. Taking eqs. (4.19)
and (4.28) into account,we obtainfor the averagejunction voltagein the fluctuation-governedregime
the implicit relations

~lnV(I)=a(III,1)—1, a(~)f(~~_1)dx, r(y)=ij. (4.29)

The same function a(ij) determinesthe life time r1(I) of the running state [seeeq. (4.24)].
The current I~and the voltage V, correspondingto the departureof V(I) from the fluctuation-

governedregimeare determinedfrom relations(4.22) and(4.21) by substitutingthe valueof ij = Il/Il

which yields a vanishingvaluefor eq. (4.29), i.e., I, = 2.631(1, V1 = RI, = 1.6811Ic. It follows from these
resultsthat V(1) is exponentiallysmall comparedto V(I) so long as I < I~. When appliedto fig. 8, this
means that V(1) is essentially zero so long as I < I,, and increasesin a step-like mannerup to
V, = V(I,), after which point it follows the plot shown in fig. 8. The dependenceIn V(I) in the region
Jo <I < I, is depictedin fig. 9.



40 1/.!. Mel,tikov. lire Krasners problem: fifty years of der’eloptnent

nV /

1.0 1.5 2.0 2.5 l~!~

t-tg. 9. Fluctuation-inducedcurrenl—voltagccharacter/sticsin an exponentialapproximation.

4.4. Retrappingcurrent distribution

The temperatureT is takento be small comparedto the heightof the potentialbarriersh1~Ie.Then
we can make use of the large magnitude of the parameterh/JeT to find the distribution of the
retrappingcurrent for the case that the current I is decreasingwith time linearly and very slowly,
dlldt = —s. s< u21,. The normalizedprobability P(I) of the retrappingat a current of magnitudeI is
given by the relation [20]

P(I)=__~J)exp(_-~J—~4’)).

For the sake of conveniencethis can be written in the form

PU) = exp[-D(I, s)]. D(/. s) I cr(I’) + ln[sT(I)I.

andr(/) is the lifetime of the runningstate r(I) introducedin the previoussection.For the current‘m
correspondingto the maximumof the probability P(I) we get thenthe equation(theprimedenotesthe
partial derivative in I,,,)

D’(I~,, s) = —1 Isr(l,,) + r’(I,,1)Ir(I,,,) = 0 , (4.30)

wherefrom we get

= us . (4.31)

This relationenablesoneto find I,,, at a given s if r(I) is known. In a moregeneralcaseof arbitrary
dependence1(t) the moment of time t correspondingto the currentI,,, can he found from the equation
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dr[J(t)]Idt = 1. The completesolution for r(I), including the preexponentialfactor, is given below [see

eq. (4.70)]. For our presentpurposeswe needonly know r in an exponentialapproximation,

ln[1’2r(J)] (hI~IeT)a(JII11) . (4.32)

ExpandingD(Jm, s) near~= 1m up to the quadraticterm we get

D(1, s) D(Jm, s) + ~D”(Im, s)(I —

For 111,/cT ~‘ 1 the main contributionto D” comesfrom differentiatingof the first term in eq. (4.30),
which gives

D” I - T’(Jm) - (T5(Im)~2- (hn2r ,(1m~12(m’s) — (I) — ~T(I~) I — \eTJ
0! [a ~

Going over to the variable ij I/Jo, one finally gets [39]

_________ [ (~J~
2(~~)21P(?))= l12 exp[—1

5,,——) 2 ,j (4.34)
(2ir) eT.~(~q~) eT 2~(nm)

= (J ~), (4.35)

andthe upperlimit of integrationis definedby the equationr(x) = ~1m’The dependence1(?Jm) is shown
in fig. 17. In the limit of large currents, ij~ ~‘ 1, the asymptotics(4.18) gives

~(~1m) 218 (4.36)

and a typical width of the retrapping current distribution is 1 — eTI11RCII1. The parameter

~7m’11 gives the most probablevalue of the switching current I. It is relatedto the rate s of the
currentchange,s = —dlidt, through eq. (4.31).Equations(4.31)and(4.36) imply that with theslowing
down of the switching-offprocess,s—* 0, thepeakin the distributionof the retrappingcurrentsbecomes
more pronounced.

It is worth pointingout that in eq. (4.34) the half-width .~ is introducedin a different way to our
original paper[39].To concludethis section,we notethat evenin the simplestcaseof the classicallimit
the result for ~(~1m) can only be written down as a set of implicit equations.In the quantumregime,
where a new parameterhl2I2irT appears,the situationbecomesevenmore complicated.

4.5. Fluctuation-induced current—voltage characteristics below threshold

Thermalnoisecan activatea Brownianparticleto an energysufficient for escapingover the potential
barrier. This meansthat evenfor 1<1~,when,neglectingthermalnoise,a Josephsonjunction remains
forever in a zero-voltagestate,fluctuation-inducedjumpsof the phase~ betweenneighboringminima
will producea finite voltage V(I). To calculateit, we have to find the averageflux of the Brownian
particlesat a given value of the tilt.
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A particle initially placed at a minimum of the tilted periodic potential can escapefrom it either
through the right or through the left barrier. Accordingly, in close similarity to the problem of a
double-well potential,we introducethe functionsJ~Js)andj(s). which give the numberof particles
that move over the barrier with velocities directedto the right and to the left, respectively.In the
stationarycasethesefunctionsare identical for all barriersif the energy s is measuredwith respect to
the barrier tops (seefig. 7). The functionfR(s)at harrier2 is formedboth of particlesthat havealready
passedover barrier 1 andof particlesreflectedfrom the samebarrier. Theseparticlesare describedby
the functionsfR(~’)0(~’)andf,(s’)O(—c’), andthe shift of the pointsof referenceof s’ and s is equal
to U. The periodicity conditionsfor fR(s) andf~(s) take the form of integral equations

fR(s)= f g(s - s’ - U)[fR(c’)O(s’) +t(~’)O(-c’)Ids’.

J~(s)= f g(c - c’ + U)[f~(s’)O(-s’) +f~(s’)O(s’)] dc, (4.37)

where the shift of the argumentof the function g by ±U is due to the different points of energy
referenceat the different barriers. The normalization condition (4.8) correspondsto the presenceof
one particle at each potential minimum. At — c> T, the function f~(s)should he the Boltzmann
distribution, so that we get the boundarycondition

IR.L(~) (fui2~T)exp[—( 11 T)(U, + c ~ U)]. - > T. (4.38)

Solving the system(4.37) with the boundarycondition(4.38) allows us to expressthe voltageacrossthe
junction in the form

V(I) = ~ j [J~(s) JJs)]dc. (4.39)

The integral-equationsystem(4.37) is solved by the Wiener—Hopfmethod.The unilateralFourier
transformation

fR,.(s)O(~)exp(iAsiT)ds (4.40)

transformsit into

~(A) + ~A) = g5(A)[~(A) + ~
1(A)J, ~1’(A) + ~L(A) = g’(A)[~1’(A) +

(4.41)

g’(A)~exp{[6A
2 +iA(6 ±UIIT}.

The junction voltage is connectedwith ~R,(~) by the relation V= (~hIe)[p~(0)— ~, (0)1. which is
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obtainedfrom eq. (4.39)wheneq. (4.40) is takeninto account.Thus,for our purposes,it is sufficientto
find the differenceq~(A)— ~L(A) tp(A).

Solving eqs. (4.41) for tp~(A)and çt~(A)andtaking the differenceq’ — ~, weobtain an equation
for ~(A),

(4.42)

G(A)~ 1—g’(A)g(A) . (4.43)
[1—g (A)][1 — g (A)]

Condition (4.38) meansthat q2(A) has a pole of the form

ill sinh(U/2T)exp(—U/T)

~ (A)=——— A+i C , A+i~<1. (4.44)
To solve eq. (4.42), the kernel G(A) is expressedas

G(A)~G~(A)G(A), (4.45)

where G*(A) andG(A), determinedearlier by relation (2.51), are analytic in the upper and lower
halvesof the A-plane, respectively,andtheir analyticity regionsoverlapin a certainband. The singular
points of G(A) that are closestto the real A axis are located at A = 0 and A = —i(1 — U16). This
determinesthe commonregion of analyticityof G e(A) andG (A). Note that factorizationin (4.45)can
be achievedin various wayswhich differ by the contourof integrationin eq. (2.51). The factorization
usedherecorrespondsto an integrationalongthe real axis of A’.

The solution of eq. (4.42) follows from the factorization condition written together with the
boundarycondition (4.44),

_____ - - iw sinh(U/2T)G(—i)exp(—LJ~/T)

G~(A) —G (A)qs (A)— A+i . (4.46)

The voltage V(I) is equalto (irhIe)~(0),so that

V(I) = (hQIe)G~(0)G(—i) sinh(U/2T)exp(—U~IT). (4.47)

Using the multiplicative structureof G( A) [seeeq. (4.43)] wecan write the expressionsfor G~(A) as
follows:

G~(A) = ~(a -2iA,a)~-2iA, ~ Im A> - (4.48)

- cP(26 1—2iA 1)
G (A) I~(a—2iA, c~I(~—2iA, ~ Im A< —~ (4.49)

a~1+U18=1+11111, f3~1—U161—I1111.
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The function CI~is defined by the relation

In ~ v) = f ~ ln{l — exp[—(6I4T)(~ tan2x+ v2)j}. (4.50)

and P(26, ~s,‘-‘) is given by the sameexpression,but with 6 replacedby 26. It shouldbe pointed out
that in the following the argumentsp. and ti of the functionscP(p, e) arepositive, so that we neednot
considerthe analyticalpropertiesof cI(p., v). Substitution of eqs. (4.48) and (4.49) into eq. (4.47)
yields

- 1112 sinh(UI2T) A(26iT)exp(—U~iT) U / T \t.2 -
V(I) = ~ . 1 - ~ (4.~1)

whereA(~) is the factorprecedingthe exponentialin the problem of the decayof ametastablestateof
a Brownian particle in a single potentialwell [seesection 2, eq. (2.55)],

lnA(6IT)=~ I ln[l—exp(—6I4Tcosx)]dx~2ln~(l,l).

The condition indicatedin eq. (4.51) will be explainedbelow. For U <6, which is equivalentto
1< 1,~, the junction has Ohmic conductance,

- 121 exp(—1~ieT) 2A2(6IT)
VU) e2T ~(6IT) , u(61T)= ~A(26IT)

In the limiting caseswe have the expressions

u(6IT)6IrrT. 6<T, u(61T)21rr. 6~’T.

At low dissipationwe find

~(p., e)(6I4T)’2(p. + v), 6< T.

so that we get from eq. (4.51)

- ~r JR exp(—hI leT)
V(J)=— , 6<1~.2 1 — (III~)’

Here, the dependenceon the junction parametersis explicitly indicated. We note that in the
low-dissipationmodel the Ohmicconductanceof the junction does not dependon its capacitance.

In the opposite limiting casewe have (1 > 0)

I) 1112 sinh(irhli2eT) exp(—h1~IeT). 6 ~ T.

e A’j6(l — JIJ,)IT]
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This implies that the current—voltagecharacteristicsof the junction dependon 6 only nearthreshold,
where Jo — ~ 1~(TI6)’2.As I—~I~,and under assumptionthat 6 does not dependon energy, the
dependenceV(1) hasa singularity of the form (1 — 1/I~)’1Figure 10 showsplots of V(1) versusthe
reducedcurrent 111(1 for various valuesof 6IT.

We now considerhow the current—voltagecharacteristicscan be extendedto the thresholdcurrent.
The appearanceof a singularity of the (1 — ~ ‘ /3 ‘type in V(I) is due to the integrationof the
function fR(s) which, neglectingthe s-dependenceof 6, is proportionalto exp(—s/31T).In eq. (4.51)
this singularity follows from the asymptoticrelation

~(/3,/3) p(61T)t’2 = (1 — 111
11)(61T)u

2. (4.52)

To removethis singularity, one hasto allow for s-dependenceof 6. Making use of eq. (4.27), we
introduce an auxiliary function

Vexp(U) ~ exp[_ ~- I (i - ~7)) ~1],

which determinesthe contributionof fR(s) to the junction voltage at values of U close to 6.
This expressionis valid up to the thresholdU = 6, where

V~~~(6)4ir’ ‘2[U~I T In(U~/T)] 1/2 exp(— UJ T)

which is independentof 6. For 1 ~ (1 — U13) ~‘ (TIU~)~2we have

V~~~(U)=(1— U16)1 exp(—U~lT)

Comparisonwith eqs. (4.51) and (4.52) shows that, in order to continueeq. (4.51) to the near-
thresholdregion, we must replacecI~1(/3/3)exp(—U~/T)by (TI6)112V~~~(U),and substituteU= 6,

eV ex
Ii�2 T)

Fig. 10. Fluctuation-inducedV(1) below threshold.
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a = 2 and /3 = 0 in the remainingfunctions. The result is

-— e (T~’2 sinh(612T)A(26lT)VC~
1)(U) 4

V- ~(2, 2)~(2,0)~(0,2) (.53)

This expressiontogetherwith eq. (4.51) determinesV(I) in the whole region below threshold.

4.6. Fluctuation-inducedcurrent—voltagecharacteristicsabovethreshold

In this subsection,we examinehow the solutionof eq. (4.42)hasto be modified in the region U > 6.
Neglectingthe dependenceof 6 on s, the equation

f~(s)=f g(e-c’—U)f~(s’)ds’,

for sufficiently large s s~11, 6 and T, has the two solutionsfR cc const. andfR cc exp[— s(1 — U16) IT],
which correspondto the zerosof 1 — g( A) atA = 0 andA = A11 i(U16 — ~). It was shownabovethat an
exponentialsolution for fR(s) taking the energydependenceof 6(s) into account,introducesa factor
V~~~(U)in the expressionfor the voltage. At the sametime, the solution f= const. correspondsto a
nonnormalizabledistributionandmustbe discarded.When appliedto the function ~(A) this meansthat

(A) should havea pole at A, and be finite at A = 0. The factorization(4.46) doesnot satisfy either
condition.

The point is that the inequalities/3 <0 and a > 2 hold for U > 6, so that expressions(4.48) and
(4.49) are insufficient to determineG ‘(0) andG (0). To continueG~(A)to the significant regionsof
A, it is necessaryto return to the original definition (2.51). This resultsin

CP(26,l—2iA 1)1(/3—2iA /3)
G~(A)= cP(a — 2iA, a)[1 — g(A)] — ~/3> Im A> — (4.54)

- i.)(26, 1 — 2iA, l)’b(a — 2iA, a) -

G (A) . —~>ImA>—~a. (4.5~)
‘J~(/3—2iA, /3)[l —g(A)J - -

Assumingthat ~(A)cc G’(A)l(A+i), as follows from eq. (4.45). the function ~‘(A) will be finite at
A = A11. On the otherhand,in the vicinity of A = 0 the factorG (A) is given by eq. (4.54)andhasa pole
singularity. Therefore, it is necessaryto choosea different factorizationof eq. (4.42) instead of eq.
(4.46), such that ~ (A) obtains a pole at A = A1, and the pole of G(A) is eliminated. These
requirementsare satisfied if we write, using the boundarycondition (4.44),

_____ — - - — iU Ilsinh(UI2T)AG (—i)exp(—U~IT)

G~(A)— —~ (A)G (A)— ~ ~(A+ i)(A— A,)

Thus,we have found the solution of eq. (4.42) for the region U > 6. It is clear from the preceding
argumentsthat, to calculate the voltage, we have to matchthis solution with the function fR(s) for
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s ~c’U, 6, T. To this end it sufficesto write

C1 [ U. 1/ U ~ds’1
fR(s)=--exP[-~’+j

1\6(5’)1Ti’ (4.56)

and to note that if the s-dependenceof 6 is neglectedwe obtain a pole of the form

~(A)=iC
1exp(—U~lT)l(A—A11), A—A11~<1.

The coefficient C~is determined_bythe residueof ~ ~(A) at the point A11, after whichintegrationof eq.
(4.56) over £ yields the voltage V= rrhC~V~~~(U)le.Since13<0,we haveIm A,1 = —/3> —/3/2,and the
residuemust be determinedby using eq. (4.48) for G~(A)and eq. (4.55) for G(A). The result is

V (hulle)B(6, U)V~~~(U), (4.57)

1 /3~(26,1, 1)1(26,2a—3, 1)cP(/3,a)

B(6, U) exp(U/2T) ~~~(3a—4, a)~P(a,/3)cP(13 13) ‘ (4.58)

In the limiting caseswe havenearthreshold

/3~exp(U/2T)
B~, 6<T, B~u2A”

2(6/32/T) 6>T.

Expression(4.57) is matchedto eq. (4.53) at U = 6. The relation(4.57)was obtained,with exponential
accuracy,by Vollmer andRisken [18], but with an incorrect prefactor. -

The transition, nearI = 1,, of the expressionfor the current—voltagecharacteristicsfrom V(I) to
V(1) can be easily understoodif one takes accountof the contribution to the normalization of the
function f(s) from the positive-energyparticles.

4.7. Cusp in the current—voltagecharacteristicsat threshold

The fact that the expressionsfor V(J) are different at I < ‘(I and at 1> 1,~ suggeststhat the
current—voltagecharacteristicsof a Josephsonjunction hasa singularity at I = ‘(I’ In order to calculate
the magnitudeof this singularity given by a jump of the logarithmic derivative, we note that, also at
1< I~(U <6), the principal partof V(J), nearthreshold,is given by an expressionsuchas (4.57),while
the functionB(6, U) is given by the residueof ~ ( A) at A = —i/3. Since below thresholdwe have/3 > 0,
the residuehasto be determinedusingexpression(4.54) for G~(A)and expression(4.49) for G(A).
We then obtain

B(6, U) = (TIU) sinh(U/2T) ~(26, 1, ~ ~ , U <6. (4.59)

Since V~~~(U)hasno singularityat U= 6, wedifferentiateeqs. (4.58) and(4.59) to find the jump in its
derivative. It is important here that /3 reversessign at U = 8. The calculations show that only the
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Frg. II . D/scontirsitit~of the logarithmic derivativeof V( 1) at thrcshold !

function ~(3a — 4, a) contributesto this jump, so that

(dIn VIdIn I), —(din VIdln/) =—D(6IT), (4.60)

________ 3tan2x+I

H 2 - ~r exp(i/cos2x)— I

In the limiting caseswe have

D(~)=l+i~(~)(ihr)’2, i<l, D(i)(~rI~)’2exp(—~).

A plot of D(~)is shownin fig. li. It follows from theseresultsthat the logarithmic derivativeof V(I).

of which the order of magnitudeis (U~/T)’ >1. has a negative jump of order unity at 1=1,~.

4.8. Lifetime of the runningstate

The aim of this sectionis to derive the completeexpressionfor the lifetime T(l) of the runningstate,
which had beencalculatedabovein an exponentialapproximation[seeeq. (4.32)]. We assumethat all
potentialwells are empty, so that the distributionfunction decaysslowly dueto the fluctuation-induced
retrapping of particlesrunning high abovethe potentialbarriers,F(~,~,t) = F(~,~) exp(—tIT). It is
convenient to change from the variables ~, ~ to ~ and s, according to eq. (4.10). The stationary
distribution function is governedby the equation

F(~,~) ~F 1 ~ . \ hi aF
+ . =—--—--~,E)lT--—+Fp+—-—-. (4.61)

~ s) ~ s)a~ RCQa~ \ 8s / 2e as

Neglectingits first term, this equationcan be transformedeither into the integral equation(4.25) for
energiess ~c’T or into the system of integral equations(4.37) at s~— T, wherereflectionsfrom the
potentialbarriersbecomeimportant.Solutionsof theseequationshavealreadybeendescribedin detail
and will he used later.
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Now we considerthe vicinity of the energy~5E s(1),which gives the majorcontributionto the flux of
particles. Equation(4.26) demonstratesthat, in this region of energys, the function F varies slowly,
since both roots A,2 of the equationarecloseto zero.This fact helpsus to derivea simplified equation
for F. We begin by integratingeq. (4.61)over ~ in the interval (0, n’). Integratingthe term aFla~gives
a vanishingcontributiondue to periodicity of the functionF(~,s). In the othertermsone can neglect
the ç’-dependenceof F. The result is

f(s)/p.=(dlds){6(s)Tdf(s)lds+[6(s)— U]f(s)} , (4.62)

where f(s) is a function of the single argument s, introduced instead of F(~, s). Furthermore,
p. ~(QT/2ir

2)s(ei~7h1~)is a small parameterof the problemands(y) is definedby eq. (4.12).
Neglecting the term f/p., we obtain

f(s)=exp[_J~ (1_~))]+ 6(s)-U’ (4.63)

whereC
1 is a constant.

It should be emphasizedthat the first term in this expressioncoincideswith the solution of the
integral equation(4.25), while the secondterm replacesthe solutionf(s) = constant.An estimateof
correctionsto this solutionshowsthat it is valid in a broad region of s with the exceptionof a narrow
vicinity of s = ~, wherethis term is singular. The applicability of the first term of eq. (4.63) is justified
by the solution of the integralequation(4.25). The valueof C, can be found by solving eq. (4.63) with
the boundaryconditionf(s)—~0,s—~.In a small neighborhoodof the energy~ s(J) which satisfies
eq. (4.19) we can use the expansion
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6(s) — U ~i(s— E), ~i 6 ~ = RCI2;(s~e/hJ~)

where the function s(y) is defined by eq. (4.12), and we replace 6(s) by 6(e) = U. Substituting
~i exp[—~i(s— ~)

2/4UT] and switchingto the variablex (s — ~)~i/UT)”2 leadsto the equation

~“+(~ +p./~— ~x2)=0.

This is the Schrödingerequationfor an oscillator whose energyexceedsthe ground-stateenergyby
p. /~i < 1. The functionf(s) is normalizableif ~i(x)decaysasx —~ cc• A nonzerovalue of p. I~then means
that 1/1(x) containsan exponentiallygrowing term at large negativex,

1/i=exp(—~x2)+[(2~)2p./~x]exp(~x2),x<0, Ix~’1

Comparisonof thisexpressionwith eq. (4.63) yields the constantC,. In the region g ~ s> Twe can
now set 6(s) 6(0) 6, but neednot yet allow for the changein f(s) dueto reflectionsof the particles
from the potentialbarriers. Here, we find

f(s)=exp(-/3sIT)+~ (2~T)h’2exp[_J~ (i_~)], (4.64)
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with /3 1 — U16. We will usethis expressionbelowas a boundaryconditionfor the function describing
the distribution of particlesat energiesc -~T nearthe top of the barrier. Here we have 13 <0, SO the
first term in eq. (4.64) increasesexponentiallywith the energy s. Expression(4.64) contains an
unknownparameterp., which can he calculatedby matchingthis solutionto the solutionof the integral
equations(4.37). Theseequationstake reflectionsof particlesfrom the potentialbarriersinto account
and are valid for c<ft/tie. As alreadyshown, theseequationsare equivalentto the Wiener—Hopf
equation

~(A)=-G(A)~ (A). (4.65)

-. g’(A)~exp~—~6A2+iA(6±U)J/T}. (4.66)
[l-g (A)J[l-g (A)!

Under whichconditionsshouldeq. (4.65) now he solved?The presenceof a certainnumberof particles
with the Boltzmann distribution, f(s)ccexp(—s/T),would correspondto a pole of ~p(A) at point
A = --I. In the absenceof such particles,~ (—I) is finite, and by virtue of the condition G(—i) = 0 the
condition

(4.67)

holds. In its turn, expression(4.64) showsthat ~ JA) haspolesat the points A = —i/3 andA =0. If we
define~ (A) in such a way that the residueat A = —1/3 correspondsto the amplitudeof the first term in
eq. (4.64).

~(A)=iTI(A+i/3), A+i~<I, (4.68)

then the residueof ~ ‘(A) at A = 0 gives the unknown parameterp.. With the boundaryconditions

(4.67) and (4.68). we obtain the following solution of eq. (4.65):
~‘(A)IG’(A)=G (A)~ (A)=iTI(A+i/3)G(-i/3). (4.69)

wherethe G ‘(A) aredefinedby eq. (2.50). Condition (4.67) thenindeedholdsby virtue of the equality
G ‘ (—i) = 0. and the validity of’ the condition (4.68) is obviousfrom eq. (4.69).

Formally, the problem has now been solved. Taking the inequality /3 <0 into account, we use
expression(4.54) for G (A).

— iP(26,l—2iA,l)P(/3—21A,/3)
~ (A)—’ ~(a- 2iA, a)[l g (A)]

Note that (] (A) has a pole at A = 0. To calculatethe function G - (—i/3), we use the expression

G - —. — ‘P(26, 1 -- 2/3. 1)
( )_

Substitutingit into eq. (4.69) and taking the limit A—~0.we find

iAop’(A) — T (P(26, 1—2/3, a)~(/3. /3)cP(a—2/3,a)
1326 cP(26, I. l)cP(a. a)
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The right-handsideof this expressionshouldcoincidewith the secondterm in eq. (4.64) if we replace/3
by /3. Making use of the relationship between p. andT, we write the final result for T as a function of
the reducedcurrent, ~ 1/1~,in the form of the parametricrelations

T(7)) = (21TIf2)(47rhI~/eT)’‘2b(’q) exp[(hI~/eT)a(-q)],

a(~)~J[r(x)lr(y)— lldy, r(x)=~, (4.70)

b — ~t/2(~ — 1)’1(26,2ij — 1, 1)cP(1 + ~, 1 + ~)
— su2~x~~,1, 1)~2(1— ~, 1— ~)~(3i~ — 1,1 + ~)

The functions r(y) and s(y) are defined by eqs. (4.16) and (4.12), the functions 1(p., r’) and
p.. i.’) are defined by eq. (4.50).

4.9. Lifetime of a zero-voltagestate

So long as the current I through the junction is less than the critical currentI~,the superconducting
state of the junction correspondsto a certain minimum of its potentialenergy. For the junction to
switch into the resistivestateor into oneof the neighboringpotentialwells it is necessaryto surmounta
potential barrier. Accordingly, the lifetime T of the superconductingstateand the probability w, of a
transitionwith a phaseflip by 2irn are determinedby activationprocesses.

Assumethat initially the junction statecorrespondsto aphasedistribution nearoneof the minima of
the potentialU(co). The activationprocessesflip the phaseover to the neighboringminima anddestroy
therebythe superconductivity.In this situationone of the potentialminima is singledout, so that the
translationalsymmetry used for the problemin the precedingsubsectionis violated. Insteadof the
equationsfor the functionsfRL(s) we must write thereforethe following infinite systemof equations:

fR~(~) = f g(s — s’ — U)[fRflI(s’)O(s’) +fLfl(s’)O(—s’)] ds’,

(4.71)

fL~(~)= I g(s — s’ + U)[fRfl(s’)O(—s’) ~fLfl+t(s’)O(~’)] ds’,

where n denotesthe site of a minimum. The solution of theseequationsmust satisfy the boundary
conditions

fR,L ~(~) (Ill2irT) exp[—(1/ T)(UC + s ~ ~U)] , fRL a(s) const. , — s ~‘ T,

assumingthat initially the particle was placedinto the minimum n = 0.
Carrying out the transformation(4.40),we obtainfrom eqs. (4.71) the system

~~(A) + ~~(A) = g(A)[~~
1(A)+ ~~(A)]

+ ~~(A) = g~(A)[~~+1(A)+ ~~(A)].
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Solving theseequationsfor op~,,and op, (it is just thesefunctionsthat containno shift with respectto

n), and taking into accountthe expressionfor the decayrate,

= I [fR,o(~)-~,(s) ~j,e(~) _J~,(s)] ds,

we considerthe differenceop, = op~,,— ~, ,,,. The new functionssatisfy the system of equations

(I — gg )op, = g op,J,, ~- (1 + g g )op, + g’op,J,. 1 Ir = op,~(0)— op~J0). (4.72)

The boundaryconditionsfor op,,(A) are

i12 exp[—(U.—U/2)IT]

op ,(A)=~ exp[—(Uv+UI2)ITI . ~ (4.73)

while the remaining p,, (A) haveno poles at A = i.
To solve the system(4.72), we introducethe functions

op~(k, A)=~~op/ exp[—ik(n + k)].

which satisfy the equation

op~(k, A) —H(k, A)cc(k, A), (4.74)

H(k,A)=~(l—hh)I(1—h~)(l—h).

hJk, A)g~(A)exp(±ikA)exp{(6IT)[A+iA(1 ±UI6)I±ikA}.

From the conditions (4.73) we obtain for op (k. A) the boundary condition

12 sin(~k+ iUI2T) exp(—U~IT)

op (k. A)— A+i , A+i~<1.

where r is connected with op(k, A) by the relation

~=i I ~sin(~k)op’(k,0).

Expressingthe kernel of eq. (4.74) as a productof H’(k, A) and H(k, A) [in full analogy with
expressions(4.42) and (4.45)], we obtain the solution for op4(k.A) in the form

12 sin( ~k + 1UI2T) H’ (k, A)H (k. —i) exp(—U~/T)
op (k,A) ~(A+i)
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It is convenientto write the decayrate in the Arrhenius form,

1/r(Q/2~r)a.~f(6,U)exp[—(1/T)(U~—~U)], (4.75)

wherethe exponentcontainsthe heightof the lowestbarrier U, — ~U. The preexponentialfactora~!is

then given by the expression

al(6, U) = w(k, 6, U), (4.76)

w(k, 6, U) = 4 sin(~,k)sin( ~k + iUI2T) H ~(k,0)H(k, —i) exp(— UI2T). (4.77)

Just like the current—voltage characteristics V(J), the function w is given by different expressionsfor
U <6 and for U > 6. To find the correspondingexpressionswe write down the factors H~(k,A) in
different regionsfor A

H ‘(k, A) = ~,(k, a - 2iA, a)~(-k,~- 2iA, p)~ Im A> -~/3’ (4.78)

1(26 1—2iA 1)cP(—k /3—2iA /3)

H~(k,A)= ~P,(k,a—2iA,a)[1—h(k, A)] 2/3>ImA> (4.79)

- 1(26 1—2iA 1)

H (k,A)= ~,(k,a—2iA,a)~,(—k,/3—2iA,/3) , ImA<—~a, (4.80)

~(26 l—2iA 1)~1~(ka—2iA a)

(4.81)

a=l+UI6—1+IIi~1, /3—1—U/6=l—J/111,

and the new function

p., ~) = exp(J ~ ln{1 — exp[—(6/4T)( p.
2 tan2x+ ~2) + ik]))

hasbeen introduced.In accordancewith eq. (4.77), we obtain [38]

4A(261T)sin(.~k)sin(.~k+ iUI2T) exp(—U/2T)
w(k,6, U) = ~(k a, a)~

1(—k, /3, /3)~1(k, /3, a)~,(—k, a, 13)~ U <6, (4.82)

/3 a)~b(—k /3 /3)
w(k, 6, U) = A(26/T) ~P(k a, a)cJi1(—k,a, /3) U >6, (4.83)

whereexpressions(4.78) and (4.80) have beenused for U <6 and (4.79) and (4.81) for U> 6.
The function w(k, 6, U) vanishesat k = 0 if U <6 anddiffers from zero if U > 6. The reasonis that

for U > 6 a particle that leavesa potentialwell will be trappedin oneof the wells aftersometime. For
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U<6, on the contrary. thereis a finite probability for the particle to go into a state of accelerated
motion, since we haveneglectedthe energydependenceof 6 in the schemedevelopedhere.

In certain casesit may he more convenientto use the expression

w(k, 6, U) = 4A(261T)sin(~~k)sin(~k+ iUI2T) exp[.~T(k,6, U) — UI2T], (4.84)

~ 1cos[n(k+iUI2T)]

x ~erfc(~aV~77’) exp(nUI2T)+ erfc( ~pV’~77) exp(—nU/2T)1, (4.85)

being valid for both U <6 and U > 6, where erfc(x) is the complementaryerror function,

erfc(x) = ~ I exp(—t2)dt.

The existenceof such an expressionshows that, in contrastto the function V(I), the activation
probabilitieshaveno singularitiesat threshold,U = 6. With the use of the function w(k, 6, U) and eq.
(4.76) one can calculatethe preexponentialfactor .~,which entersthe expressionfor the lifetime of a
zero-voltagestate (4.75). Moreover, the samefunction w(k, 6, U) determinesthe partial probabilities
of the phasejumps by an integernumberof 2~andthe relative probability for the Josephsonjunction
to switch into the running state at such events.

4. 10. Partial probabilities of the phase jumps

The probability of the transition of the particle to thenth minimum, i.e., the probability of a phase
flip by 2~-n,is given by

w,,(6, U) = — f ~ eh~w~.6, U)/J ~ w(k, 6. U). (4.86)

The sum of w,, over n is equalto unity for U <6, since in this casew(0, 6, U) = 0. It is less thanunity
for U > 6, when a probability P(6. U) appearsthat the particle will not be trappedin any of the
potentialwells,

P(6. U) = u — ~ tv,,(6, U) = w(0, 6, U)( J ~ w(k, 6, U)). (4.87)

The dependenceof w,, w
2 and P on the reducedcurrentII1~,for different 61T is shownin figs. 12—14.

In limiting casesit is possibleto obtain simpler expressionsfor thesequantities.
Most interestingis the case6 < T. To find w(k, 6, U) in this casewe use the asymptoticrelations

p., o) = (6I4T)’
2[p. + (~2- 4ikTI6)”2], 6IT. k <1, (4.88)

~ p., e)(I _ek)t’2[1 +E (4~T)’ e”~1. 61T<k. (4.89)
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Fig. 12. Partialprobability of a 2ir phaseflip. Fig. 13. Partial probability of a 4sr phaseflip.

~

Fig. 14. Partial probability of activation of a junction into the resistivestate.

Calculatingthe denominatorsof eqs. (4.86)and (4.87)we can assumethat w= 26. Taking into account
eq. (4.88), we obtain

U—6 ho 6
P=U+6~I+Io, ~<1, I>I~.

Calculatingw~(6,U) for n 1, the entire interval (—ir, ir) contributesto the integral(4.86),so that the
useof the asymptoticform (4.89) yields

w,~= (6/irnT)’~
2+ (6/irT) ln(n6/’rrT), T/6 ~‘ n � 1, (4.90)

wherethe secondterm takesinto accountthe propertiesof the function P~definedbelow.It can be seen
that, in this limit, w,, is independentof the current through the junction.

If n ~.1, the main contribution to the integral (4.86) comes from k< 1. The asymptoticform (4.88)
must thereforebe usedandthe integralmust beextendedover the entirek axis. Shifting the integration
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Fig. .5. Functions :1’ enteringeq. (1.9! ) for the re!:itisc prohabn!it~of the phasejntmps in extremelytindcrdarnpedrcyirne.

contour into the upperhalf-planeof complexk. in such a way that it passesalongthe imaginary axis
and enclosesthe branchpoint k = i/326/4T, we obtain

w,,(6, U) = (6iT)ft)(n6lT, U), 6IT< 1 , (4.91)

~(x,U)=exp(_~x/32)f~ , , ~~I4j~ .~ . (4.92)
~ [a +(a + /3 + z)”][/3 +(a + /3 +

This expressionis valid for both U <6 (/3 > 0) and U > 6 (8 <0). To obtain w~(6, U) for n <0 we use
the identity w .,,(6, U) = w,,(6,—U). We note that reversal of the sign of U is equivalentto the
interchangea~—*/3in eq. (4.92). For small n6IT, eq. (4.91) yields the asymptoticform (4.90), so that
eq. (4.91) is valid for all n. The dependenceof /iPon 1/Ia is shownin fig. 15 forx = 0.1, 0.2,0.3 and0.5.

The relativelyweakdependenceof liP on I/J~,at I — ‘I) agreeswith the fact that the asymptoticform
(4.90)doesnot dependon / at all. For x � 1 the function ~iPdependson I exponentially,as can be seen
from the factor precedingthe exponential. In the high-friction limit, 6 ~ T, below threshold,when
6 — U~ (6T)’2, only transitions to the nearest minima are possible with probabilities

= [1 + exp(~U/T)]’.Exactly at threshold,transitionswith any n >0 are possible,since

JJn —

w(k,6 U)=(l_eA)I. ~, = -
2F(~)T(,I+ 1)

For the first three values of n we have w, = ~. w
2 = ~, w3 = ~. The probability of the junction

becomingresistivefor 6 > T is P(6, U) = A’ [(U - 6)2/6T], whenceit follows that for U — 6 ~ (6T)’ 2

each activation eventmakesthe junction resistive,and the probability of finite phaseflips is negligibly
small.

4.11. Retrappingcurrent distribution in the quantum regime

As a starting point for calculationsin the quantumregimewe write down the Hamiltonian
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hI~ 1~ 1 (dop’\2 lop JT(t)op

~‘{(op,dçcIdt) ~ (~-j~-)+ ~(cosop—1)— ~y-+ —~-j——

The last term in this expressiondescribesthe interactionwith the heat bath,which gives rise to the
Ohmicdissipationandto fluctuation-inducedtransitions.The noisecurrentIT(t) is Gaussianandobeys
the Johnson—Nyquistcorrelationlaw,

I (IT(0)1T(t)~exp(ivt)dt= [coth(hv/2T) —11.

In analogywith the classicallimit, we assumethat an interactionwith the heatbath as well as the tilt of
the potential causedby the externalcurrentI can be treatedperturbatively.Underthis conditionthe
stationaryquantumstatescan be specifiedby the energy s [seeeq. (4.10)]. We considertransitions
betweendifferent runningstatesin a semiclassicalapproximation,whenthe tilt of the potential causes
the energys to increaseby ‘irhI/e and op increasesby 2ir, while under the action of the fluctuating
current the junction undergoestransitionsbetweenrunningstateswith different s.

We will proceedin the following way. First we derivean expressionfor the function g(s— s’), which
describesthe quantumprobability for the particlewith energys’ to go over into the statewith energys
during the time 2ir/w in which the phaseop is increasedby 2ir. The effect of the tilt will be accounted
for, by usingthe functionf(s) at the point op andthe functionf(s’ — ‘irhI/e) at the point op + 2~r,since
~‘rhb/eis just the energygain per period of the potential.As the points op and op + 2~rare equivalent,
they correspondto identicaldistribution functions.This will enableus to write down an equationfor
f(s). It should be noted that typically s — s’~-‘- 6(s) (for simplicity we assumethat 6-’-- T—1112) and
6(s) dependson the absolutemagnitudeof the energys. We stresstherefore,that the function g
dependson the energys in two different respects:g is concentratedin an interval s — s’ — 6, but also
dependson s on a much largerscale,s — l1I~/e.In this respectthe situationis similar to thatdescribed
by eq. (4.27) in the classicallimit, whenthe functionf(s) is locally of the canonicalform, but with the
temperatureTIA(s) dependingon the energys.

The derivationof the kernel g(s— s’) follows the samesteps,as for quantumBrownian particles
escapingout of a potentialwell. The only differenceis that the basictrajectoryop(t) is now asumof the
Fourier harmonicswith frequenciesnw. Accordingly, we must calculate probabilities g(nho.) for a
particleto loseor gain the energyn/lw. The amplitudeof the quantumtransition from a states’ to a
state s during the time t in the presenceof the noisecurrent IT(t) is given by

A(s, s’, t) = (s~exp(_~ J I(t)~(t)dt)~s’),

where the symbol t means time ordering. In the first order of perturbationtheory one gets for the
transitionprobability per period 2~r/wthe following expression:

w(s-s’)= ~~ J ~lT(O)IT(t))exp[i(E s’)t/h]dt,

J op(t)exp[i(s— s’)t/h]dt. (4.93)
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Solution of eq. (4.10) for op(t) yields op(t) = 2am(fItIk), wheream(z)is theJacobianelliptic amplitude
with the modulusk~(1+ esIhl~)’”2.Expansionof op(t) into a trigonometricseriesgives

sin(wnt)
op(t) = wt +2 ~ ~ , (4.94)

,,~, ncosh[np(esIllI~)j

where w is given by eq. (4.12). The relative magnitudesof the partial harmonicsin eq. (4.94) are
determinedby the function

p(x)~ [~sin2op//~in2op’ (4.95)

with the following asymptotics:

p(x)~~2/ln(4/x),x<l, p(x)=ln(16x), x~l.

Substitutingof eq. (4.94) into eq. (4.15) yields the identity

2 1 = r(esIhI~), (4.96)£2 ~=-~ cosh [np(esIhJ~)J iT

where the function r(x) is determinedby eq. (4.16). The nth term of the sum in eq. (4.96) is
proportionalto the transferof energyby the quantanhw, aswill be shownlater. It shouldbe noted that
the energytransferfor n = 0 is finite. From eqs. (4.94) and (4.93) we get

op, = ~ f op(t) sin(nwt) dt = n cosh[np(esih/ )J

The correspondingtransitionprobability is then given by

w(s -_ s’) = (ir6w/412){coth[(s — s’)I2T] — l}

/ 6(s—s’—nhw) \
n�0. (4.97)

- ‘- nhwcoshjnp(esIh1~)j’

The term 6’(s — s’) hasits origin in the first term in the right-handsideof eq. (4.94). For the meanloss
of energyfrom eqs. (4.97) and (4.96) we obtain

I (s — s’)w(s — s’) ds’ =

The function w(s — s’) gives the first-ordercontributionto the transitionprobability g(s —

Summationof the whole perturbationseriescan be done as before [seeeqs. (3.9)—(3.11)j,with the
only modification that the integrationover the energys must be substitutedby a summationover the



V.1. Mel’nikov, The Kramers problem:fifty yearsof development 65

quantumstates.For simplicity, instead of the Fourier transformationwe will use the transformation

g(A)= I g(s)exp(sA/T)ds.

The final result for g( A) reads

g(A) = exp[—(6/T)Z(A, /li’2I2irT, es//lIe)] , (4.98)

1 cosh[(2A + 1)ns(x)y]— cosh[ns(x)y]
Z(A,y,x)=— . 2 ‘ (4.99)

n-~ nsinh[ns(x)y]cosh [np(x)]

The term with n = 0 in this expressionis obtainedas the limiting value of the summandat n —~0.
The finite-differenceequationfor the distribution function,

f(s) = ~ g(nhw)f(s— n/lw — iT/lIe), (4.100)

is equivalentto the conditionof periodicity of the distributionfunction with respectto the shift of op by
2ir. The function g(nhw) is connectedwith g( A) via the relation

g(A)= ~,g(nhw)exp(—An/lw/T).

It is worthwhile to noticethat in a tilted potentialthe energyspectrumis continuous,andperiodicityof
the unperturbedpotentialmanifestsitself only in the quantizationof the energychangess — s’ = n/lw.
Equation(4.100) differs from eq. (3.10) in ref. [41] in the following points:

(1) we haveneglectedherethe effects of classicalreflection at the barrier top for energies£ <0 and
quantumover-barrierreflection at s>0, assumingthat the actualrangeof energies,s — /l~/e,exceeds
both /12 and T by ordersof magnitude;

(2) in contrastto the integralequationsin ref. [41],valid for continuouschangesof theenergys, eq.
(4.100) takesinto accountexplicit quantizationof the energytransfersin a periodic potential;

(3) only onefunctionf(s) (correspondingto fR in ref. [41]) enterseq. (4.100),since far abovethe
barrier tops the numberof particlesgoing upwardsthe potential tilt is exponentiallysmall.

Similarly to the classicallimit, an existenceof thetwo energyscales,/12 — T and/I~/e~-/11, enables
us to use the ansatz

f(s) = exp(— J A(s’) ds’/T),

wherethe function A(s) varieson the scales — /I~Ie.Whensubstitutingthis expressioninto eq. (4.100)
we assumethat A(s’) on the right-handsideis a constant,specifiedby the energy£ on the left-handside
of the equation.Implicitly, the parameters entersthe kernelof eq. (4.100) through the functionss(x)
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andp(x) [see eqs. (4.12) and (4.95)]. After summationover n one gets

g( A) exp(—AirhIIeT)= I

Taking accountof eq. (4.98) we obtain

A~j=Z(A,y,x), (4.101)

which determinesA asan implicit function of parametersij, y andx, A = A(i1, y, x). The parametersij
and y are specified by the externalcurrent /, ij III,~.and the temperatureT, y /t’2I2rrT. The
parameterx is related to the energy s, x esIhI~.The range of variation of x at given ij and y is
determinedby the range of variation of the energy s. The maximal energy~m correspondsto the
extremalvalue off(s), when A = 0. ExpandingZ(A, y,x) for small A andtaking into accounteq. (4.96)
we get Z(A, y, z) Ar(xm), A <1. From eq. (4.101) we then obtain r(xm) =

The minimal energys = 0 correspondsto x = 0. In the sameway as in section2, we obtain

ln[Qr(I)] = ~ f A(~, y, x) dx. (4.102)

Combiningthis equationwith eq. (4.33), which expressesthe parameterof the Gaussiandistributionof
the retrappingcurrentby the logarithmic derivativeof the retrapping time r(I), we see that the final
result is expressedin termsof the derivativeaA(~,y. x)Iniij. From eq. (4.101) follows

aAIa’rj=A/[Z,~(A, y.x)—ijj.

Hence,the half-width of the retrappingcurrentdistributionenteringexpression(4.34) is determinedby

the equations

(f A(~m.y,x)dx\
~7m’Y)~j Z~(A,y.x)-ij~) (4.103)

A’T;tm = ~s(x)A(A+ 1) + i cosh[(2A + 1)ns(x)y] — cosh[ns(x)y] , (4.104)
,~=, nsinh[ns(x)y]cosh [np(x)]

Z~(A.y,x)= ~s(x)(2A+1+2 , sinh[(2A+ l)ns(x)y] ) (4.105)
sinh[ns(x)y] cosh [np(x)1

The resultsof the classicalconsiderationfollow from theseequationsin the limit x—*0. Retainingin
the right-handsideof eq. (4.104) only termsfinite at ~= (1 andtaking accountof eq. (4.96),we obtain
the equationAljm = r(x)A(A+ 1). It then follows, that in the classical limit aAIa~mdoesnot dependon

aAIa’r~~m= lIr(x), (4.106)

and we thusreproducethe result (4.35).
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In the quantumregime,wheny � 1, only numericalresultscan be obtained.In the limit of very small
x the sums in eqs. (4.104) and (4.105) should be transformedinto integralsby use of the relation
p(x)/s(x)—~1/2 as x—~0. Hence,atx = 0 the valuesof A andZ~must becalculatedfrom the equations

1 f {cosh[(2A + l)oy] —cosh(vy)}do , — 1 f sinh[(2A + l)vy] do
A~m= 4y J v sinh(vy) cosh2(v/2) Z~— 2 J sinh(vy)cosh2(v/2)’ (4.107)

In the limit of largey and ~)m eq. (4.107) reducesto ln(1 — 2Ay) = ~ In a first approximationwe
can takethe argumentof the logarithmto be vanishing,getting A 1 /2y. The next iterationthengives
A (1 /2y)[l — exp(—hm)]. From this equationwe obtain aA/a~im exp(— ~i)m)/4Y.Comparing this
asymptoticswith eq. (4.106), one concludesthat in the quantumregime (y —— 1) for large currents
~1m~-1 the main contributionto the integral (4.103) comesfrom a region nearits upper limit. The
resultsof numericalcalculationsare presentedin fig. 16 for several values of y = /f2/2iTT.

Now we considerthe ultraquantumregime,wheny > 1. For i~m — 1 � 1, in the main region of x � 1
the inequality s(x)y~-1 enablesus to neglect the term exp[—s(x)yJ comparedto exp[s(x)y] in eqs.
(4.104)and (4.105). In this way we obtainexpressions,whereA entersthe argumentsof the summands
only in the combinationAy. The rescalingAy —~ A yields then the following result for the retrapping
current distribution:

F “ 2 /1. 2rrI.
P(-q) = 1.2 exp[—F(i~~

7mY/2U (flm)1’ F~—~ ~ , (4.108)
(2iT) °~7m) eyT eu

~1m) = xm ~m~

t (4.109)

10~

Fig. 16. Dependenceof the reducedhalf-width ~ x) on the Fig. 17. Dependenceof the half-width of the retrappingcurrent
reducedcurrentni,,, srI,,RCQ/4I~at different valuesof thequantum distribution on the reduced current m~m in the classical (I) and
parametery s’1fl/2ITT. ultraquantum(cv) regimes.
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The function ~ x) obeysthe equation

exp[2Ans(x)] —

= ~,As(x)+ -~“_‘- - (4.110)
4 it cosh np(x)]

Z~(A,x)=~s(x)(1+2~ exP[2Ans(x)I) (4.111)
cosh [np(x)J

Correctionsto eq. (4.109) aredueto the following two sources.For x —‘ 1, the termsneglectedin the
derivationof eq. (4.110) arerelativelysmall, i.e., of the orderof exp[—2s(x)y]. On the otherhand, for
x< I the inequalitys(x)v~‘ 1 does not hold. Asymptoticallywe find s(x) =~2iT2/ln(1Ix), x -~1. It then
follows that for largey the inequality s(x)y< 1 holdsonly in a verynarrowregion,x~ exp(—2ir2y), and
the correspondingcorrectionto the function u(ijfl) is againexponentiallysmall for y ~‘ 1. The analytic
structure of eqs. (4.109), (4.110) and (4.111) is very complicated even in the limit of ~

Therefore,we haveno definite answer for the asymptoticbehaviorof 0(llm).

Comparisonof eqs. (4.34) and (4.108) showsthat for a given location of the peak~ = J~of the
retrapping current distribution, the half-width of the distribution diminishesas the temperatureis
lowered, reaching a constant value ——eIRC at T=0. The reduced half-widths 2~(ij,~,)for large
temperaturesT~hf2(v =0) and o(ij,,) at low temperaturesT<11u2 (y—*~)are depictedin fig. 17.

5. Summary and final remarks

In thtspaperwe havepresentedconsistentderivationsof a numberof resultsrelevantto Kramers’
problem.It is worthwhile to startwith the list of principal final expressions.Consideringtheescaperate
out of a single-well potential, we have succeededin bridging the region betweenthe extremely
underdampedregime and the regime of moderatefriction, deriving expression(2.55) for the pre-
exponentialfactorA(~)shown in fig. 2 as function of the reduceddissipation~ 61T. This result has
enabledus to write down eq. (2.55) for the escaperate valid for arbitrary damping. For the average
energyof escapingparticleswe haveobtainedeq. (2.63), which is plottedin fig. 3. The sameapproach
when applied to a double-well potential results in eq. (2.71) for the preexponentialfactor of the
Brownian particle’s lifetime in a single-well potential and in eq. (2.73) for the relaxation rate of
nonequilibriumpopulation in the two wells.

The rate of escapeof a quantumBrownian particle is treatedin the framework of well known
methods. For the underdampedregime we have presentedthe general expression (3.20) for the
preexponentialfactor A(~l, y), which dependson the reduceddissipation~i 61T and on the quantum
parametery hwI2rrT. For several values of y the total preexponentialfactor An~n(~i,y) [seeeq.
(3.24)] is plotted in fig. 5. In the extremelyunderdampedregimewe haveobtainedeq. (3.21),which
showsthat for ~<l the function A dependson i in a universalmanner,A(~,y)=~’’a(y). The
function a(y) is depictedin fig. 6 for bothcubicandcosinepotentials;the two resultsdiffer by at mosta
few per cent. In contrastto the classicalcase,in the quantumoverdampedcasethe distributionfunction
becomesexplicitly dependenton the friction strength. We have calculatedthe partition function of a
Brownian particle in a semiclassicalpotentialwell [seeeq. (3.31)]. the distributionN(x) of the density
of Brownianparticles[seeeq. (3.34)] andthe distributionof particlesin the coordinateandmomentum
f(p. x) [see eq. (3.40)]. From these results the conclusion follows that the interaction with the
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high-frequencymodesof the heat bath causeslargezero-point fluctuationsof the particle momentum.
For the escaperatein the overdampedregimewe derivedeq. (3.46)which is applicableat a sufficiently
high temperature.

A large part of this paper is devotedto the investigationof fluctuation-inducedphenomenain
Josephsonjunctions. We beginwith calculationof the voltage—currentcharacteristicsin the absenceof
noise [see eq. (2.32) and fig. 81. The effects of noise substantially change the voltage—current
characteristicsin a certainrangeof the externalcurrent, since under the effects of noise a Josephson
junction switches between the zero-voltageand running states. The result is a fluctuation-induced
voltage acrossthe junction,given (in an exponentialapproximation)by eq. (4.29) and depictedin fig.
9. The random eventsof the retrappinginto zero-voltagestatesunder a very slow decreaseof the
externalcurrent aredescribedby the retrappingcurrentdistribution. We haveshownthat typically this
distribution is Gaussianand derived eq. (4.35) (see fig. 17) for the dependenceof the reduced
half-width of the distribution on the location of its maximum. The onset of the retrappingstate is
relatedto a thresholdvalue of the externalcurrent. The fluctuation-inducedvoltage—currentcharac-
teristicsarecalculatedin a slightly differentway below threshold[seeeq. (4.51) andfig. 101 and above
threshold[seeeq. (4.57)]. Exactly at thresholdit hasa jump of finite magnitudein its first derivative,
given by eq. (4.60) and plotted in fig. 11.

A completesolutionof the resistive-statelifetime is presented,eq. (4.70). Much morecomplicatedis
the problemof the lifetime of a zero-voltagestate. Its solution is given by eqs. (4.75), (4.76), (4.84)
and (4.85). The mathematicalapproachdevelopedin the processof the solution of this problemhas
also provideduswith expression(4.86) for the partial probabilitiesof thephasejumps by 2irn (n is an
integer) (numericalresultsfor n = 1 andn = 2 are plottedin figs. 12 and13) andwith expression(4.87)
for the probability of switchingfrom a zero-voltagestate into the runningstate,plotted in fig. 14. In the
extremelyunderdampedcasethe probabilitiesw,, of the phasejumpsare given by eq. (4.91) which is
illustrated in fig. 15.

Application of the generalmethod to the investigationof the fluctuation-inducedphenomenain a
Josephsonjunction in the quantumregime is hindereddue to a large number of the parameters
involved. Therefore,we haverestrictedourselvesto calculationof the half-width of the retrapping
current distribution which is determinedby eqs. (4.103)—(4.105) in the general caseand by eqs.
(4.108)—(4.111) in the ultraquantumregime. The resultsof numericalcalculationsof thesequantities
are presentedin figs. 16—17.

All theseresultswere derived upon condition that the ratio TI U1, should be small. It should be
noted,however, that this parameterentersthe problemin a twofold manner.On the one hand,under
condition T-(~U1, the escaperate is exponentiallyslow, r~crexp(—U01/T). In this respectthe values
U~/T——6—7 seemto be sufficiently large, since during its lifetime in the potentialwell the Brownian
particlecould undergoexp(U0,/T) — 102_103oscillations.On the other hand,the ratio U,,/ T shouldnot
be too large, since then the decayeventsbecomeextremely rare and are nearly beyondobservation.
The results of this paperare only correct in the leading approximationin TI U00, andcorrectionsfrom
the next termsof the expansionmaybe quite substantial.Therefore,thecalculationof the preexponen-
tial factor for finite valuesof TI U0) representsan absolutelynecessarytaskin solving Kramers’ problem
completely[63].

Anothervery importantapproximationwhich hasdrasticallysimplified our considerationsis that the
noise is assumedto be white and Gaussian.In real experimentalsystemsthe situationmay not be so
simple. For example,rigorousconsiderationshaveshown,that in a Josephsonjunction thermalnoiseis
given by a superpositionof two white Gaussiannoises [64]. Moreover, the noise characteristicsin
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Josephsonjunctionscan be tunedby changingthe experimentalsetup.In a beautiful experimentwith
the use of a delayline it hasbeendemonstrated,that, in agreementwith theoreticalpredictions[44],
the resonantinteractionbetweennoiseandthe phaseoscillations in an underdampedjunction resultsin
an oscillating dependenceof the escaperateon the delay time [45].This experimentalresult gives the
mostdirect confirmationof thecorrectnessof our ideason the activateddecayprocesses.We havecited
thesetheoreticaland experimentalresults in order to demonstratethe presentstate of the art (for
detailedinformationsee ref. (43]).
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