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The extinction of a single species due to demographic stochasticity is analyzed. The
discrete nature of the individual agents and the Poissonian noise related to the birth-
death processes result in local extinction of a metastable population, as the system hits
the absorbing state. The Fokker-Planck formulation of the problem fails to capture the
statistics of large deviations from the metastable state, while approximations appropriate
close to the absorbing state become, in general, invalid as the population becomes large.
To connect these two regimes, a real space WKB method based on the master equation
is presented, and is shown to yield an excellent approximation for the decay rate and
the extreme events statistics all the way down to the absorbing state. The details of the
underlying microscopic process, smeared out in a mean field treatment, are shown to be
crucial for an exact determination of the extinction exponent. This general scheme is
shown to reproduce the known results in the field, to yield new corollaries and to fit quite
precisely the numerical solutions. Moreover it allows for systematic improvement via a
series expansion where the small parameter is the inverse of the number of individuals
in the metastable state.

Local extinction due to demographic stochasticity is a key issue in the analysis of
persistence and viability of small populations.(1−3) In particular, it allows ecologists
to identify endangered species and to specify conservation policies, it dictates the
appearance and disappearance of favored and neutral genetic mutations(4) and is of
importance in the determination of the critical population size needed to support an
epidemic. (5) As in most cases of rare and extreme events the important quantities
to be measured and compared with the theory are the expected extinction time
of the populations, (2) and the probability distribution close to the absorbing state.
Technically, however, the effect of demographic stochastisity has traditionally
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been taken into account using some version of a Fokker-Planck equation, where
the “diffusion coefficient” is a function of the population size. (2)

Recently, much interest has been focussed on the calculation of extinction
rates for systems whose macroscopic dynamics exhibits a stable state which is
nevertheless only metastable due to rare fluctuations which can drive the system to
extinction.(6−9) In particular, it has been realized that in general the Fokker-Planck
(FP) expansion about the (meta-)stable state is incapable of predicting the
extinction rate. This is due to the fact that the Fokker-Planck expansion, as we
shall show, is only valid for up to O(N 2/3) fluctuations to the large, O(N ), number
of particles in the metastable state. The FP approximation fails to correctly
describe the very large fluctuations necessary to reach the absorbing state of zero
particles. The FP treatment also smears out the microscopic differences between
processes as it reflects a local analysis close to the metastable fixed point. In
order to get the correct statistics for rare and extreme events one should base
the estimate on the exact Master equation that describes the stochastic process,
and to employ the method of extreme statistics, or more simply put, the WKB
approximation, to solve the relevant master equation.

Elgart and Kamenev(6) made an interesting observation in this context: using
the Peliti-Doi (11,12) technique to map the exact master equation into a “quantum
mechanical” problem (Schroedinger-like equation in imaginary time with second
quantized Hamiltonian) they were able to identify the classical trajectory that con-
nects the metastable fixed point and the absorbing state. This identification allows
them to calculate the classical (“geometrical optics”) action along this trajectory, a
first approximation to the extinction time. Assaf and Meerson(9) then suggested a
general spectral method to improve beyond the Elgart-Kamenev results, employ-
ing the generating function formalism and using the Sturm-Liouville theory of
linear differential operators.

In this paper, we will present a general scheme to deal with the local extinction
problem, based on the time-independent “real space” WKB approximation (unlike
Refs. (6,9) who used a time-dependent momentum space presentation). The method
presented is easy to use, its intuitive meaning is transparent, and its range of
applicability covers, essentially, any single species problem.

This paper will be organized as follows: In the next section we exemplify
the technique for what is perhaps the archetypical problem in this class, a logistic
birth-death process of a single species. Beside its importance, the solution of this
example demands the use of all the components of the technique—a Fokker-Planck
solution applicable close to the metastable fixed point, a small n approximation
close to the absorbing state and a WKB solution that encompasses the FP regime
and connects to the small n region. This model, thus, serves also as a nice peda-
gogical introduction. The third section deals with a similar birth death process, but
when the number of offspring at each birth event is two, as in the case of domain
walls in magnetic systems. Here, a series of mathematical “miracles” occur, which



Extinction Rates for Fluctuation-Induced Metastabilities 863

allow for a simple calculation of the extinction rate (for the case of an initial even
number of particles) without recourse to the WKB method. In the fourth section
the effect of a single agent death term is incorporated, and in the last section the
marginal case of equal birth and death rates is analyzed. We then conclude with a
summary and some final observations.

1. STOCHASTICITY, LOGISTIC GROWTH AND EXTINCTION

In this section we study the stochastic dynamics of a combination of two
fundamental processes: particles giving birth to new particles at a rate α; and pair
annihilation at a rate β. In that case the average number of particles is about α/β.
The full “physical optics” solution for both the probability distribution, Pn , of
the metastable state and the extinction rate, in the limit where β � α is given,
based on a WKB approximation for the exact master equation. We confirm our
calculations by comparison to a direct numerical solution of the master equation.

The microscopic rules that govern this process are:

P
α→ 2P

P + P
β→ 0 (1)

The exact master equation for Pn , the probability of having n particles, is

Ṗn = α [−n Pn + (n − 1)Pn−1] + β

2
[−n(n − 1)Pn + (n + 2)(n + 1)Pn+2] (2)

At the mean-field level the process is described by the reaction equation,

ṅ = αn − βn(n − 1) (3)

which has the stable solution n = α/β + 1. Technically, this expression may be
derived from the exact master Eq. (2) by calculating the time derivative of the
average population ˙〈n〉 ≡ ∑

n Ṗn and using the approximation 〈n2〉 = 〈n〉2. The
stable solution becomes metastable due to the effect of stochastisity (in particular,
all particles may annihilate each other and the system will be stuck in the absorbing
state P0 = 1). Our aim is to calculate the typical time of this extinction event.

Since the stochastic process has no memory (a Markov process) it may be
described by a transition matrix that specify the rates to pass from one microscopic
configuration to the other. Clearly, the absorbing state {P0 = 1, Pn = 0 ∀n �= 0}
is an eigenvector of that matrix with an eigenvalue 0. All other eigenstates admit
negative eigenvalues, and we denote the absolute value of the highest of these
eigenvalues as �. The corresponding eigenvector is the stochastic metastable
state, so our mission is to calculate �. Our main interest is in the case α/β 	 1
so that the typical number of particles is large. This implies that the probability to
reach the absorbing state is, as we will calculate, exponentially small.
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The metastability of the system implies that at long times the Pn decay
exponentially as e−�t . Thus we need to solve the master equation with the
left-hand side replaced by −�Pn . However, since � is exponentially small, we
can drop this term altogether. Technically this implies that we only have to solve
for a steady state vector rather than doing time dependent semiclassical analysis
which is much more complicated.

1.1. Fokker-Planck Equation and Its Limitations

The standard approach for solving the now time-independent master equation
is to transform it into a Fokker-Planck (FP) equation(1,3) The nominal prescription
for doing this is to expand Pn±1, etc. in a Taylor series, dropping terms involving
more than two derivatives. However, phrasing the problem this way does not
explain why, or more specifically, when this procedure is justified; moreover, the
emerging equation is not unique—the same expansion may be done for n Pn ,
for example, yielding a different equation. The real justification underlying the
Fokker-Planck approximation, as pointed out by van Kampen(13) in his discussion
of the Omega expansion, is that, for small β/α, Pn is a smooth function of the
O(1) variable

y ≡
(

β

α

)1/2(

n − α

β

)

(4)

Then, Pn±1 is equal to P(y ± √
β/α) and so may be expanded formally with

regard to the small parameter β/α. The resulting series may be written as:

α

[

L̂0 P(y) +
√

β

α
L̂1 P(y) + O

(
β

α

)

+ · · ·
]

= 0 (5)

where

L̂0 P(y) =
(

d

dy
(y P) + 3

2

d2

dy2
P

)

(6)

and

L̂1 P(y) = 1

2
(P ′′′ + 5y P ′′ + 8P ′ + 4y P + 2y2 P) (7)

This perturbative expansion is justified (at least in the sense of asymptotic series) if,
expanding P(y) = P0(y) + √

β/αP1(y) + · · ·, the correction term
√

β/αP1(y) �
P0(y). Plugging this series into (5) and collecting terms order by order one finds that

P0(y) = Ce−y2/3 = Ce−β(n−α/β)2/3α. (8)

Then, looking at the equation for P1

L̂0 P1(y) = −
√

β

α
L̂1 P0(y), (9)
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one is able to identify that the leading correction is proportional to y3√β/αP0(y).
Thus the the FP equation is only valid up to (n − α/β) ∼ (α/β)2/3, as mentioned
above. This limit on the FP reliability is clearly demonstrated in Fig. 1, where the
FP solution is compared to an exact numerical solution of the time-independent
master equation. We see that for a metastable population of 100 individuals, the FP
solution is a good approximation to the exact probability distribution only for n’s
between 70 and 130. We note in passing that this limitation of the FP solution is not
apparent in van Kampen’s discussion, as van Kampen only studies the corrections
to the moments of the distribution, which are determined to all orders by the
neighborhood of the Gaussian peak, and not the corrections to the distribution
itself. Of course, the failure of the FP solution away from the peak is responsible for
the Omega expansion only being an asymptotic, rather than convergent, expansion.

To find the decay rate, however, we need to have a solution valid down to
n = 1, and the FP solution does not suffice. Our next step then is to consider the
low n limit of the master equation.

1.2. Probability Distribution Close to Extinction

In the vicinity of the absorbing state one may use a simplified form of the
master equation, exploiting the fact that Pn is a rapidly growing function of n.
Then, Pn � Pn+2 and Pn−1 � Pn , yielding the simplified recursion relation:

Pn+2 =
(

2α

β

)
n

(n + 2)(n + 1)
Pn (10)

This approximate recursion relation leaves the even and odd n’s decoupled, and
has the solution

P2k =
(

4α

β

)k−1 2(k − 1)!

(2k)!
P2

P2k+1 =
(

α

β

)k 1

(2k + 1)k!
P1 (11)

with P1, P2 arbitrary. Examining Eq. (10), we see that if P1 � P2, then as long as
n � α/β, our assumption leading to the approximate recursion relation is valid.
It is also clear that the rapid rise of the Pn’s slows as n increases, with the Pn’s
reaching a maximum at n = 2α/β. Clearly, however, the maximum probability
state is at n ≈ α/β, so the recursion relation must fail before the bulk regime. In
fact, our recursion relation works up to βn/α � 1 whereas the FP solution only
works when βn/α ≈ 1. There is no way to directly connect these two regimes.
This is seen clearly in Fig. 1, where the recursion relation and FP solutions are
shown for the case β/α = 0.01. The resolution to this problem lies in the WKB
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Fig. 1. (color online) Probability distribution Pn/P2 for β = 0.01, α = 1, for the basic model,
Eq. (1), (obtained from a direct numerical solution of the master equation, Eq. (2)) together with
the WKB approximation, Eq. (30) along with Eqs. (16), (29), and (32); the FP approximation, Eq.
(33); and the low/intermediate-n result, Eq. (11). Note that on the scale of the figure, the WKB
approximation is indistinguishable from the exact result.

method, which will allow us to connect the recursion relation results to the FP
regime.

1.3. WKB Approximation and the Extinction Rate—The Leading

Term

To do WKB for our difference equation, (14) we write Pn = eSn , where Sn is
assumed to be a smooth function of n, so that Sn±1 ≈ Sn ± S′

n . Since we already
know (from the FP treatment) that the probability profile in the bulk is a Gaussian
with width proportional to the square root of the metastable population, the quality
of this approximation is controlled. Writing �n ≡ eS′

n , we have, assuming n 	 1,

0 = α

(

− n + n

�n

)

+ β

2

( − n2 + n2�2
n

)
(12)

or, simplifying,

0 = βn�3
n − (2α + βn)�n + 2α

= (�n − 1)
(
βn�2

n + βn�n − 2α
)

(13)
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where we have factored out the trivial �n = 1 root which is a result of conservation
of probability. The other two roots for � are

�n = −1

2
±

√
1 + 8α

βn

2
, (14)

of which the larger, positive, one is relevant for us, since we want Pn to be an
increasing function. This implies that

S′
n = ln

(√
1 + 8α

βn − 1

2

)

(15)

Integrating, we find that

Sn = S0 + n ln

(√

1 + 8α

βn
− 1

)

+ 1

2
n

√

1 + 8α

βn

− 2α

β
ln

(
βn

4α
+ 1 + βn

4α

√

1 + 8α

βn

)

− n ln(2) + 1

2
n (16)

The first important point to notice is that α/(βn) extrapolates, in the interesting
region, from ∞ as n → 0 to unity, where n → α/β. In the first case S′ scales
logarithmically with α/(βn), hence Sn is proportional to α/(βn) and is large. In
the second regime S′ is almost constant and Sn scales with n which is also, in
that case, large. Thus all the way to extinction Sn is large, as expected. Evaluating
�S ≡ Sα/β − S0, one obtains

�S = 2α

β
(1 − ln(2)) (17)

in agreement with the result of Elgart and Kamenev. (6)

We can make the connection to the formalism presented in Ref. (6) even more
explicit, if we express the relations in terms of n(�) as opposed to �n . From
Eq. (13),

n(�) = 2α

β�(� + 1)
(18)

thus

�S =
∫ α/β

0
ln(�n)dn

= −
∫ ∞

1
ln(�)

dn

d�
d�
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= − ln(�)n(�)|∞1 +
∫ ∞

1

n(�)

�
d�

=
∫ ∞

1

n(�)

�
d�. (19)

If we now introduce the “momentum” p ≡ 1/� and the “coordinate” q ≡ n�, the
expression for �S may be rewritten as

�S =
∫ 1

0
qdp (20)

where

q(p) = 2α

β

p

1 + p
(21)

precisely reproducing the Elgart-Kamenev equations for the action and the semi-
classical escape path. The physical meaning of the “momentum” p is now clarified:
it is the inverse of the geometrical growth rate of the quasistatic probability distri-
bution.

We now need to confirm that there exists an overlap region between the WKB
solution and the n � α/β recursion regime. For n � α/β our WKB solution for
Sn may be approximated by,

Sn ≈ S0 + 1

2
n

(

1 + ln

(
2α

βn

))

(22)

To compare this with the recursion relation results, Eq. (11), in the limit n 	 1:

ln
(
Peven

n

) ≈ 1

2
n

(

1 + ln

(
2α

βn

))

+ 3

2
ln(2) − ln

(
4αn

β

)

+ ln(P2)

ln
(
Podd

n

) ≈ 1

2
n

(

1 + ln

(
2α

βn

))

− 1

2
ln

(
2παn2

β

)

+ ln(P1) (23)

Indeed, the leading order asymptotics agrees.
In the other extreme our WKB result coincides with the FP treatment. Ex-

panding the WKB solution for small y ≡ √
β/α(n − α/β) yields

ln(Sn) = ln(�S − y2/3) (24)

reproducing the FP solution.

1.4. WKB Approximation and the Extinction Rate—First Order

Corrections

The explicit real space, time-independent WKB analysis allows one to go
beyond the Elgart-Kamenev “geometrical optics” results and to obtain the leading
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corrections. In the previous subsection the generic substitution Pn = exp(Sn) was
implemented and is justified ex post facto by the fact that Sn turns out to be
O(α/β) 	 1. To proceed let us assume that

Pn = exp(S0(n) + S1(n) + S2(n) + · · ·) (25)

where S0(n) is the leading order Sn found above and Sm(n) is assumed to be
O((β/α)m−1). Beginning with the growth part of the master equation Tα ≡
α[−n Pn + (n − 1)Pn−1], plugging in Eq. (25) and expanding the small (O(β/α))
terms in the exponent one has (note that any derivative adds a (β/α) factor):

Tα = αeS0(n)+S1(n)+S2(n)

(

− n + (n − 1)e−S′
0(n)

[

1 + 1

2
S′′

0 − S′
1

])

= αneS0+S1+S2

[(

−1 + 1

�n

)

+ 1

�n

(
S′′

0

2
− S′ − 1

n

)]

(26)

While the first, O(1), term in the bracket was used to determine �, the second
O(β/α) term will be used here in order to find the function S1. Repeating that
procedure and collecting the leading corrections from the annihilation part of the
Master equation one finds,

0 = α

�n

(

−S′
1 + S′′

0

2
− 1

n

)

+ βn

2

(
1

n
+ 2�2

n S′
1 + 2�2

n S′′
0 + 3

n
�2

n

)

(27)

Things simplify if we write S1 as a function of �:
[

α

�
− βn�2

]
d

d�
S1 = 1

2�

[
α

�
+ 2βn�2

]

+ n′(�)

2n

[

− 2α

�
+ βn + 3βn�2

]

(28)

so that all the coefficient functions are rational functions of �. The solution of this
equation is best expressed in terms of Qn ≡ eS1(n):

Qn = A

√
�n(�n + 1)2

√
2�n + 1

(29)

so that to this order

Pn ≈ QneSn (30)

We see that Qn diverges as n−1 as n → 0, since �n diverges there, and vanishes
as n−1/2 for large n, where � vanishes. Interestingly enough, there is no turning
point, and the WKB approximation is good everywhere. This holds despite the
fact that the coefficient of Q′

n vanishes at � = 1, where S′ vanishes, as is typical
for WKB problems. In our case, the right hand side also vanishes at � = 1, so Q
is regular there. We suspect that this is a consequence of the effective vanishing
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of �, so that the FP equation admits a trivial first integral, and so is effectively of
first order.

With this result for Qn in hand, we can finish the matching procedure. For
n � α/β, �n is large as we noted, and

Qn ≈ A

√
2α

βn
(31)

Comparing to the recursion relation results, we have

A = P2
β2

2α2

= P1

√
β3

4πα3
(32)

This fixes the ratio of P1 to P2, which is precisely that which makes ln(Pn) a
smooth function. About the maximum, �n ≈ 1, so that Qn ≈ 4A/

√
3, and

Pn ≈ 2√
3

(
β

α

)2

P2e�Se−y2/3 (33)

The sum over Pn is dominated by this FP Gaussian, and so, replacing the sum by
an integral, we get

Ptot ≈ 2
√

π

(
β

α

)3/2

P2e�S (34)

The decay rate � is then

� = β
P2

Ptot
≈

√
α3

4πβ
e−2α(1−ln(2))/β (35)

Note that the normalization of the Pn’s is not necessary, since all the Pn’s scale
with P2, and so the normalization factor cancels in the calculation of �. Our result
for � is plotted in Fig. 2, where we see the agreement is excellent for small β. As �

varies by so many orders of magnitude over the scale of the graph, it is impossible
to see from this the role of the prefactor. In Fig. 3, we plot the ratio of � to e�S

as a function of β. We see the accuracy is quite good and gets better as β gets
smaller, as expected. This prefactor is, it should be noted, quite different from the
factor α conjectured in Ref. (6). In Fig. 1, we present the graph of Pn together with
the WKB, Fokker-Planck, and low/intermediate n approximations. We see that the
WKB approximation is excellent everywhere, whereas the other approximations
are more limited in their range of validity. In particular, the Fokker-Planck results is
a serious overestimate of of the low n probability, and an equally bad underestimate
of the large n probability. As the WKB and exact results cannot be distinguished
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Fig. 2. (color online) Decay rate � vs. 1/β, for the basic model, Eq. (1), with α = 1, together with
the analytic approximation, Eq. (35). Here and in all other figures, the numerical calculation of the
decay rate was performed using a quadruple-precision version of the sparse matrix eigenvalue solver
ARPACK, (15) applied to the master equation transition matrix, with the absorbing state eliminated.

on the scale of the figure, in Fig. 4 we present the ratio of the WKB to the exact
result for α = 1, β = 0.01. We see that the WKB approximation is good to the
expected few percent level, with it degrading slightly for very small n. Given that
the WKB approximation is a large-n approximation, that it does as well as it does
at low-n is a undeserved present, and a consequence of the remarkable accuracy
of Stirling’s formula down to n = 1.

For completeness, we note that it is possible to derive a large β expansion
of � as well. This is easily done by truncating the master equation matrix and
computing its determinant as a power series in α/β, then solving for � order by
order. One finds

� ≈ α − 2
α2

β
+ 10

3

α3

β2
− 38

9

α4

β3
+ 242

135

α5

β4
(36)

It seems clear that this series has at best a finite radius of convergence. Both large
and small β limits are compared to the exact results in Fig. 5.

2. PARITY-PRESERVING MODEL

In this section we will discuss the case where birth is to “twins”, so that the
even-odd parity of the number of particles is preserved. Here, a series of mathe-
matical “miracles” occur, which allow for a simple calculation of the extinction
rate (for the case of an initial even number of particles) without recourse to the
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Fig. 3. (color online) Ratio of � to e�S , for the basic model, Eq. (1), compared to the WKB prediction,
as a function of β, for α = 1.
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Fig. 4. Ratio of the WKB approximation for Pn to the exact result for the basic model, Eq. (1) for
β = 0.01, α = 1.

WKB method. Furthermore, we present a solution of the probability distribution to
all orders in β/α, so that the corrections are exponentially small. We also calculate
the extinction rate to all orders in perturbation theory and manage to resum this
divergent asymptotic series to obtain results correct to within exponentially small
terms.
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Fig. 5. (color online) Decay rate � vs. 1/β for the basic model, Eq. (1), with α = 1, together with the
large β approximation, Eq. (36), and the small β approximation, Eq. (35).

The model,

P
α/2→ 3P

P + P
β→ 0 (37)

conserves the even/odd parity of the number of particles, so if the system is
initialized with an odd number of particles it can never go extinct, instead reaching
a steady-state. If the system is initialized with an even number of particles, on
the other hand, the system can go extinct, with the survival probability decaying
again as e−�t , with � exponentially small for small β. It should be noted that the
mean-field equation for the model is the exact same as that of the original model
above.

We again start with the master equation, which now reads:

Ṗn = −�Pn = α

2
[−n Pn + (n − 2)Pn−2]

+ β

2
[−n(n − 1)Pn + (n + 2)(n + 1)Pn+2] (38)

As above, � is exponentially small, and we may drop this term altogether. We
again tackle the master equation by exploiting the fast growth of the Pn’s for not
too large n. This observation allows us to drop the second α term and the first β

term, yielding the recursion relation

Pn+2 =
(

α

β

)
n

(n + 1)(n + 2)
Pn (39)
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which, up to a factor of 2, is the same as the approximate recursion relation we
previously encountered. Now, however, the parity conservation implies that only
the even terms are nonzero, with the odd terms being exactly decoupled. The
recursion relation has the solution

P2k =
(

α

β

)k−1 (k − 1)!2k

(2k)!
P2 (40)

In principle, we should have to match this solution to the WKB solution, as
we did in the nonparity case. The first miracle we encounter is that in fact the
solution Eq. (40) is accurate throughout the Fokker-Planck region. To see this,
note that for n = α/β + y

√
α/β, y ∼ O(1), the asymptotic expansion of Pn is

Pn ≈
√

2

(
β

α

)2

eα/2β P2e−y2/4 (41)

It is straightforward to verify that this is the solution of the Fokker-Planck equation:

0 = α

(
d

dy
(y P) + 2

d2

dy2
P

)

(42)

It should be noted for the record that while Eq. (40) is an accurate representation
of Pn from n = 2 till past the peak, the Fokker-Planck Gaussian is again only valid
in the peak region.

Thus, we can use Eq. (40) to calculate Ptot ≡ ∑
k P2k . We find

Ptot ≈ P2

∞∑

k=1

(
α

β

)k−1 (k − 1)!2k

(2k)!
= 2 F2

(

1, 1;
3

2
, 2;

α

2β

)

P2 (43)

For the moment, what is important is the leading order asymptotics of this, which
can be calculated directly by applying Laplace’s method to the sum. This is equiv-
alent to integrating the Gaussian, and gives

Ptot ≈
√

2π

(
β

α

)3/2

eα/2β P2 (44)

We are essentially done. The rate of probability flux out to the absorbing state
is β P2, which equals �Ptot. Thus,

� = β P2

Ptot
≈ β√

2π
(

β

α

)3/2
eα/2β

=
√

α3

2πβ
e−α/2β (45)

Note again that this is much smaller than the naive Fokker-Planck answer, which
is proportional to e−α/4β .

We can actually proceed to compute the corrections to this formula. One
source of corrections is using the asymptotics of 2 F2. The full asymptotics of 2 F2
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for large argument are very beautiful:

2 F2

(

1, 1;
3

2
, 2; x

)

≈
√

π

4x3
ex

(

1 +
∞∑

k=1

(2k − 1)!!

(2x)k

)

(46)

This is obviously a divergent series, and alternatively represents a resummation
of the series. This result is easily proven by substituting it in the Hypergeometric
Differential Equation.

The second source of the corrections is the corrections to the Pn’s due to
the terms we dropped in the master equation. The structure here is also strikingly
beautiful. If we denote our zeroth-order approximation of Pn by P0

n , we find

P4 = P0
4

(

1 + β

α

)

P6 = P0
6

(

1 + β

α
+ 3

(
β

α

)2)

P8 = P0
8

(

1 + β

α
+ 3

(
β

α

)2

+ 15

(
β

α

)3)

(47)

The general trend is obvious:

P2k = P0
2k

(

1 +
k−1∑

m=1

(2m − 1)!!

(
β

α

)m
)

(48)

Plugging this into the master equation shows that this is an exact solution (for
� = 0, of course). Now, up to exponentially small corrections, Ptot is just multiplied
by the correction factor:

Ptot = P0
tot

(

1 +
∞∑

m=1

(2m − 1)!!

(
β

α

)m
)

= P0
tot

√
α3

2πβ3
e−α/2β

2 F2

(

1, 1;
3

2
, 2;

α

2β

)

(49)

The final result for � is

� ≈
√

2πβ5/α3

[
2 F2

(
1, 1; 3

2 , 2; α
2β

)]2
eα/2β (50)

Even though this answer is a resummation of the full asymptotic series, it is
nevertheless not exact. The correction terms however are exponentially small,
(relative to the exponentially small extinction rate) going like e−α/β . This can
be seen in the following graph, where we plot the relative error, comparing to
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Fig. 6. (color online) Extinction rate � and the relative error between the approximation, Eq. (50), and
the exact value as a function of 1/β for α = 1.

an essentially exact numerical calculation (using extended precision arithmetic in
Maple). Thus, for example, the error for α/β = 100 is six parts in 1021!

For completeness, we also briefly write down the WKB solution. Firstly,

n(�) = α

β�2
(51)

so that

�S =
∫ ∞

1

n

�
d� = α

2β
(52)

Also,

Sn = n

2
[ln(α/β) + 1 − ln(n)] (53)

The solution for Qn is the simple result

Qn = A�2 (54)

All this can be seen to agree with our recursion relation solution. In fact, it implies
that the recursion relation solution is valid everywhere, even past the FP regime.

One can again calculate the large β limit of the decay rate. The first few terms
of this series are:

� = β − α

5
+ 12α2

875β
− 4α3

21875β2
− 972α4

58953125β3
+ 24964α5

95798828125β4
(55)
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Fig. 7. (color online) Decay rate � for the parity conserving model, compared to the small β result,
Eq. (50), and the large β power-series expansion, Eq. (55). The agreement between these analytical
expressions and the exact results is so good in their respective spheres of validity, that the deviations
are only visible quite far outside these areas.

It would appear likely that this series is actually convergent. In any case, together
with the small β/α results above, they cover the entire range of parameters, as can
be seen in Fig. 7.

3. GENERAL NONPARITY MODEL

Let us extend, now, our original, non-parity preserving, model to include a
third process, the spontaneous death of particles at a rate γ < α. Such a process
appears naturally in many systems, from populations of animals (where γ is the
death rate of an individual) to the spread of a disease (where it correspond to a
recovery of an infected agent, like in the SIR model (5)). We present the physical
optics solution for this case also, again confirming it by comparison to the direct
numerical solution.

Adding the spontaneous decay of particles:

P
γ→ 0 (56)

to our basic model, Eq. (1), changes both the mean field and the fluctuations.
At the mean-field level this is equivalent to a simple change of α to an effective
growth rate αeff = α − γ , but this scaling is not true anymore if the fluctuations
are taken into account. The master equation now reads:

Ṗn = α [−n Pn + (n − 1)Pn−1] + β

2
[−n(n − 1)Pn + (n + 2)(n + 1)Pn+2]

+ γ [−n Pn + (n + 1)Pn+1] . (57)
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We start this time with the WKB solution. As before, the WKB ansatz yields an
equation for �n , namely

0 =
(

1

2�n

)
[
2α(−�n + 1) + βn

( − �n + �3
n

) + 2γ
( − �n + �2

n

)]

=
(

�n − 1

2�n

)

[−2α + βn�n(�n + 1) + 2γ�n] (58)

with the solution

�n =
√

(βn + 2γ )2 + 8αβn − 2γ − βn

2βn
(59)

Now, � approaches the finite limit, α/γ as n goes to 0, in contrast to the previous
cases. Thus, we cannot solve the low-n recursion relation by assuming that the
Pn are increasing very rapidly. Rather, now β is irrelevant for low n, and we have
to solve the β = 0 recursion. This is readily solved, for example by generating
function techniques, and yields

Pn = γ

n(α − γ )

[(
α

γ

)n

− 1

]

P1 (60)

Indeed, for large n Pn grows geometrically, with the ratio α/γ , agreeing with the
small n WKB.

We can now proceed with the remainder of the WKB procedure. As before,
it is more convenient to work with n(�), given by

n(�) =
(

2

β

)
α − γ�

�(� + 1)
(61)

We see that in the mean-field regime, � ≈ 1, the entire γ dependence is through
αeff . Away from this limit, however, the situation is more complicated.

Now, as before, Sn is given by

Sn = S0 − [n(�) ln(�)]α/γ

� +
∫ α/γ

�

n(�

�
d�

= S0 + n ln(�) + 2(α − γ�)

β�
− 2(α + γ )

β

(

ln

(
� + 1

�

)

− ln

(
α + γ

α

))

(62)

In particular,

�S = 2(α − γ )

β
+ 2(α + γ )

β
ln

(
α + γ

2α

)

(63)

We exhibit �S as a function of γ for fixed α in Fig. 8. We see that �S decreases
with increasing γ , vanishing quadratically as γ approaches the threshold value of
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Fig. 8. 2β�S/α as a function of γ , for fixed α.
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Fig. 9. 2β�S/αeff as a function of γ , for fixed αeff .

α. Also interesting is the dependence of �S as a function of γ , for fixed αeff .
This is show in Fig. 9. We see that as γ increases, at fixed αeff , �S decreases,
leading to a faster decay rate due to increased fluctuations. For large γ , in fact,
�S vanishes as αeff /(2βγ ).
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We now are in a position to continue to the calculation of Qn = eS1(n). The
equation is

0 = α

[

− n + n

�n

(

1 − S′
1 + 1

2
S′′

0 − 1

n

)]

+ β

2

[

− n2 + n + n2�2
n

(

1 + 2S′
1 + 2S′′

0 + 3

n

)]

+ γ

[

− n + n�n

(

1 + S′
1 + 1

2
S′′

0 + 1

n

)]

(64)

which simplifies to, using S′′ = 1/(�n′(�)),
[

α

�
− βn�2 − γ�

]
d

d�
S1

= 1

2�

[
α

�
+ 2βn�2 + γ�

]

+ n′(�)

2n

[

− 2α

�
+ βn + 3βn�2 + 2γ�

]

(65)

This has the solution

Qn = A

√
α3�n(�n + 1)2

(α − γ�n)
√

α(2�n + 1) − γ�2
n

(66)

where we have inserted the factor
√

α3 so the definition of A reduces to that used
in the γ = 0 case.

The last step is to match to the low-n recursion relation solution. For βn � 1,
the WKB solution reduces to

Pn ≈ 2A
√

α(α + γ )

βn

(
α

γ

)n

(67)

Comparing this to Eq. (60), we get

A = γβ

2(α − γ )
√

α(α + γ )
P1 (68)

We now need to calculate Ptot. Near the stable point, n = (α − γ )/β,

Pn = 4

√
α3

3α − γ

A

α − γ
e�Se− β

3α−γ

(
n− α−γ

β

)2

(69)

which gives

Ptot = 4

√
πα3

β

A

α − γ
e�S



Extinction Rates for Fluctuation-Induced Metastabilities 881

0 20 40 60 80 100

1 / β
10

-15

10
-12

10
-9

10
-6

10
-3

10
0

D
ec

ay
 R

at
e 

( Γ
 )

γ = 0.25
γ = 0.5
γ = 0.75

Fig. 10. (color online) The calculated decay rate � as a function of 1/β, Eq. (71) for α = 1, γ = 0.25,
0.5, and 0.75 (solid line) together with the exact numerical results (markers).

=
√

πβ

α + γ

2αγ

(α − γ )2
P1e�S (70)

The total probability flux out of the system is γ P1 + β P2. Since P2 is of order 1
relative to P1, the β contribution to the flux is negligible, and so

� = γ P1

Ptot
=

√
α + γ

πβ

(α − γ )2

2α
e−�S (71)

This result is tested against the exact numerical answer in Fig. 10. The results are
again quite good, with the quality decreasing as γ approaches α (for fixed β) as
expected due to the decreasing equilibrium number of particles. The astute reader
will note that our expression for � reduces in the γ → 0 limit to our γ = 0 result
above, even though some intermediate expressions (for example, the probability
flux) do not correspond. We also note that the maximum value of � is α/γ , which
approaches 1 as γ approaches the threshold value of α. Thus, near threshold, the
Fokker-Planck equation and the WKB treatment coincide. Of course, this solution
still has to be matched to the low/intermediate-n solution to obtain the correct
prefactor.

It should also be noted that Doering et al. (7) investigated a class of models
wherein all transitions are single-particle transitions, as opposed to the models
investigated herein, which include a 2 particle annihilation process. This entire
class of models can also be easily treated via our WKB method, and yields identical
results to those of Doering et al. Writing the birth term in the master equation by
αn and the death term by γn , the WKB solution can be written down for a very
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broad class of models where αn = (1/β)α̃(βn) and γn = (1/β)β̃(n), and α̃, β̃ are
smooth functions. In this case, the system admits a macroscopic metastable state
with a large number of particles for small β. In particular, we find

�n = αn

γn
(72)

so that

Sn =
∫ n

0
ln(�n)dn (73)

The Qn factor is:

Qn = A√
αnγn

(74)

which, upon matching to the low/intermediate-n result gives (up to an obvious
typographical error) the result in Doering et al. The advantage of the WKB method
is that it generalizes to the multi-particle transition case.

4. THRESHOLD CASE AND THE LIFETIME OF A NEUTRAL

MUTATION

In this section let us consider the threshold case, α = γ . This case corresponds
to the dynamics of a neutral mutation and has recently become the focus of
extensive research, mainly in connection with Hubbell’s unified neutral theory of
biodiversity and biogeography. (10) Here, as we already saw for the near-threshold
case, the Pn’s are smooth and allow for a Fokker-Planck treatment. However, in
this case the decay rate � is not exponentially small, and so cannot be ignored.
First, let us consider what happens in the absence of β. This problem was worked
out by Pechenik and Levine (P-L). (16) They find that the mean number of particles
is conserved and the variance grows linearly in time. Furthermore, the system
exhibits a power-law (1/t) convergence to the empty state, and not an exponential
dependence. This is indicative of a scale invariance in the problem. The β term
serves to break this scale invariance, and gives a well-defined scale for the number
of particles (for those replicas which still survive). The original Fokker-Planck
equation (ignoring boundary terms) was

∂ P

∂t
= α

∂2

∂n2
(n P) (75)

The β process introduces two new terms into the FP equation, arising from the
Taylor expansion of 1

2β (−n(n − 1)P(n) + (n + 2)(n + 1)P(n + 2)) in the master
equation. The first of these terms is a drift term, β ∂

∂n (n2 P). This is responsible
for the term in the mean-field equation. The second term is a diffusion term. If we
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assume β small, then the additional diffusion induced by β can be ignored, and
we are left with only the drift term. The new FP equation now reads

∂ P

∂t
= −�P = α

∂2

∂n2
(n P) + β

∂

∂n
(n2 P) (76)

We have assumed the time dependence is exponential, and are looking for the
smallest eigenvalue �. We shall see that � vanishes in the β → 0 limit, consistent
with the power-law behavior found by P-L.

It is useful to transform the FP equation to Shroedinger form. The first step
in this process is to change variables to x ≡ √

n. This yields the equation

−αP ′′ −
(

3α

x
+ 2βx3

)

P ′ − 8βx2 P = 4�P (77)

The next step is a similarity transformation to eliminate the first derivative

P ≡ x−3/2e−βx4/4α Q (78)

yielding the Schroedinger equation

−Q′′ +
(

3

4x2
− 2βx2

α
+ β2x6

α2

)

Q = 4�

α
Q (79)

Clearly, in the absence of β there is no bound state. Rather there is a continuum
that starts at zero. The potential with β has a single minimum, which is negative.
Nevertheless, the ground state energy is positive, yielding a decay rate. The scaling
of the decay rate is clear; by rescaling y ≡ (β/α)1/4x , β and α disappear from
the equation, with the decay rate scaling as

√
αβ. As advertised, we verify the

vanishing of � with β. The presence of β has set the scale of (the surviving)
n’s, namely

√
α/β, which is large for small β. Lastly, the 1/x2 nature of the

α potential is clearly a result of the scale-free nature of the β = 0 problem. To
get the prefactor multiplying the

√
β, we have to numerically solve the rescaled

Shroedinger equation, (i.e., Eq. (79) with α = β = 1) yielding the result

� = 1.111
√

αβ (80)

The resulting scaled Pn is shown in Fig. 11, together with the rescaled exact
numerical solution of the master equation for β = 0.01. We see that Pn is strongly
peaked at the origin, corresponding to the zero particle mean-field solution.

The scaling with β we obtained is the same as found by Doering et al.
However, as opposed to the other cases examined herein, the prefactor is different
as now the mean time to extinction is not simply the inverse of the decay rate.
This is due to the fact that all the eigenvalues of the master equation scale as

√
β,

whereas the other cases exhibited a single exponentially small eigenvalue.
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Fig. 11. (color online) Rescaled probability distribution β−1/2 Pn as a function of β1/2n for the case
α = γ = 1, β = 0.01, together with the numerical solution of the Fokker-Planck equation.

5. CONCLUSIONS

We have solved for the fluctuation-induced extinction rates of various models
exhibiting a macroscopic metastable state. Our primary methodology is use the
WKB method for difference equations to directly solve the master equation. This
WKB solution then has to be matched to the low-n Pn’s, since the WKB method
is a large n approximation. This technique is quite general and straightforward to
implement, and produces quite accurate results as long as there are not too few
particles in the metastable state. It reproduces the Doering et al. results for the
case of general one-particle transitions and generalizes to higher-order transitions.
We have also shown the unique mathematical properties of the even/odd parity
conserving model, where we are able to generate the full asymptotic expansion
for the decay rate to all orders, and even to resum this divergent asymptotic series.

Our procedure as we have presented it is only directly applicable to sin-
gle species problems. For the case when more than one species is fluctuating,
the leading order WKB eikonal equation can be obtained. (6,8) This equation, of
Hamilton-Jacobi form, can be solved using the method of characteristics. The
characteristics are given by the solutions to the classical Hamiltonian dynamics of
an auxilliary problem in a 2Ns dimensional phase space, where Ns is the number
of species. (6,8) The leading-order exponential decay rate is then the classical ac-
tion of an instanton-type solution in this space. The extension of this procedure to
obtain the full physical optics solution is under current investigation.



Extinction Rates for Fluctuation-Induced Metastabilities 885

One interesting point which arises from our analysis is the sensitivity of the
decay rate to the exact form of the microscopic dynamics. This is apparent in the
very different dominant e�S for the case of the parity and non-parity cases. This
is also the case when one compares the logistic model with spontaneous decay
studied in Sec. 3, to the same model where the collision process P + P → 0
is replaced by P + P → P at twice the rate. Even at the level of the Fokker-
Planck dynamics valid near the metastable state, the widths of the distributions
are different, with the variance (3α − γ )/2β being replaced by α/β. The values
of �S in the two cases are very different, where Eq. (63) for the two-particle
annihilation should be compared to

�S =
∫ (α−γ )/β

0
ln

(
α

γ + βn

)

= α − γ

β
− γ

β
ln

(
α

γ

)

(81)

Thus, while the two expressions agree near threshold, where the Fokker-Planck
description is sufficient, as γ approaches 0, �S → 2α/β(1 − ln(2)) for the two-
particle annihilation case, as we saw in Sec. 1, whereas �S → α/β, almost twice
as large, for small γ in the P + P → P case. Parenthetically, it should be noted
that the small γ limit is very singular in this latter case, as naively � seems to
diverge as γ −1/2 for small γ � β. In general, for small β and γ , the decay rate
can be shown to be given by

� ≈
(

α

β

)γ /β a

�(γ /β)
e−α/β (82)

as so indeed vanishes as γ → 0, since there is no extinction in this case. In
situations where the Fokker-Planck equation is valid all the way down to n = 0, as
we saw was the case at threshold, at least the problem is parameterized by only two
parameters, the center and width of the Gaussian. However, in general, the entire
function n(�) is involved in the calculation of �S. This should have important
implications for the study of extinctions in the ecological community, for example,
where reliable microscopic models are difficult if not impossible to obtain.
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