
Mathematical Valuation of Financial Derivatives

David Vidmar, Naveen Pouse

8 December 2013

1 Introduction

Ever since the global financial crash of 2008, the mathematical valuation of
financial derivatives has been thrust into the public eye. Many who call them-
selves practitioners of the Black Scholes model in finance are relatively unaware
of its basic mathematics, and were taken fully by surprise by the events of
2008. A closer scientific evaluation of its derivation, and especially its some-
times tenuous and often simply incorrect assumptions, left the careful examiner
unsurprised. The belief that Black Scholes is a ”black box” that ensures every-
thing will always run smoothly was, and still is, economically dangerous. Apart
from an eyes wide shut approach leading to an economic climate of the blind
leading the blind, upon serious examination of market data we see that there
exists not only a possibility that this black box will fail us, but a probabilistic
likehood of failure on a certain time scale (likely quite small). An understanding
of why Black Scholes seems to work so well in a certain domain, and also where
it seems to fail, is incredibly important going forward. In the following paper,
we lay out a background in finance intended for a scientific audience. After
that, we derive Black Scholes and apply it to simple European call options. The
remainder of the paper is meant to highlight the failings of Black Scholes, and
attempts at fixing these to create a model that closer resembles the real world.

2 Background Finance

In order to understand how the mathematics is applied to economics, a basic
understanding of finance is required. Here we will very briefly discuss the re-
quired financial concepts and definitions (for a more complete discussion, see
Neftci’s book [7]). The broadest concept is that of financial derivatives, which
are the focus of all quantitative economic models discussed in this paper. A
derivative is generically defined as any contract which derives its value from
financial instruments such as stocks, bonds, currencies, and commodities. To
understand this definition, it is easiest to look at some examples of common
derivatives used in markets. For example, sometimes it is in the interest of a
business to know in advance the exact price of a certain commodity they will
need at some future time. In order to bypass the unknown fluctuations in the
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prices of the commodity from present to future, they may desire to pay some
set amount for this commodity now and receive a derivative contract promising
them the commodity at a future time. This specific kind of contract is either
known as a forward or future contract, depending on how and when the funds
are payed out. It can be used to capitalize on market speculation, by entering
this contract if you think the underlying will rise dramatically, or for hedging,
if you want to avoid worrying about market fluctuations altogether. These con-
tracts themselves are also traded on the market, just like a stock or commodity,
by people with no interest in the underyling asset whatsoever.

The problem with forwards and futures is that the holder of the contract
has to pay the originally set price for the commodity no matter the price of the
underlying asset at maturity. A second type of derivative, called a European
call option, takes away this obligation to make the trade at maturity. The
contract still gives the holder the right to buy the underlying at maturity for
the agreed upon price, called the strike price, but if the market price is lower
than the strike price the holder does not have to exercise the option. If this is
the case, the holder would not pay the strike, would not receive the underlying,
and would either buy it on the open market for cheaper or not buy at all. A put
option is the exact opposite, giving the holder the right to sell an asset for some
amount at maturity. Because the risk of the market is transferred entirely to
the seller of these contracts, they are compensated by charging the holder some
premium cost for the option itself. The fair price, or value, of this premium cost
at any given time is a fundamental question that quantitative finance tries to
answer with stochastic methods, akin in importance to the equation of motion
in classical physics. While the term fair may seem subjective, it has a strict
economic definition that guides the derivation of pricing models. This definition
has to do with the concept of arbitrage, which is the opportunity to make a
totally risk-free investment which guarantees a profit above that dictated by
the interest rate. This is clearly not sustainable for everyone in the market, and
according to economic theory the market will work to eliminate all arbitrage
opportunities if they should arise. The idea of a fair price, then, is one which
excludes any arbitrage opportunities.

3 Derivation of Black Scholes

The difficulty in finding the fair value of an option occurs because of the in-
herently random nature of the value of the underlying asset itself. It therefore
seems reasonable to utilize stochastic methods to come to some solution here. In
fact, the equations of Brownian motion were first derived for use in pricing stock
shares before Einstein’s famous derivation, in a doctoral thesis by Bachelier [2].
This work used the idea of a relative share price as the stochastic Brownian
variable, and Bachelier deduced a Gaussian form for its probability distribu-
tion. This was problematic for the reason that it implies a finite probability
that the stock price can become negative, and it was for this reason that some
60 years later Samuelson proposed to consider instead a quantity called the raw
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return of the share price, defined as r = (Si+1 − Si)/Si. Here S stands for the
share price, and the i’th index denotes a discrete time step. Let us go one step
further and define a return as

R ≡ log (1 + r) = log (Si+1)− log (Si). (1)

We see that log (1 + r) ≈ r in the limit r � 1, namely for small raw returns these
two definitions are equal. This definition of a return is especially convenient
because it is distributed normally if we are to assume that share prices are
distributed lognormally. The assumption of a lognormal distribution of share
prices is much more natural for markets than Bachelier’s normal distribution,
as it excludes the possibility of negative pricing while still allowing a Brownian
motion description. In this description we see that it is actually the logarithm of
the share price which undergoes the Brownian motion, giving an exponentiated
Brownian process. The corresponding lognormal random walk process is then
called Geometric Brownian motion, and is given by

dS = µSdt+ σSdX. (2)

Here dX is a random Brownian increment, S is the share price, µ is the drift
term, and σ is the volatility. The drift term is necessary such that the mean
price continues to increase over time due to, for example, interest. The volatility
is a measure of the fluctuations a stock experiences, and is notoriously difficult
to predict at any given time.

In equation 2, we have a stochastic differential equation for some lognormal
random walk process which is assumed to accurately model the value of our
underlying asset. This can now be used to help come to some fair price for an
option who derives its entire value from this asset. Following the derivation by
Fisher Black and Myron Scholes [4], we write the option value as V (S, t). By
applying Ito’s Lemma to equation 2, we can write the differential option value
as

dV =
∂V

∂t
dt+

∂V

∂S
dS +

1

2
σ2S2 ∂

2V

∂S2
dt. (3)

We will use this relation in a particular portfolio (whose elements are a com-
bination of financial instruments and derivatives) to find the no arbitrage fair
price of any option. In this portfolio we can either hold the element ”long”
or ”short”, relating to having a positive or negative amount of the element in
question respectively. Holding a quantity long is intuitive, simply denoting pos-
sesion, but holding a quantity short is less straightforward. Being short in this
sense means selling the quantity without ever actually possesing it first, with
the idea of acquiring it in the necessary time to deliver it when required.

Now imagine puting together a portfolio of a particular option held long
and an amount, ∆, of the underlying held short. The value of this portfolio is
then χ = V (S, t) − ∆S. Assuming constant ∆, and utilizing equation 3, the
differential portfolio value is given by

dχ =
∂V

∂t
dt+

∂V

∂S
dS +

1

2
σ2S2 ∂

2V

∂S2
dt−∆dS. (4)
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This equation is seen to rely on both deterministic terms and terms related to
the stochasticity of the underlying. If it is possible to eliminate the stochastic
terms entirely, risk would be entirely eliminated and we could say something
definitive about this portfolio. This can be done if both stochastic terms in dS
were set to cancel each other out. If the amount of underlying in this portfolio
is set to the special value of

∆ =
∂V

∂S
, (5)

then the randomness of the portfolio value vanishes. This is called delta hedging,
and in practice it is difficult due to the time varying nature of the quantity
∂V/∂S itself.

Once this portfolio is set up and the appropriate ∆ value calculated, we see
that the differential portfolio value is

dχ =
(∂V
∂t

+
1

2
σ2S2 ∂

2V

∂S2

)
dt (6)

We have now constructed an entirely risk free porfolio, and all that is left is
to enforce the principle of no arbitrage. This principle implies that a risk free
portfolio such as the above must be exactly equal to the amount we would get
by putting the same amount of cash in a risk-free interest account. For a given
interest rate r, this is known to be given by

dχ = rχdt. (7)

If the growth were any more than the interest rate we could borrow from a
bank with the set interest rate r and invest entirely in this portfolio, making a
risk-free profit. If it were less than the interest rate, we could hold the option
short instead, delta hedge it, and invest the earnings in the bank. Both of these
scenarios represents arbitrage, so the fair porfolio value must explicity satisfy
equation 7. Substituting equations 5 and 6 into equation 7, and keeping in mind
that χ = V (S, t)−∆S, we get the famous Black-Scholes equation

∂V

∂t
= rV − rS ∂V

∂S
− 1

2
σ2S2 ∂

2V

∂S2
. (8)

4 Simple Example of Black Scholes Application

This equation is a linear parabolic partial differential equation, which is known
to be simple to solve numerically. Inspecting the equation shows that it is quite
general, and does not exhibit any information about the type of option we are
attempting to value in the first place. This information is put in when solving
the Black Scholes equation in the form of a final condition (as opposed to the
more common initial conditions). This is because the only time we actually
know the value of the option in the real world is at maturity.

While more complicated contracts don’t have analytical solutions, and are
solved numerically using Black Scholes, it is still insightful to examine the most
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basic solution for call options. This solution can be arrived at using the ap-
propriate Green’s function, or using Fourier or Laplace transforms, but perhaps
a more direct method in this context is by again using stochastic analysis [8].
The Black Scholes equation can be seen to be of the form of a backward Fokker-
Planck equation with A = rS and B = σ2S2. If we assume a constant volatility
and define a conditional probability of P (X,T |S, t), we know it must satisfy the
analogous backward Fokker-Planck equation

∂P (X,T |S,t)
∂t = −rS ∂P (X,T |S,t)

∂S − 1
2σ

2S2 ∂
2P (X,T |S,t)

∂S2

P (X,T |S, T ) = δ(X − S).

The stochastic differential equation corresponding to this equation can be shown
to be given by a lognormal random walk in the X variable. Defining y = logX
and utilizing Ito calculus, the conditional probability for the variable y has the
form

p(ỹ, T |y, t) =
1√

2π(T − t)
exp

[
(ỹ − y − (r − 1

2σ
2)(T − t))2

−2(T − t)σ2

]
(9)

The solution of the Black Scholes equation can then be written as

V (S, t) = er(t−T )

∫
dỹ p(ỹ, T |y, t)V (eỹ, T ) (10)

with the conditional probability defined as in equation 9.
To give an explicit solution in terms of any particular contract, we must

input the relevant final condition into equation 10. For a simple call option
with strike price E we have V (X,T ) = (X −E) ·Θ(X −E). Plugging this into
equation 10 and integrating over the bounds set by the Heaviside function, we
can get the solution in terms of the cumulative Gaussian function

N(z) ≡
∫ z

−∞
exp

(
− 1

2
x2
)
dx (11)

as

V (S, t) = SN(d1)− Eer(t−T )N(d2), (12)

d1 =
log(S/E) +

(
r + 1

2σ
2
)

(T − t)

σ
√
T − t

, (13)

d2 =
log(S/E) +

(
r − 1

2σ
2
)

(T − t)

σ
√
T − t

. (14)

This is called the Black-Scholes option pricing formula, and upon its introduc-
tion in the 1960’s led to a drastic increase in options trading. This formula, or
slight variations of it, is still widely used today in options markets worldwide.
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5 Critical Evaluation of Black Scholes Assump-
tions

Now that the Black-Scholes model has been introduced, it becomes instructive
to look at how well it actually relates to physical markets. To do this, lets first
examine it’s key assumptions. Upon inspection of equation 12, we see that the
fair price of the derivative as provided by the Black-Scholes formula depends
on the volatility, σ, which is a measure of the size of flucuations. In order to
arrive at a price, then, the volatility of an underlying must be assumed. This
is a hard quantity to decide upon, because its dependence on past data can be
tenuous. Even more worrying is the need for volatility to be constant in our
model, which is highly unlikely. An incredibly large number of factors effect
the volatility of a stock, including seasonality, economic upswings, etc. Another
paramater that we must preset is the risk-free interest rate r. Again, in practice
this can be difficult to do because interest rate is essentially stochastic itself.
Various methods exist to deal with this problem, as outlined in Wilmott [6].

While the previous required assumptions are a bit worrying, they are all
harmless enough and exist more as difficulties than fundamental causes for con-
cern. It is now time to discuss the more essential problems. A serious problem
that quickly becomes apparent in looking over our derivation is that we ab-
solutely required continuous hedging, as seen in equation 5. In practice this
is impossible, and therefore what really occurs in markets is discrete hedging.
There is, of course, some hedging error in the real world then, but this is often
ignored because it is assumed to average out to zero. This turns out to be a
reasonable assumption, as discussed mathematically in Wilmott [6], but only if
the returns are really distributed as assumed. This brings us to an even more
fundamental, and worrying, assumption of the model, namely that the under-
lying is distributed lognormally. To begin, if this is not true the hedging error
will not always average out to zero and will likely be compounded. On a more
basic level, if the model is indeed not distributed lognormally then the entirety
of the model is invalid. Its derivation relied upon using Ito calculus assuming a
Gaussian noise term, but with this noise term distributed in some non-Gaussian
manner, Ito’s Lemma itself must be generalized. It turns out that this is very
difficult, and often wildly increases the complexity of the problem. Unfortu-
nately, it turns out that this particular assumption is contradictory to lots of
market data. One particular set of real-world data is shown in Fig 1, with the
distribution of a particular underlying plotted and fit to various curves.

From this data it can be seen that these returns do not in fact follow a
normal distribution, but have a much heavier tail. It turns out that a collection
of such data exists and comes to the same conclusion, implying that in reality
returns do not fit a Gaussian distribution for large positive or negative values.
This means that actual financial markets seem to have sudden jumps in returns,
perhaps an unexpected crash, more often than would be expected from a normal
distribution. This may seem like a small difference, but these jumps can have
serious economic consequences not accounted for by our model.
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Figure 1: A comparison of market data to various distributions [5]

6 Beyond Black Scholes

In order to minimize the likelihood of a breakdown of our economic model, we
must make adjustments to ensure a closer fit to market data. The most straight-
forward solution would be to simply assume some non-Gaussian distribution of
returns and rederive our model. This, however, presents undue complications
and will be discussed later in the paper. For now, we will forgo scrapping our
model entirely and simply examine small fixes. If we are to keep the Black Sc-
holes model, one fix could be to re-examine the assumption of constant volatility.
This parameter was clearly the hardest to identify, and in fact seems reasonable
to model itself as a stochastic variable. We would then have the same lognormal
random walk for the share price, but now also

dσ = p(S, σ, t)dt+ q(S, σ, t)dX2 (15)

with dX2 as a second Brownian increment. The choice of functions for p and q
becomes important, and many models have been proposed. The most common
seem to be Ohrnstein-Uhlenbeck processes, or a similar mean-reverting process.
We could now rederive a Black Scholes equation using this new assumption, but
must use a different portfolio. Namely, we now how to hedge away two separate
sources of randomness and so would choose a portfolio such as

χ = V −∆S −∆1V1. (16)

Finding the differential porfolio value and enforcing no arbitrage is possible, but
it turns out we end up with one equation in two unknowns. A new function
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called the market price of volatility risk can be added to deal with this, but it
is not entirely enlightening either [6].

7 Jump Diffusion Model

We found that assuming stochastic volatility would perhaps improve our model’s
fit to data, but didn’t give us anything entirely insightful to work with. A more
drastic change would be to actually allow the model to reflect the concept that
assets can jump in value. To do this, we factor in the Poisson process to our
original model which already had Brownian motion accounted for. The Poisson
process is defined as:

dq = 0 with probability 1− λdt, or dq = 1 with probability λdt (17)

The parameter λ is known as the intensity for the Poisson process. If we say
that the variable S can jump to JS according to this Poisson process, we can
model our logarithmic random walk as:

d(logS) = (µ− 1

2
σ2)dt+ σdW + (log J)dq (18)

Variable J is a quantity distributed according to P (J) and can be generalized to
be random. This logarithmic distribution is essentially Itô with jump-diffusion
factored in.

For the Jump-Diffusion model to be useful in finance, we want to be able
to hedge while there are jumps in the assets. One option is to hedge similar
to how we hedge in Black-Scholes, where we choose ∆ = ∂V/∂S to eliminate
risk. This works when we have no jumps and dq = 0. However, we see if there
is a jump (dq = 1), then there is an amount that cannot be hedged. So we
explore the option of hedging by picking ∆ such that we minimize the variance
of the portfolio. Again, we see that there is no perfect hedging in this case. We
are left with two options in the jump-diffusion model; we can either hedge the
diffusion similar to Black-Scholes and take on risk due to not accounting for
jumps, or we can hedge the jumps themselves, and accept that our hedges will
not always work. Both methods of hedging assume significant amounts of risk,
which make them difficult to use if one wants to have a useful model of finance.
We are essentially left with the choice of either choosing an inaccurate model
in Black-Scholes or moving toward a more accurate model which increases the
risk in hedging. In either case, we see that the jump-diffusion model does better
reflect the real world market data.

8 Levy Processes and Pareto-Levy Distribution

We see from Black-Scholes that a Gaussian distribution for the Wiener Process
does not accurately represent the distribution of real world market data. The
heavy tails on the return data seem to be better represented by a Pareto-Levy
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Process. It is now time to look at solving this problem at the source, namely
we want to look at the general Levy Process and see which conditions can let us
account for the heavy tails. Because we want our probability to be homogeneous
in time and probability space, the motivation for the Levy Process arrives from
the differential Chapman-Kolmogorov Equation [19]

∂tp(z, t) = −a∂zp(z, t) +
1

2
σ2∂2zp(z, t) +

∫
duw(u)[p(z − u, t)− p(z, t)] (19)

A solution can be realized if we use the Fourier transform for the probability
[20].

φ(s, t) =

∫ +∞

−∞
dzeiszp(z|0, t) = exp[(ias− 1

2
σ2s2 +

∫ +∞

−∞
du(eisu − 1)w(u)t)]

(20)
Here w(u) is the intensity, and the variable u is the mean time between jumps.
The conditions for the Pareto-Levy Process are outlined in Equations 21 and 22.

a = σ = 0, (21)

w(u) = A|u|−α−1 with 0 < α < 2 (22)

We can ultimately reduce this characteristic function to one of a Paretian process
as seen in Equations 23 and 24.

φ(s, t) = exp[−|s|αtγ(1 + iβ
s

|s|
tan(

πα

2
))] (23)

φ(s, t) =

∫
dueisuPar(α, β, γt;u) (24)

Here we see that the characteristic equation is simply the Fourier transform
of the Paretian conditional probability Par(α, β, γt;u). Using these conditions
for our Levy Process is useful because real world market data appears to line
up much better with this adjusted distribution. The one downside is that the
Pareto-Levy process has infinite variance in returns, whereas the market data
does not.

At the moment, Black-Scholes is the preferred model due to its usefulness in
finance, however the Pareto-Levy Process is still being developed as this model
seems to be the best option at modeling real world market data more accurately
and more directly. There is still of plenty debate as to how one should develop
mathematical finance models, and which ones are best, but in developing said
models it is vital to keep in mind that they are being created to fit observed
market data, and not the other way around.
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