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9.1 Goals and Outline

Throughout this book, the topic of order restricted inference is dealt with
almost exclusively from a Bayesian perspective. Some readers may wonder
why the other main school for statistical inference – frequentist inference –
has received so little attention here. Isn’t it true that in the field of psychology,
almost all inference is frequentist inference?

The first goal of this chapter is to highlight why frequentist inference
is a less-than-ideal method for statistical inference. The most fundamental
limitation of standard frequentist inference is that it does not condition on the
observed data. The resulting paradoxes have sparked a philosophical debate
that statistical practitioners have conveniently ignored. What cannot be so
easily ignored are the practical limitations of frequentist inference, such as its
restriction to nested model comparisons.

The second goal of this chapter is to highlight the theoretical and practical
advantages of a Bayesian analysis. From a theoretical perspective, Bayesian
inference is principled and prescriptive and – in contrast to frequentist infer-
ence – a method that does condition on the observed data. From a practical
perspective, Bayesian inference is becoming more and more attractive, mainly
because of recent advances in computational methodology (e.g., Markov chain
Monte Carlo and the WinBUGS program [95]). To illustrate, one of our fre-
quentist colleagues had been working with the WinBUGS program and com-
mented “I don’t agree with the Bayesian philosophy, but the WinBUGS pro-
gram does allow me to implement complicated models with surprisingly little
effort.” This response to Bayesian inference is diametrically opposed to the
one that was in vogue until the 1980s, when statisticians often sympathized
with the Bayesian philosophy but lacked the computational tools to implement
models with a moderate degree of complexity.
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The outline of this chapter is as follows: Section 9.2 introduces the Fish-
erian and the Neyman-Pearson flavors of frequentist inference and goes on
to list a number of limitations associated with these procedures. Section 9.3
introduces Bayesian inference and goes on to lists a number of its advantages.
Section 9.4 briefly presents our conclusions.

9.2 Frequentist Inference and Its Problems

Frequentist inference is based on the idea that probability is a limiting fre-
quency. This means that a frequentist feels comfortable assigning probability
to a repeatable event in which the uncertainty is due to randomness, such as
getting a full house in poker (i.e., aleatory uncertainty [78]). When n hands
are played and a full house is obtained in s cases, then, with n very large,
the probability of a full house is just s/n. But a frequentist must refuse to
assign probability to an event where uncertainty is also due to lack of knowl-
edge, such as the event of Alexander Grischuk ever winning a major poker
championship (i.e., epistemic uncertainty [34, 78]).

Because uncertainty about parameters is epistemic, frequentist inference
does not allow probability statements about the parameters of a statistical
process. For instance, the fact that a frequentist 95% confidence interval for
the normal mean µ is [−0.5, 1.0] does not mean that there is a 95% probability
that µ is in [−0.5, 1.0]. Instead, what it means is that if the same procedure
to construct confidence intervals was repeated very many times, for all kinds
of different datasets, then in 95% of the cases would the true µ lie in the 95%
confidence interval (cf. the example presented in Section 9.2.1).

Discussion of frequentist inference is complicated by the fact that cur-
rent practice has become an unacknowledged amalgamation of the p-value
approach advocated by Fisher [32] and the α-level approach advocated by
Neyman and Pearson [76]. Hubbard and Bayarri [49, p. 176] summarized and
contrasted the paradigms as follows:

The level of significance shown by a p value in a Fisherian sig-
nificance test refers to the probability of observing data this extreme
(or more so) under a null hypothesis. This data-dependent p value
plays an epistemic role by providing a measure of inductive evidence
against H0 in single experiments. This is very different from the signif-
icance level denoted by α in a Neyman-Pearson hypothesis test. With
Neyman-Pearson, the focus is on minimizing type II, or β, errors (i.e.,
false acceptance of a null hypothesis) subject to a bound on type I, or
α, errors (i.e., false rejections of a null hypothesis). Moreover, this error
minimization applies only to long-run repeated sampling situations,
not to individual experiments, and is a prescription for behaviors, not
a means of collecting evidence.
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Clearly then, Fisher’s approach is very different from that of Neyman and
Pearson. Yet, most researchers believe the paradigms have somehow merged
and interpret the p-value both as a measure of evidence and as a repetitive
error rate. It appears that the confusion between the two different procedures
is now close to total, and it has been argued that this mass confusion “has
rendered applications of classical statistical testing all but meaningless among
applied researchers.” [49, p. 171]. Additional references include [9, 18, 37, 38,
39, 40, 43, 91].

We now discuss several general problems of both the Fisherian and the
Neyman-Pearson procedure (cf. [14, 26, 48, 53, 91, 97]). Although only the
Neyman-Pearson procedure is truly frequentist (i.e., it requires knowledge
about performance in long-run sampling situations), we will perpetuate the
confusion and refer to both the Fisherian and the Neyman-Pearson procedure
as “frequentist.”

9.2.1 Frequentist Inference Generally Does Not Condition on the
Observed Data

As argued by Berger and Wolpert [14], frequentist evidence is often pre-
experimental or unconditional.4 This means that “a particular procedure is
decided upon for use, and the accuracy of the evidence from an experiment is
identified with the long run behavior of the procedure, were the experiment
repeatedly performed.” [14, p. 5]. We illustrate the problem with this uncon-
ditional approach by an example that highlights the pathological properties
of frequentist confidence intervals (cf. [15, p. 468]).

Consider a uniform distribution with mean µ and width 1. Draw two val-
ues randomly from this distribution, label the smallest one s and the largest
one l, and check whether the mean µ lies in between s and l. If this proce-
dure is repeated very many times, the mean µ will lie in between s and l in
half of the cases. Thus, (s, l) gives a 50% frequentist confidence interval for µ.
But suppose that for a particular draw, s = 9.8 and l = 10.7. The difference
between these values is 0.9, and this covers 9/10th of the range of the distri-
bution. Hence, for these particular values of s and l we can be 100% confident
that s < µ < l, even though the frequentist confidence interval would have
you believe you should only be 50% confident.

This example shows why it is important to condition on the data that have
actually been observed. The key problem is that frequentist methods do not do
this, so that for data x, “(...) a procedure which looks great pre-experimentally
could be terrible for particular x(...)” [14, p. 9]. Other examples of pathological
behavior of frequentist confidence intervals can be found in [15, pp. 466–469],
[14], and, in particular, [52].

4 Frequentist’ procedures sometimes do condition on important aspects of the data.
Conditioning is always partial, however, and there exist situations in which it is
unclear what aspects of the data on which to condition.
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Table 9.1. Two different sampling distributions, f(y) and g(y) that lead to two
different p-values for y = 5

Data y

Distribution y = 1 y = 2 y = 3 y = 4 y = 5 y = 6

f(y)|H0 .04 .30 .31 .31 .03 .01
g(y)|H0 .04 .30 .30 .30 .03 .03

9.2.2 Frequentist Inference Depends on Data That Were Never
Observed

The p-value is the probability under the null hypothesis of observing data at
least as extreme as the data that were actually observed. This means that the
p-value is partly determined by data that were never observed, as is illustrated
in the following example (cf. [4, 14, 19, 97]).

Assume the data y can take on six integer values, y ∈ {1, 2, ..., 6}, according
to one of the sampling distributions f(y) or g(y). Further assume that what
is observed is y = 5. As can be seen from Table 9.1, the observed datum is
equally likely under f(y) and g(y). Yet, a one-sided p-value is .03 + .01 = .04
under f(y) and .03 + .03 = .06 under g(y). This is solely due to the fact that
the more extreme observation y = 6, which was never observed, is less likely
under f(y) than it is under g(y). Jeffreys famously summarized the situation:
“What the use of P implies, therefore, is that a hypothesis that may be true
may be rejected because it has not predicted observable results that have not
occurred. This seems a remarkable procedure” [55, p. 385, italics in original].

9.2.3 Frequentist Inference Depends on the Intention With Which
the Data Were Collected

Because p-values are calculated over the sample space, changes in the sample
space can greatly affect the p-value. For instance, assume that a participant
answers a series of 17 test questions of equal difficulty; 13 answers are correct,
4 are incorrect, and the last question was answered incorrectly. Under the
standard binomial sampling plan (i.e., “ask 17 questions”), the two-sided p-
value is .049. The data are, however, also consistent with a negative binomial
sampling plan (i.e., “keep on asking questions until the fourth error occurs”).
Under this alternative sampling plan, the experiment could have been finished
after four questions, or after a million. For this sampling plan, the p-value is
.021.

What this simple example shows is that the intention of the researcher af-
fects statistical inference – the data are consistent with both sampling plans,
yet the p-value differs. Berger and Wolpert [14, pp. 30–33] discussed the result-
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ing counterintuitive consequences through a story involving a naive scientist
and a frequentist statistician.

In the story, a naive scientist has obtained 100 independent observations
that are assumed to originate from a normal distribution with mean θ and
standard deviation 1. In order to test the null hypothesis that θ = 0, the
scientist consults a frequentist statistician. The mean of the observations is 0.2,
and hence the p-value is a little smaller than .05, which leads to a rejection of
the null hypothesis. However, the statistician decides to probe deeper into the
problem and asks the scientist what he would have done in the fictional case
that the experiment had not yielded a significant result after 100 observations.
The scientist replies that he would have collected another 100 observations.
Thus, it may be hypothesized that the implicit sampling plan was not to collect
100 observation and stop; instead, the implicit sampling plan was to first take
100 observations and check whether p < .05. When the check is successful,
the experiment stops, but when the check fails, another 100 observations are
collected and added to the first 100, after which the experiment stops.

The statistician then succeeds in convincing the scientist that use of the
implicit sampling plan requires a correction in order to keep the type I error
rate at α = .05 [81]. Unfortunately, this correction for planning multiple tests
now leads to a p-value that is no longer significant. Therefore, the puzzled
scientist is forced to continue the experiment and collect an additional 100
observations. Note that the interpretation of the data (i.e., significant or not
significant) depends on what the scientist was planning to do in a situation
that did not actually occur. If the very same data had been collected by
a scientist who had answered the statistician’s question by saying, whether
truthfully or not, “I would not have collected any more observations,” then the
data would have been judged to be significant: Same data, different inference.

But the story becomes even more peculiar. Assume that the scientist col-
lects the next 100 observations and sets up another meeting with the statisti-
cian. The data are now significant. The statistician, however, persists and asks
what the scientist would have done in case the experiment had not yielded a
significant result after 200 observations. Suppose that the scientist now an-
swers “This would have depended on the status of my grant renewal. If my
grant is renewed, I would have had enough funds to test another 100 obser-
vations. If my grant is not renewed, I would have had to stop the experiment.
Not that this matters, of course, because the data were significant anyway.”

The frequentist statistician then explains that the inference depends on
the grant renewal; if the grant is not renewed, the sampling plan stands and
no correction is necessary. But if the grant is renewed, the scientist could
have collected more data, in the fictional case that the data would not have
been significant after 200 observations. This calls for a correction for planning
multiple tests, similar to the first one. Berger and Wolpert [14, p. 33] end
their story: “The up-to-now honest scientist has had enough, and he sends
in a request to have the grant renewal denied, vowing never again to tell the
statistician what he could have done under alternative scenarios.”
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We believe that most researchers find it awkward that the conclusions
from frequentist statistics depend critically on events that have yet to happen
– events that, moreover, seem to be irrelevant with respect to the data that
have actually been obtained.

9.2.4 Frequentist Inference Does Not Prescribe Which Estimator
Is Best

Frequentist inference is not derived from a set of simple axioms that describe
rational behavior. This means that any statistical problem potentially affords
more than one frequentist solution, and it may be unclear which one is best.
For instance, many different estimators may be proposed for a particular pa-
rameter θ. Which estimator for θ should we prefer? The common strategy is to
narrow down the set of admissible estimators by considering only estimators
that are unbiased. An estimator t(·) based on data y is unbiased when∫

Y

t(y)p(y|θ) dy = θ, (9.1)

for all θ, where Y indicates the sample space (cf. [65]); that is, the only
estimators taken into consideration are those that, averaged over the data
that could arise, do not systematically overestimate or underestimate θ.

Although the criterion of unbiasedness has intuitive appeal, it is in fact
highly contentious. First, the criterion is based on all possible datasets that
could be observed (i.e., the sample space Y ). This means that the intention
of the researcher affects which estimators are unbiased and which are not. For
instance, for the binomial sampling plan the unbiased estimator is s/n, where
s is the number of correct responses out of a total of n questions, but for the
negative binomial sampling plan the unbiased estimator is (s − 1)/(n − 1).
Second, an estimator that is unbiased for θ may well be biased for some
nonlinear transformation of θ such as

√
θ.

Finally, unbiased estimators may perform uniformly worse than biased
estimators. Consider, for instance, the datum y distributed as N (

√
θ, 1) with

θ > 0. The unbiased estimator for θ is t(y) = y2 − 1. But when |y| < 1, t(y)
is negative, which conflicts with the knowledge that θ > 0. A new estimator
tnew(y) may be proposed that is given by tnew(y) = y2 − 1 when |y| ≥ 1 and
tnew(y) = 0 otherwise. The new estimator tnew(y) is biased but does uniformly
better than the unbiased estimator t(y), this means that t(y) is inadmissible
(cf. [79]).

It should also be noted that in the above example, t(y) is biased downward
when |y| < 1, but biased upward when |y| ≥ 1. Thus, an estimator may be
unbiased for all possible datasets taken together, but it may – at the same
time – be biased for every single dataset considered in isolation [79, p. 122].

Frequentist statisticians are aware of this problem, in the sense that they
acknowledge that “(...) an overly rigid insistence upon unbiasedness may lead
to difficulties” [96, p.432]. This statement highlights an important problem:
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Frequentist inference does not specify a unique solution for every statistical
problem. When unfortunate consequences of, say, “an overly rigid insistence
upon unbiasedness” become apparent, adhoc estimators may be proposed that
remedy the immediate problem – but this clearly is not a satisfactory state of
affairs.

9.2.5 Frequentist Inference Does Not Quantify Statistical Evidence

According to the Fisherian tradition, p-values reflect the strength of evidence
against the null hypothesis. General guidelines associate specific ranges of p-
values with varying levels of evidence: A p-value greater than .1 yields “little
or no real evidence against the null hypothesis,” a p-value less than .1 but
greater than .05 implies “suggestive evidence against the null hypothesis,” a
p-value less than .05 but greater than .01 yields “moderate evidence against
the null hypothesis,” and a p-value less than .01 constitutes “very strong
evidence against the null hypothesis” [17, p. 9]; see also [101, p. 157].

If p-values truly reflect evidence, a minimum requirement is that equal p-
values provide equal evidence against the null hypothesis (i.e., the p-postulate
[97]). According to the p-postulate, p = .05 with 10 observations constitutes
just as much evidence against the null hypothesis as does p = .05 after 50
observations.

It may not come as a surprise that Sir Ronald Fisher himself was of the
opinion that the p-postulate is correct: “It is not true...that valid conclusions
cannot be drawn from small samples; if accurate methods are used in calculat-
ing the probability [the p-value], we thereby make full allowance for the size
of the sample, and should be influenced in our judgement only by the value
of probability indicated” [31, p. 182], as cited in [91, p. 70].

Nevertheless, some researchers believe that the p-postulate is false and
that p = .05 after 50 observations is more reliable than p = .05 after 10 ob-
servations. For instance, Rosenthal and Gaito [84] found that the confidence
with which a group of psychologists were willing to reject the null hypothesis
increased with sample size (cf. [75]). Consistent with the psychologists’ intu-
ition, an article co-authored by 10 reputable statisticians stated that “a given
p-value in a large trial is usually stronger evidence that the treatments really
differ than the same p-value in a small trial of the same treatments would be”
[80, p. 593], as cited in [91, p. 71].

Finally, several researchers have argued that when the p-values are the
same, studies with small sample size actually provide more evidence against
the null hypothesis than studies with large sample size (e.g., [1, 3, 69, 75]).
For a summary of the debate, see [90]. Abelson considered the very question
of whether a researcher would be happier with a p = .05 after testing 10 cases
per group or after testing 50 cases per group, and then firmly concluded “Un-
dergraduates inevitably give the wrong reply: Fifty cases per group, because
a bigger sample is more reliable.” The appropriate answer is “ten cases per
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group, because if the p values are the same, the observed effect size has to be
bigger with a smaller n” [1, p. 12].

In order to draw a firm conclusion about the veracity of the p-postulate,
we first need to define what “evidence” is. The details of a rational (i.e.,
coherent or Bayesian) definition of evidence are presented in Section 9.3. Here
it suffices to say that such an analysis must always reject the p-postulate (e.g.,
[26, 64, 98]): From a rational perspective, p = .05 after only 10 observations is
more impressive than p = .05 after 1000 observations. In fact, it may happen
that that for a large dataset, a frequentist analysis will suggest that the null
hypothesis should be rejected, whereas a rational analysis will suggest that
the null hypothesis is strongly supported.

9.2.6 Frequentist Inference Does Not Apply to Non-nested Models

Consider the study on Dissociative Identity Disorder (DID), introduced in
Chapter 2 and discussed throughout this book. In this study, Huntjens et al.
[50] set out to study memory processes in DID-patients. These patients often
report inter-identity amnesia (i.e., impaired memory for events experienced
by identities that are not currently present). For instance, the identity “lonely
girl” may have limited or no knowledge of the events experienced by the iden-
tity “femme fatale.” To test whether DID-patients were really affected by
interidentity amnesia or whether they were simulating their amnesia, the au-
thors assessed the performance of four groups of subjects on a multiple-choice
recognition test. The dependent measure was the number of correct responses.
The first group were the DID-patients, the second group were Controls, the
third group were controls instructed to simulate interidentity amnesia (Simu-
lators), and the fourth group were controls who had never seen the study list
and were therefore True amnesiacs.

From the psychological theorizing that guided the design of the experi-
ment, one can extract several hypotheses concerning the relative performance
of the different groups. One hypothesis, H1a, states that the mean recognition
scores µ for DID-patients and True amnesiacs are the same and that their
scores are higher than those of the Simulators: µcon > {µamn = µpat} > µsim.
Another hypothesis, H1b, states that the mean recognition scores µ for DID-
patients and Simulators are the same and that their scores are lower than
those of the True amnesiacs: µcon > µamn > {µpat = µsim}.

The hypotheses H1a and H1b are non-nested, and frequentist inference
is not well suited for the comparison of such models (e.g., [60]). The main
problem is that it is not clear whether H1a or H1b should be considered the
null hypothesis. One might try both possibilities, but this runs the danger of
simultaneously rejecting (or accepting) both H1a and H1b. Moreover, it is not
clear how to interpret the hypothetical result of p = .04 when H1a serves as
the null hypothesis, and p = .06 when H1b serves as the null hypothesis – even
though H1a is rejected and H1b is not, this does not mean that H1b is much
better than H1a.
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9.2.7 Interim Conclusion

In the preceding analyses we have argued that frequentist procedures suffer
from fundamental philosophical and practical problems. These problems are
not some kind of well-kept secret, as statisticians have written about these
frequentist flaws for many decades; the website http://biology.uark.edu/
coop/Courses/thompson5.html documents some of their efforts by listing
402 articles and books that criticize the use of frequentist null hypothesis
testing.

Indeed, the selection of problems mentioned in Sections 9.2.1 to 9.2.6 was
certainly not exhaustive. Other problems include the fact that α-levels are ar-
bitrary “surely, God loves the .06 nearly as much as the .05” [85, p. 1277], the
fact that inference in sequential designs is overly complicated and conserva-
tive “Sequential analysis is a hoax” [2, p. 381], the fact that p-values are often
misinterpreted, even by those teaching statistics [44], the fact that Fisherian
frequentist inference does not allow one to obtain evidence in support of the
null hypothesis, and the fact that frequentist inference is internally inconsis-
tent or incoherent. The latter means that when statistical conclusions need
to be backed up by betting on them, the frequentist will be a sure loser (for
details, see Section 9.3.1).

All of this makes one may wonder why – despite the harsh criticism – the
flogged horse of frequentist inference is still alive and well, at least in the field
of psychology [1]. We believe the reason for this is most likely an unfortunate
combination of several factors. Among the most important of these are ease
of application, presumed lack of an appealing alternative, limited statistical
knowledge among practitioners, faulty and one-sided teaching of statistics at
universities, historical precedent, and – for a few special cases – exact nu-
merical correspondence of frequentist “flogged horse” inference with rational
inference to be discussed below.

This concludes our summary of frequentist inference and its problems. We
now turn to a discussion of the other major statistical paradigms for statistical
inference, which differs from frequentist inference in a few key assumptions. We
will argue that, both philosophically and practically, this paradigm constitutes
a superior alternative to frequentist inference.

9.3 Bayesian Inference and Its Advantages

In Bayesian inference, parameters are random variables. Uncertainty or degree
of belief with respect to the parameters is quantified by probability distribu-
tions. For a given model, say H1, the prior distribution p(θ|H1) for a param-
eter θ is updated after encountering data y to yield a posterior distribution
p(θ|y,H1). The posterior information contains all of the relevant information
about θ. Note that the posterior distribution is conditional on the data y that
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have been observed; data that could have been observed, but were not, do not
affect Bayesian inference.

Specifically, Bayes’ rule states that the posterior distribution p(θ|y,H1) is
proportional to the product of the prior p(θ|H1) and the likelihood f(y|θ,H1):

p(θ|y,H1) = p(θ|H1)f(y|θ,H1)/m(y|H1). (9.2)

In this equation, m(y|H1) is the marginal probability of the data; it is com-
puted by integrating out the model parameters using the law of total proba-
bility:

m(y|H1) =
∫
p(y, θ|H1) dθ =

∫
p(θ|H1)f(y|θ,H1) dθ. (9.3)

This shows that m(y|H1) can also be interpreted as a weighted average likeli-
hood where the weights are provided by the prior distribution p(θ|H1). Because
m(y|H1) is a number that does not depend on θ, m(y|H1) can be conveniently
ignored when the goal is to estimate θ. However, when the goal is Bayesian
hypothesis testing, m(y|H1) becomes critically important.

For concreteness, consider the choice between two possibly non-nested
models, H1 and H2. The extension to more than two models is entirely possi-
ble and follows the same recipe. Bayes’ rule dictates how the prior probability
of H1, p(H1), is updated through the data to give the posterior probability of
H1, p(H1|y):

p(H1|y) = p(H1)m(y|H1)/
∑

t

p(Ht)m(y|Ht). (9.4)

In the same way, one can calculate the posterior probability of H2, p(H2|y).
The ratio of these posterior probabilities is given by

p(H1|y)
p(H2|y)

=
p(H1)
p(H2)

m(y|H1)
m(y|H2)

, (9.5)

which shows that the posterior odds p(H1|y)/p(H2|y) is equal to the prod-
uct of the prior odds p(H1)/p(H2) and the ratio of marginal probabilities
m(y|H1)/m(y|H2). Thus, the ratio of marginal probabilities – henceforth re-
ferred to as the Bayes factor [55] – quantifies the change from prior to posterior
odds brought about by the data. The Bayes factor, or the log of the Bayes
factor, is often interpreted as the weight of evidence coming from the data
[42]. Thus, a Bayes factor hypothesis test prefers the model under which the
observed data are most likely. For details see [13], [15, Chapter 6], [41, Chap-
ter 7], [56], and [77]; for an introduction in Bayesian inference, see Chapters
3 and 4 of the present book.

Jeffreys [55] proposed labeling the evidence provided by the Bayes factor
according to a classification scheme that was subsequently revised by Raftery
[82, Table 6]. Table 9.2 shows the Raftery classification scheme. The first
column shows the Bayes factor, and the second column shows the associated
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Table 9.2. Interpretation of the Bayes factor in terms of evidence

Bayes factor p(H1|y) Evidence
BF12

1–3 .50–.75 Weak
3–20 .75–.95 Positive

20–150 .95–.99 Strong
> 150 > .99 Very strong

posterior probability when it is assumed that both H1 and H2 are a priori
equally plausible. The third column shows the verbal labels for the evidence at
hand, in the case of a comparison between two models. Note that these verbal
labels are associated with the level of evidence that is provided by the Bayes
factor (i.e., a comparison between two models). These verbal labels should
not be associated with posterior model probabilities (PMPs) when the set
of candidate models is larger than two, for example, consider the problem of
finding the best set of predictors for a regression equation. By considering all
possible combinations of predictors, the model space can easily comprise as
many as 100,000 candidate models. When a single model out of such a large
set has a posterior probability of, say, .50, this would constitute a dramatic
increase over its prior probability of .000001, and hence the data provide “very
strong” rather than “weak” evidence in its favor.

Bayesian procedures of parameter estimation and hypothesis testing have
many advantages over their frequentist counterparts. Below is a selective list
of 10 specific advantages that the Bayesian paradigm affords.

9.3.1 Coherence

Bayesian inference is prescriptive; given the specification of a model, there
exists only one way to obtain the appropriate answer. Bayesian inference does
not require adhoc solutions to remedy procedures that yield internally incon-
sistent results. Bayesian inference is immune from such inconsistencies because
it is founded on a small set of axioms for rational decision making. Several
axiom systems have been proposed, but they all lead to the same conclu-
sion: Reasoning under uncertainty can only be coherent if it obeys the laws
of probability theory (e.g., [15, 20, 22, 23, 30, 53, 66, 68, 83, 92]).

One of the famous methods to prove this far-reaching conclusion is due to
Bruno de Finetti and involves a betting scenario [22]. Assume there exists a
legally binding ticket that guarantees to pay 1 euro should a proposition turn
out to be true. For instance, the proposition could be “In 2010, the Dutch
national soccer team will win the world cup.” Now you have to determine
the price you are willing to pay for this ticket. This price is the “operational
subjective probability” that you assign to the proposition.
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The complication is that this scenario also features an opponent. The
opponent can decide, based on the price that you determined, to either buy
this ticket from you or to make you buy the ticket from him. This is similar to
the “I cut, you choose” rule where the person who cuts a cake gets to choose
the last piece; it is then in that person’s own interest to make a fair judgment.

In the example of the ticket, it is obviously irrational to set the price higher
than 1 euro, because the opponent will make you buy this ticket from him
and he is guaranteed to make a profit. It is also irrational to set the price
lower than 0 euro, because the opponent will “buy” the ticket from you at a
negative price (i.e., gaining money) and is again guaranteed to make a profit.

Now suppose you have to determine the price of three individual tickets.
Ticket A states “In 2010, the Dutch national soccer team will win the world
cup”; ticket B states “In 2010, the French national soccer team will win the
world cup”; and ticket C states “In 2010, either the Dutch or the French
national soccer team will win the world cup.” You can set the prices any
way you want. In particular, there is nothing to keep you from setting the
prices such that price(ticket A) + price(ticket B) 6= price(ticket C). However,
when you set the prices this way, you are guaranteed to lose money compared
to your opponent; for instance, suppose you set price(ticket A) = 0.5 euro,
price(ticket B) = 0.3 euro, and price(ticket C) = 0.6 euro. Then the opponent
will buy ticket C from you, sell you tickets A and B, and he is guaranteed
to come out ahead. A set of wagers that ensures that somebody will make a
profit, regardless of what happens, is called a Dutch book.

Using betting scenarios such as the above, de Finetti showed that the only
way to determine subjective values and avoid a certain loss is to make these
values obey the rules of probability theory (i.e., the rule that probabilities lie
between 0 and 1, the rule that mutually exclusive events are additive, and the
rule of conditional probability); that is, the only way to avoid a Dutch book
is to make your prices for the separate tickets cohere according to the laws of
probability calculus.

The concept of coherence refers not just to the betting scenario, but more
generally to the combination of information in a way that is internally con-
sistent. For example, consider Bayesian inference in the case that the data
arrive in two batches, y1 and y2 [79, pp. 64-65]. Following the adage “today’s
posterior is tomorrow’s prior” [65, p. 2], we can update from the initial prior
p(θ) to a posterior p(θ|y1) and then update this posterior again, effectively
treating p(θ|y1) as a prior, to finally obtain p(θ|y1, y2). The crucial aspect is
that when the data are conditionally independent, it does not matter whether
we observe the dataset batch-by-batch, all at once, or in reverse order.

As an additional example of coherence, consider a set of three models: H1

postulates that µa = µb = µc, H2 postulates that {µa = µb} > µc, and H3

postulates that µa > {µb = µc}. Then, denoting the Bayes factor for model
Hi over model Hj by BFij , we can deduce from the identity
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m(y|H1)
m(y|H2)

=
m(y|H1)
m(y|H3)

m(y|H3)
m(y|H2)

, (9.6)

that BF12 = BF32 × BF13. This means that if the data are twice as likely
under H1 than under H3 and thrice as likely under H3 than under H2, we
know that the data are six times more likely under H1 than under H2. If the
Bayes factors would not commute like this, one could construct a situation in
which one could hold intransitive beliefs – a situation that would violate the
axioms of rational decision making upon which Bayesian inference rests.

9.3.2 Automatic Parsimony

In statistical hypothesis testing, the ideal model captures all of the replicable
structure and ignores all of the idiosyncratic noise. Such an ideal model yields
the best predictions for unseen data coming from the same source. When a
model is too complex, it is said to overfit the data; the model mistakenly
treats idiosyncratic noise as if it were replicable structure. When a model is
too simple, it is said to underfit the data, which means that the model fails
to capture all of the replicable structure in the data. Models that underfit
or overfit the data provide suboptimal predictions and are said to generalize
poorly (e.g., [73, 100]).

The main challenge of hypothesis testing or model selection is to identify
the model with the best predictive performance. However, it is not immedi-
ately obvious how this should be done; complex models will generally provide
a better fit to the observed data than simple models, and therefore one can-
not simply prefer the model with the best “goodness-of-fit” – such a strat-
egy would lead to massive overfitting. Intuition suggests that this tendency
for overfitting should be counteracted by putting a premium on simplicity.
This intuition is consistent with the law of parsimony or “Occam’s razor” (cf.
http://en.wikipedia.org/wiki/Occam’s_Razor), which states that when
everything else is equal, simple models are to be preferred over complex mod-
els [53, Chapter 20].

Formal model selection methods try to quantify the trade-off between
goodness-of-fit and parsimony. Many of these methods measure a model’s
overall performance by the sum of two components: One that measures de-
scriptive accuracy and one that places a premium on parsimony. The latter
component is also known as the Occam factor [70, Chapter 28]. For many
model selection methods, the crucial issue is how to determine the Occam
factor. One of the attractive features of Bayesian hypothesis testing is that it
automatically determines the model with the best predictive performance –
Bayesian hypothesis testing therefore incorporates what is known as an au-
tomatic Occam’s razor. In order to see why this is the case, we explore two
lines of reasoning.

First, recall that Bayesian model selection is based on the marginal prob-
ability of the data given model t, m(y|Ht). Now denote a sequence of n data
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points by yn = (y1, ..., yn); for example, yi−1 denotes the (i− 1)th individual
data point, whereas yi−1 denotes the entire sequence of observations ranging
from y1 up to and including yi−1. Quantify predictive performance for a single
data point by the logarithmic loss function − ln p̂i(yi): the larger the prob-
ability that p̂i (determined based on the previous observations yi−1) assigns
to the observed outcome yi, the smaller the loss. From the definition of con-
ditional probability (i.e., p(yi|yi−1) = p(yi)/p(yi−1)), it then follows that the
marginal probability of the data may be decomposed as a series of sequential,
“one-step-ahead” probabilistic predictions (e.g., [21, 99]):

m(yn|Ht) = p(y1, ..., yn|Ht)

= p(yn|yn−1,Ht)p(yn−1|yn−2,Ht)...p(y2|y1,Ht)p(y1|Ht). (9.7)

Thus, (9.7) shows that the model with the highest marginal probabil-
ity will also have the smallest sum of one-step-ahead prediction errors, as
− lnm(yn|Ht) =

∑n
i=1− ln p(yi|yi−1,Ht).

According to the second line of reasoning, every statistical model makes
a priori predictions. Complex models have a relatively large parameter space
and are therefore able to make many more predictions and cover many more
eventualities than simple models. However, the drawback for complex models
is that they need to spread out their prior probability across their entire
parameter space. In the limit, a model that predicts almost everything has to
spread out its prior probability so thinly that the occurrence of any particular
event will not greatly add to that model’s credibility. Formally, the marginal
probability of the data is calculated by averaging the likelihood f(y|θ,Ht)
over the prior p(θ|Ht). When the prior is very spread out, it will occupy a
relatively large part of the parameter space in which the likelihood is almost
zero, and this greatly decreases the average or marginal likelihood.

As a more concrete example, consider two people, Bart and Lisa, who each
get 100 euros to bet on the winner of the 2010 world cup soccer. Bart decides
to divide his money evenly over 10 candidate teams, including those from
Brazil and Germany. Lisa divides her money over just two teams, betting 60
euros on the team from Brazil and 40 euros on the team from Germany. Now
if either Brazil or Germany turn out to win the 2010 world cup, Lisa wins
more money than Bart. By betting all her money on just two teams, Lisa was
willing to take a risk, whereas Bart was just trying to keep his options open.
For Bart, this means that even if his prediction of Brazil winning turns out
to be correct, he will still lose the 90 euros he bet on the other countries to
win. The point of the story is that, both at the betting office and in Bayesian
inference, hedging your bets is not necessarily the best option, because this
requires you to spread your resources – be it money or prior probability mass
– thinly over the alternative options.
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9.3.3 Extension to Non-nested Models

Bayesian hypothesis testing is based on the marginal probability of the data
given model t, m(y|Ht), and therefore it does not make a fundamental dis-
tinction between nested and non-nested models. This means that Bayesian
hypothesis testing can be applied in many more situations than frequentist
hypothesis testing. In cognitive psychology, for instance, important substan-
tive questions concern the extent to which the law of practice follows a power
function versus an exponential function or the extent to which category learn-
ing is best described by an exemplar model or a prototype model. For Bayesian
inference, the substantive questions can be statistically tested in exactly the
same way, whether the competing models are nested or not. For frequentist
inference, however, the fact that the models are non-nested causes grave com-
plications.

Another class of possibly non-nested models that are of great relevance
for psychologists are those that incorporate order restrictions. For instance,
consider again the case of the Huntjens et al. study on DID discussed in
Section 9.2.6 and throughout this book. For the data from the study, hy-
pothesis H1a states that the mean recognition scores µ for DID-patients and
True amnesiacs are the same and that their scores are higher than those
of the Simulators: µcon > {µamn = µpat} > µsim, whereas hypothesis H1b

states that the mean recognition scores µ for DID-patients and Simulators are
the same and that their scores are lower than those of the True amnesiacs:
µcon > µamn > {µpat = µsim}. Within the frequentist paradigm, a compari-
son of these models is problematical. Within the Bayesian paradigm, however,
the comparison is natural and elegant (e.g., [35, 47, 59, 60, 61, 62, 94]).

The general recipe, outlined in O’Hagan and Forster [79, pp. 70-71] is to
carry out order restricted inference by first considering the posterior distri-
bution of the unconstrained model and then restricting one’s attention to the
part of the posterior distribution that obeys the parameter constraints. In
a Markov chain Monte Carlo (MCMC) simulation, for instance, this can be
accomplished automatically by retaining only those samples that are in line
with the constraints. The work reported in this book attests to the ability of
Bayesian inference to address substantive psychological questions that involve
order restrictions in a manner that is unattainable by frequentist means.

9.3.4 Flexibility

Bayesian inference allows for the flexible implementation of relatively compli-
cated statistical techniques such as those that involve hierarchical nonlinear
models (e.g., [71, 72, 74, 86, 87, 88, 89]). In hierarchical models, parameters
for individual people are assumed to be drawn from a group-level distribution.
Such multilevel structures naturally incorporate both the differences and the
commonalities between people and therefore provide experimental psychology



196 Wagenmakers, Lee, Lodewyckx, Iverson

with the means to settle the age-old problem of how to deal with individual
differences.

Historically, the field of experimental psychology has tried to ignore indi-
vidual differences, pretending instead that each new participant is a replicate
of the previous one [6]. As Bill Estes and others have shown, however, indi-
vidual differences that are ignored can lead to averaging artifacts in which the
data that are averaged over participants are no longer representative for any
of the participants (e.g., [28, 29, 45]). One way to address this issue, popular
in psychophysics, is to measure each individual participant extensively and
deal with the data on a participant-by-participant basis.

In between the two extremes of assuming that participants are completely
the same and that they are completely different lies the compromise of hierar-
chical modeling (cf. [63]). The theoretical advantages and practical relevance
of a Bayesian hierarchical analysis for common experimental designs has been
repeatedly demonstrated by Jeff Rouder and colleagues (e.g., [86, 88, 89]).
Although hierarchical analyses can be carried out using orthodox methodol-
ogy [46], there are strong philosophical and practical reasons to prefer the
Bayesian methodology (e.g., [36, 68]).

9.3.5 Marginalization

Bayesian statistics makes it easy to focus on the relevant variables by inte-
grating out so-called nuisance variables (e.g., [5, 12]). Consider, for instance,
the case of the normal distribution, for which the likelihood function is given
by

f(y|µ, σ) =
1

σ
√

2π
exp

(
− (y − µ)2

2σ2

)
. (9.8)

For this example, we follow [70, Chapter 24] and propose conjugate im-
proper priors for µ and σ. A prior is said to be conjugate when it is in the
same distributional family as the posterior distribution. For instance, when
the prior for µ is normal, the posterior for µ is also normal. Conjugate priors
are often the only ones that allow analytical derivation of the posterior. A
prior is said to be improper when it does not integrate to a finite number. For
instance, when the prior for µ is a normal distribution with mean µ0 = 0 and
standard deviation σµ → ∞, this yields a prior that is flat across the entire
real line. For the present example, we use conjugate improper priors on µ and
σ because they lead to elegant analytical results that correspond to results
from frequentist inference.

In particular, we assume here that the prior on µ is normal with mean
µ0 = 0 and standard deviation σµ →∞. This flat prior simply states that all
values of µ are equally likely a priori. Because σ is always greater than 0, but
log σ covers the entire real line, a standard “uninformative” prior is flat on
the log scale, which transforms to the prior p(σ) = 1/σ. Using these priors,
one can analytically derive the joint posterior distribution of µ and σ given
the data (i.e., p(µ, σ|y)) (e.g., [70, Chapter 24]).
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Now that we have defined the priors and know the joint posterior distri-
bution of µ and σ, consider two scenarios in which one needs to eliminate a
nuisance parameter. In the first scenario, we want to learn about the mean µ
of a normal distribution with unknown standard deviation σ. Thus, µ is the
parameter of interest, whereas σ is a parameter that one would like to ignore
(i.e., a nuisance parameter).

Using the law of total probability, it is straightforward to marginalize over,
or integrate out, σ, as p(µ|y) =

∫
p(µ, σ|y) dσ. The fact that this equation

can be rewritten as p(µ|y) =
∫
p(µ|σ, y)p(σ) dσ highlights the fact that the

nuisance parameter σ can only be integrated out once it has been assigned
a prior distribution. After integrating out σ, the resulting posterior marginal
distribution for p(µ|y) turns out to be the Student-t distribution, the famous
frequentist distribution for a test statistic that involves the mean of a normal
distribution with unknown variance [54].

In the second situation, we want to learn about the standard deviation
σ of a normal distribution with unknown mean µ. This means that σ is the
parameter of interest, whereas µ is now the nuisance parameter. From the
joint posterior distribution of µ and σ, we can again apply the law of total
probability, this time to integrate out µ, as follows: p(σ|y) =

∫
p(σ, µ|y) dµ =∫

p(σ|µ, y)p(µ) dµ. As before, this equation shows that the nuisance parameter
µ can only be integrated out when it has been assigned a prior distribution.
After computing the marginal posterior distribution p(σ|y), the Most Probable
value for σ (given the data y) turns out to be σMP =

√
S2/(n− 1), where n

equals the number of observations and S2 =
∑n

i=1(yi − ȳ)2. The factor n− 1
(instead of n) also occurs in frequentist inference, where S2/(n − 1) is the
unbiased estimator for the variance of a normal distribution with unknown
mean.

In sum, Bayesian inference allows the user to focus on parameters of in-
terest by integrating out nuisance parameters according to the law of total
probability. The resulting marginal posterior distributions may have matching
frequentist counterparts, but this only holds in a few special cases.

9.3.6 Validity

Bayesian inference yields results that connect closely to what researchers want
to know. To clarify this claim by analogy, Gerd Gigerenzer has suggested that
for many researchers statistical inference involves an internal Freudian strug-
gle amond the Superego, the Ego, and the Id (e.g., [37, 39]). In Gigerenzer’s
analogy, the Superego promotes Neyman-Pearson hypothesis testing, in which
an α-level is determined in advance of the experiment. The Ego promotes Fish-
erian hypothesis testing, in which the precise value of p supposedly measures
the strength evidence against the null hypothesis. Finally, the Id desires that
the hypotheses under consideration are assigned probabilities, something that
the Superego and Ego are unable and unwilling to do. As a result of this
unconscious internal conflict, researchers often report results from frequentist
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procedures, but often believe – implicitly or even explicitly – that they have
learned something about the probability of the hypotheses under considera-
tion.

We agree with Gigerenzer that, deep down inside, what researchers really
want is to draw Bayesian conclusions. Or, in the words of Dennis Lindley,
“Inside every Non-Bayesian, there is a Bayesian struggling to get out,” as
cited in [53]. This assertion is supported by the fact that researchers often
misinterpret frequentist concepts – and misinterpret them in a manner that
is decidedly Bayesian (i.e., the interpretation would have been correct if the
method of inference had been Bayesian) [44].

To illustrate the foregoing with a concrete example, consider a frequentist
confidence interval for the normal mean µ: µ ∈ [−0.5, 1.0]. As we have seen in
Section 9.2.1, the correct but counterintuitive interpretation of this result is
that when the frequentist procedure is applied very many times to all kinds of
possible datasets, the different intervals cover the true value of µ in 95% of the
cases. But why would this be relevant for the researcher who wants to learn
about µ for his or her data? In contrast, consider the same [−0.5, 1.0] interval
for µ, but now assume it is a Bayesian 95% credible interval. Consistent with
intuition and consistent with what researchers want to know, this Bayesian
interval conveys that there is a .95 probability that µ lies in [−0.5, 1.0]. From
the viewpoint of “operation subjective probability” discussed in Section 9.3.1,
this confidence interval means that when a coherent researcher is asked to set
a fair price for a ticket that promises to pay 1 euro should the assertion “µ
is in [−0.5, 1.0]” turn out to be true, that researcher will set the price of the
ticket at exactly 0.95 euro.

9.3.7 Subjectivity That Is Open to Inspection

A common objection to Bayesian inference is that it is subjective and therefore
has no place in scientific communication. For instance, in an article entitled
“Why Isn’t Everyone a Bayesian?” Bradly Efron argued that “Strict objec-
tivity is one of the crucial factors separating scientific thinking from wishful
thinking” and concluded that “The high ground of scientific objectivity has
been seized by the frequentists” [27, p. 4].

Efron’s claims need to be amended for several reasons. First, from a sub-
jective Bayesian perspective, there is no such thing as “strict objectivity,”
as reasoning under uncertainty is always relative to some sort of background
knowledge. In this view, the search for “strict objectivity” is a quixotic ideal.
Thus, subjective Bayesians might want to change Efron’s claim to “The high
ground of scientific objectivity is a concept that cannot be seized by anyone,
because it does not exist.”

Second, there exists a school of objective Bayesians, who specify priors ac-
cording to certain predetermined rules [58]. Given a specific rule, the outcome
of statistical inference is independent of the person who performs the analysis.
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Examples of objective priors include the unit information priors, that is, pri-
ors that carry as much information as a single observation [57], priors that are
invariant under transformations [55], and priors that maximize entropy [51].
Objective priors are generally vague or uninformative (i.e., thinly spread out
over the range for which they are defined). Thus, objective Bayesians might
want to change Efron’s claim to “Although the high ground of scientific objec-
tivity may appear to be seized by the frequentists, objective Bayesians have
a legitimate claim to scientific objectivity also.”

Third, frequentist inference is not as objective as one may (wishfully)
think. As illustrated in Section 9.2.3, the intention with which an experiment
is carried out can have a profound impact on frequentist inference. The undis-
closed ideas and thoughts that guided experimentation are crucial for calcu-
lating frequentist measures of evidence. Berger and Berry concluded that the
perceived objectivity of frequentist inference is largely illusionary [11]. Thus,
critics of frequentist inference might want to change Efron’s claim to “Al-
though the high ground of scientific objectivity may appear to be seized by
the frequentists, upon closer inspection this objectivity is only make-believe,
as in reality frequentists have to rely on the honesty and introspective ability
of the researchers who collected the data.”

In contrast to frequentist inference, Bayesian inference generally does not
depend on subjective intentions (cf. Section 9.2.3), or on data that were never
observed (cf. Section 9.2.2) [67]. The posterior distribution of parameters θ is
written p(θ|y), and the marginal probability of a model, say H0, is given by
m(y|H0); in both cases, y is the observed data, and it is irrelevant what other
data could have been observed but were not.

In Bayesian inference, the subjectivity that Efron alluded to comes in
through the specification of the prior distribution for the model parameters.
Regardless of whether this specification occurs automatically, as in the case
of objective priors, or whether it occurs through the incorporation of prior
knowledge, as in the case of subjective priors, the crucial point is that the
prior distribution is formally specified and available for all other researchers
to inspect and criticize. This also means that Bayesian subjectivity can be
analyzed by formal methods that quantify robustness to the prior (e.g., [8,
25]). Note how different the notion of subjectivity is for the two paradigms:
Bayesian subjectivity is open to inspection, whereas frequentist subjectivity
is hidden from view, carefully locked up in the minds of the researchers that
collected the data. Therefore, a final adjustment of Efron’s statement might
read “Scientific objectivity is illusionary, and both Bayesian inference and
frequentist inference have subjective elements; the difference is that Bayesian
subjectivity is open to inspection, whereas frequentist subjectivity is not.”
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9.3.8 Possibility of Collecting Evidence in Favor of the Null
Hypothesis

Bayesian hypothesis testing allows one to obtain evidence in favor of the null
hypothesis. In the Fisherian paradigm, p-values can only be used to reject
the null hypothesis. The APA task force on statistical inference stressed this
point by issuing the warning “Never use the unfortunate expression accept the
null hypothesis” [102, p. 599]. Of course, what is unfortunate here is not so
much the expression, but rather the fact that Fisherian p-values are incapable
of providing support for the null hypothesis. This limitation hinders scientific
progress, because theories and models often predict the absence of a difference.
In the field of visual word recognition, for instance, the entry-opening theory
[33] predicts that masked priming is absent for items that do not have a lexical
representation. Another example from that literature concerns the work by
Bowers et al. [16], who have argued that priming effects are equally large for
words that look the same in lowercase and uppercase (e.g., kiss/KISS) or that
look different (e.g., edge/EDGE), a finding supportive of the hypothesis that
priming depends on abstract letter identities.

A final example comes from the field of recognition memory, where Dennis
and Humphreys’ “bind cue decide model of episodic memory” (BCDMEM)
predicts the absence of a list-length effect and the absence of a list-strength
effect [24]. This radical prediction of a null effect allows researchers to distin-
guish between context-noise and item-noise theories of inference in memory.
Within the Fisherian paradigm, support for such informative predictions can
only be indirect.

In contrast to the Fisherian hypothesis test, the Bayesian hypothesis test
quantifies evidence by comparing the marginal probability of the data given
one hypothesis, say m(y|HA), to the the marginal probability of the data
given another hypothesis, say m(y|HB). The null hypothesis has no special
status in Bayesian inference, and evidence for it is quantified just as it is for
any other hypothesis, in a way that automatically strikes a balance between
goodness-of-fit and parsimony (cf. Section 9.3.2).

9.3.9 Opportunity to Monitor Evidence as It Accumulates

Bayesian hypothesis testing allows one to monitor the evidence as the data
come in [10]. In contrast to frequentist inference, Bayesian inference does not
require special corrections for “optional stopping” [97].

Consider, for instance, a hypothetical experiment on the neural substrate
of dissociative identity disorder. In this experiment, the researcher Marge has
decided in advance to use functional magnetic resonance imaging (fMRI) to
test 30 patients and 90 normal controls in a total of 4 between-subjects con-
ditions, using the same design as Huntjens et al. [50]. Marge inspects the data
after 15 participants in each condition have been tested and finds that the
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results quite convincingly demonstrate the pattern she hoped to find. Unfor-
tunately for Marge, she cannot stop the experiment and claim a significant
result, as she would be changing the sampling plan halfway through and be
guilty of “optional stopping.” She has to continue the experiment, wasting
not just her time and money, but also the time and efforts of the people who
undergo needless testing.

Within the frequentist paradigm, it is possible to adopt special sampling
plans that take into account the need or desire to monitor the data as they
accumulate; however, these sampling plans yield conclusions that are much
more conservative than the one that assumes a fixed sample size. Thus, the
very same data may lead to a clearly significant result under a fixed sample
size scheme, but to a clearly nonsignificant result under a variable sample size
scheme; the difference is due to the fact that the variable sample size scheme
incorporates a correction for the eventuality that the experiment could have
ended at a different point in time than it actually did.

In contrast, for Bayesian hypothesis testing there is nothing wrong with
gathering more data, examining these data, and then deciding whether or not
to stop collecting new data – no special corrections are needed. As stated
by Edwards et al., “(...) the rules governing when data collection stops are
irrelevant to data interpretation. It is entirely appropriate to collect data until
a point has been proven or disproven, or until the data collector runs out of
time, money, or patience.” [26, p. 193].

9.3.10 Possibility of Incorporating Prior Knowledge

Bayesian inference allows prior knowledge to influence conclusions [67]. Priors
are not only tremendously useful for incorporating existing knowledge, they
are also a prerequisite for rational inference: “If one fails to specify the prior
information, a problem of inference is just as ill-posed as if one had failed
to specify the data.” [53, p. 373]. Another perspective on priors was put for-
ward by Berger, who argued that “(...) when different reasonable priors yield
substantially different answers, can it be right to state that there is a single
answer? Would it not be better to admit that there is scientific uncertainty,
with the conclusion depending on prior beliefs?” [7, p. 125]. Thus, rather than
considering priors a nuisance, we believe they are useful [67], necessary [53],
and informative with respect to the robustness of one’s conclusions [7]. Priors
are an integral part of rational inference; one can only enjoy the Bayesian
omelet when one is prepared to break the Bayesian eggs [93, p. 578].

9.4 Concluding Comments

In experimental psychology, the dominance of frequentist inference is almost
complete. The first goal of this chapter was to demonstrate that the frequentist
framework, despite its popularity, has several serious deficiencies. The second
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goal of this chapter was to show how the Bayesian framework is both flexible
and principled. Our conclusion is that the field of psychology can gain a lot
by moving toward the Bayesian framework for statistical inference and by
moving away from the frequentist framework.

Perhaps frequentist inference has survived for so long because researchers
translate the frequentist statistical outcomes to informal Bayesian conclu-
sions. For instance, most experienced experimental psychologists would take
seriously a priming effect of 25 msec (p = .03, N = 30 subjects, k = 20 items
per condition), whereas they would be skeptical of a priming effect of 4 msec
(p = .03, N = 257 subjects, k = 20 items per condition). Such an informal
Bayesian interpretation of frequentist results is another indication of the in-
ternal conflict between the frequentist Superego and Ego versus the Bayesian
Id; see Section 9.3.6 and [37].

It is our hope that more and more psychologists will start to move away
from frequentist inference and turn instead to formal Bayesian inference. It
may take therapy, medication, or perhaps even surgery, but in the end, re-
searchers will be happier people once they allow their inner Bayesian to come
out.
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