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1 Introduction

Traffic is often modeled as a fluid and while this description is macroscop-
ically sound, it is perhaps unintuitive and makes it difficult to understand
traffic in the context of single cars. Here we will discuss a more intuitive
model of traffic flow using stochastic processes where each car is represented
as a single unit and where the overall behavior is determined from principles
at the single car level. In this way we can describe how cars come to move
together in units we will call car clusters and how they can similarly break
apart. We will consider specific examples including a circular road with no
on or off ramps to gain insight into the use of the model.

2 Single Cluster Traffic Model

We can begin by considering the simple case of the dissolution of a car clus-
ter, such as the moments immediately following the changing of a traffic
light from red to green. We know intuitively that the process will strictly
be one of decay, in which the first car begins to move away from the cluster,
followed by the second, etc. until the cluster is completely dissolved. This
situation is easily described by a master equation. If P (n, t) is the proba-
bility of finding n cars in the cluster at time t, and our decay rate from is
Wn+1,n then we have:

∂P (n, t)

∂t
= Wn+1,nP (n+ 1, t)−Wn,n−1P (n, t) (1)

But what should W be? Intuitively we know that W should not change
depending on n, after all we dont accelerate faster or slower from a stop
light depending on how many cars were in front of, or still are behind us.
Instead we can treat W simply as a constant representing the mean reaction
time of drivers, ω. If we start with n0 cars in the cluster we can write the
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set of equations:

∂P (n0, t)

∂t
= −ωP (n0, t)

∂P (n, t)

∂t
= ω[P (n+ 1, t)− P (n, t)] : 0 < n < n0

∂P (0, t)

∂t
= ωP (1, t) (2)

Solving the first equation and proceeding iteratively we find

P (n, t) =
(ωt)n0−ne−ωt

(n0 − n)!
: 0 < n ≤ n0

P (0, t) = 1−
n0−1∑
j=0

(ωt)j

j!
e−ωt (3)

This is of course the Poisson function and we can simplify our notation
a bit with the expression:

f(k.λ) =
λke−λ

k!
(4)

Additionally we can compute the average value of n, < n > and the
variance, σ2.

< n >=

n0∑
n=1

nf(n0 − n, ωt) (5)

σ2 =

n0∑
n=1

n2f2(n0 − n, ωt)− < n >2 (6)

We can see the < n > decreases linearly in time to first order by expand-
ing the exponential in the sum so that < n >≈ −ωt . We can visualize the
dissipation by plotting for P (n, t)a few different times as seen in Fig. 1.

The most natural extension of our model is to allow the addition of cars
to the cluster. We can do this simply by changing our master equation such
that:

∂P (n, t)

∂t
= ω+(n− 1)P (n− 1, t)

+ω−(n+ 1)P (n+ 1, t)

−[ω+(n) + ω−(n)]P (n, t) (7)

Additionally, let us consider a circular road with a finite number of cars.
Now again we have to decide how to interpret our ω+ and ω− terms. We
can leave ω− as a constant since there is no real difference between a cluster
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Figure 1: Plots have been generated with and ωt = 5, 25, and 55 respectively.
The triangles are from a Monte Carlo simulation of 5000 trials.
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of cars traveling at a constant velocity and a cluster of cars stopped at a
traffic light. The situation for ω+ on the other hand is more complicated.
We know from experience that a cars ideal traveling velocity will depend on
the proximity of other cars, if we are very close to the car ahead of us we
instinctively slow down to allow room to brake in the case of an emergency,
in the same way if there is no one ahead of us we are free to travel at
our chosen maximum speed. With this motivation in mind we propose the
following equation for a cars velocity:

v = vmax
∆x2

D2 + ∆x2
(8)

With D being a constant and ∆x being one of either ∆xfree(n) or ∆xclust.
This allows us to calculate ω+as:

ω+(n) =
v(∆xfree(n))− v(∆xclust)

∆xfree(n)− v(∆xclust)
: 1 ≤ n < N (9)

We know that ∆xfree(n)) must be a function of n since the space avail-
able for cars not in the cluster will depend on how many cars are in the
cluster, on the other hand we can assume that ∆xclust is a constant since
drivers in a traffic jam do not care how many cars are in front or behind
them. With these assumptions in mind we calculate the total length of a
car cluster as:

Lclust(n) = ln+ ∆xclustC(n) (10)

Where l is the length of a car and C(n) = 0 when n = 0 and C(n) = n− 1
when n ≥ 1 then the total length of road is given by:

L = ln+ ∆xclustC(n) + l(N − n) + ∆xfree(N − C(n)) (11)

And we can solve for ∆xfree as:

∆xfree =
L− lN −∆xclustC(n)

N − C(n)
(12)

The last thing we need is a transition probability that will initiate a car
cluster, naturally it will increase with the total number of cars so we choose
ω+(0) = pN Where p is just a constant. Next we consider the average
cluster size,< n >. If we take

∂ < n >

∂t
=< ω+(n) > − < ω−(n) > (13)

and assume is reasonably large and not changing too quickly then we can
approximate

∂ < n >

∂t
≈ ω+(< n >)− ω−(< n >) (14)
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Then a stationary cluster will of course have ∂n
∂t = 0 such that ω+(<n>)

ω−(<n>)
yielding:

vmax
ω−

[
∆x2free(< n >)

D2 + ∆xfree
−

∆x2clust(< n >)

D2 + ∆x2clust(< n >)
]

= ∆xfree(< n >)−∆xclust(< n >) (15)

Which has nontrivial solutions:

∆xfree =
D

2α

[
vmaxD

ω−
±

√
(
vmaxD

ω−
)2 + 4

vmax∆xclust(< n >)α

ω−
− 4α2

]
(16)

where α = D2 + ∆x2clust(< n >).
Now if we stick with the assumption that N is large and treat C(n) ≈ n

we find

< n >=
N(∆xfree + l)− L
∆xfree −∆xclust

(17)

Where we see we have two solutions for < n >. One stable, with ∆x+free
and one unstable, with ∆x−free. In the special case where there is no bumper
to bumper distance, ∆xclust = 0 we obtain the result:

∆xfree = β ±
√
β2 −D2 (18)

< n >= N +
l − L

β ±
√
β2 −D2

(19)

with β = vmax
2ω−

.

3 Multi-cluster Traffic Model

One can also obtain a reasonable model of traffic flow that includes the
probability that multiple clusters form along the road. A few simplifications
make this problem tractable. As in the single cluster model, one can assume
the rate at which cars leave the cluster is fixed. We also restrict ourselves to
the one-lane circular road of length L with no on/off ramps. The relevant
states of the system can be labeled by the N + 1-dimensional vector

N(t) = (N0(t), N1(t), N2(t), ..., NN (t)), (20)

where N is the total number of vehicles and and Nk is the number of
size-k clusters. There can only be one cluster of size N and if there are
no clusters, the first component is N, i.e. there are N clusters of size zero.
In the previous model, the number of clusters was restricted to 1 total.
This fixed the cluster vector to have a one to one correspondence with the
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number of cars in the cluster. We see now that the situation is a bit more
complicated given that for n cars in a jam, there are many states that satisfy
that condition. The length of the road is chosen to be some multiple of the
space a vehicle occupies when it is in a cluster. That is,

L = M(l + ∆xclust), (21)

where M is some natural number such that N ≤M . The velocity of a given
car depends on the local density or equivalently on the distance (headway)
between its front bumper and the rear bumper of the next vehicle. In general,
the front bumper to front bumper distance is given by l + ∆x. The total
number of jam clusters can be written,

Ncl =
N∑
k=1

Nk (22)

and the total number of jammed cars is

njam =
N∑
k=1

kNk (23)

so the total number of free cars is,

nfree = N − njam. (24)

The length of a congested cluster of size k is lk + (k − 1)∆xclust and
so the total length of congested cars is Lclust = lnjam + (njam − Ncl). The
average distance between cars not in a jam is given by

∆yfree(njam, Ncl) =
M −N + (M − njam +Ncl)∆yclust

N − njam +Ncl
(25)

where l∆y = ∆x.
In order to construct the master equation for this system, we must de-

velop an ansatz for ω+(njam, Ncl), the transition frequency for attaching a car
to any of the Ncl clusters. The transition frequency for detachment is simply
ω−(njam, Ncl) which we still assume is constant. A reasonable form for the
rate of attachment is, in the case that the free cars are distributed uniformly
so the headway for each one is given by the mean headway ∆yfree(njam, Ncl),
is a modified version for of the single cluster traffic jam. For multi-cluster
traffic, the condition nfree < Ncl is possible and so a correction term is added
to account for the fact that there are no cars in between some of the Ncl

clusters. The corrected attachment frequency is given by

ω+ =
b

τ

ωopt(∆yfree(njam, Ncl))− ωopt(∆yclust)

∆yfree(njam, Ncl)−∆yclust
×R(njam, Ncl) (26)
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ω− =
1

τ
= const (27)

where b = vmaxτ
l and

R(njam, Ncl) = 1 + (
nfree
Ncl
− 1)θ(Ncl − nfree) (28)

The step function has been used to turn on the change in the rate when
the condition nfree < Ncl is met. Roughly speaking, it reduces the probabil-
ity rate by a factor proportional to the probability there exists at least one
free car in between the clusters. Further, this constraint fixes ω+(N,Ncl) = 0
so the number of congested cars satisfies njam ≤ N .

We can write the stochastic variables as an N−dimensional vector N =
(N1, N2, N3, ..., NN ). The master equation may then be written as,

1

τ

dP (q, T )

dT
= (N − n+ 1)ω ∗+ P (q− q1, T )

+
N∑
k=2

(Nk−1 + 1)ω+(njam − 1, Ncl)P (q + qk−1 − qk, T )

+(N1 + 1)ω−(n+ 1, Ncl + 1)P (q + q1, T )

+
N−1∑
k=1

(Nk+1 + 1)ω−(njam + 1, Ncl)P (q + qk+1 − qk, T )

−[(N − njam)ω ∗+ +Ncl(ω+(njam, Ncl)

+ω−(njam, Ncl))]P (q, T ) (29)

where T is time measured in units of the time constant τ , and q =∑
kNkδi,k. The processes that have been considered by this model include

condensation and evaporation of car clusters caused by stochastic one-step
car attachments or detachments processes. The stationary distribution is
reached for P (q) = limT→∞P (q, T ). The master equation gives this con-
dition by setting the time derivative of the probability distribution to zero,
i.e.

dP (q, T )

dT
= 0 (30)

We focus on the stationary distribution for clusters in the thermodynamic
limit of an infinitely large system such that, M →∞ and N →∞ and the
average quantity C(k) =< Nk

M > is the density of clusters of size k given by

C(k) = M−1
∑
k

iPk(i) =
N∗k
M

(31)

where N∗k is the average value of the number of clusters of size k. The
fluctuations in the thermodynamic limit are negligible and therefore we can

write down Pk(i) = M−1δ( i
M −

N∗
k
M ) which is the stationary probability
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distribution that there are i clusters of size k. In general the function Pk(i)
can be obtained by summing over all values of Nm in q =

∑
mNmqm except

for the cluster size in question, Nk = i. The time dependence of the clusters
densities

are then given by the following coupled equations

C(0)

dT
= −pC(0) + C(1) = 0

C(k)

dT
= [Q+ δk,1(p−Q)]C(k − 1)

−(1 +Q)C(k) + C(k + 1) = 0 : k ≥ 1 (32)

with C(0) = nfree
M , p = τω∗+, and Q = τω+(njam, Ncl). The stochastic

perturbation p is a parameter that gives the probability rate that a car
decelerates into the congested phase. One can then obtain the following
relation between cluster densities:

C(k) = C(0)pQk−1 : k ≥ 1 (33)

The physical solution must be taken to be Q < 1 or else the total number
of clusters and congested cars, Ncl and njam diverge. At the end of the day,
in the stationary limit T →∞ the following equations hold from the master
equation;

C(0) =
c

cclust

γ2

p+ γ2
(34)

r =
p

p+ γ2
(35)

s =
1

γ
(36)

where r =
njam

N is the fraction of congested cars and s = rN
Ncl

is the average
cluster size and γ = 1 − Q. From these equations one can obtain the ex-
pression nfree

Ncl
= 1−Q

p . So for small enough values of p, the condition that
nfree > Ncl is met and R = 1 for the rate ω+. One can numerically solve
these set of equations which is is considered the solution in the thermody-
namic limit as all the variables are now written as ratios and don’t include
N or M on its own. We are interested in the limit that p→ 0 because rarely
in actual traffic will a driver randomly decelerate.

One can obtain critical densities by setting Q = 1 and solving for the
critical values of ∆y1,2 such that

∆y1,2 = B ±
√
B2 − d2 + 2B∆yclust (37)
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and

c1,2 =
1

1 + ∆y1,2
(38)

where

B =
bd2

2[d2 + (∆yclust)2]
(39)

The corresponding asymptotic solution exists in the range c1 < c < cclust
where large clusters coexist with regions of free traffic. Here, c1 is the density
where homogeneous traffic flow starts to become unstable and large clusters
begin to form as c is increased. For c < c1 there exists only one homogeneous
traffic solution and it also holds in the case that c2 < cclust in the region
c2 < c < cclust. However the region c2 < c < cclust also has an extra solution
suggesting that there exists some sort of jump between the two possible
states. What is left to determine is which state represents the actual stable
state of the system.

Monte Carlo simulations with experimental parameters matching with
data obtained from German highways show 3 distinct traffic phases. A free
flow phase for c < c1, a congested phase at c1 < c < cjump, and a highly
viscious homogeneous state cjump < c < cclust. Some results of the MC
simulations are shown in Fig. 2. MC simulations have also been done to
show the jump from one metastable state to the other as shown in Fig. 3.
The two states correspond to the dense homogeneous state and the cluster
phase.

4 Discrete Time and Space Traffic Models

4.1 Cellular Automata

Another approach used to study traffic phenomena is the simulation of traffic
flow via cellular automata. In this case, both space and time are considered
discrete. There exists a lattice of sites which can be either considered on
or off. The time discretization comes in the form of a well defined update
process which follows specific rules at each time step t → t + 1. The rules
are motivated by empirical observatioins of traffic flow. Different models
for traffic flow will have different rules for the update process. Because
space and time is discrete, so to are the velocities and thus the states of the
interacting units are quantized. The finiteness of the number of states arises
in traffic models as a limit on the possible velocity of an interacting unit set
by the speed limit.

A simple and popular model for traffic flow is called the Nagel-Schreckenberg
(NS) model from which variations are made to study the effects of slightly
different updates processes. The simplest example is that of a one lane
circular highway. For the NS model, the speed of each vehicle can take
vmax + 1 integer values in the range of 0, 1, 2, ..., vmax. The headway for the
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Figure 2: The relative part of the congested cars r (upper) and 1
s (lower)

vs the dimensionless density c for different values of M. Thin solid line:
p = 0.001, M = ∞; thick solid line: p = 0, M = ∞; dotted line: MC
simulation for p = 0.001, M = 50. The vertical line represents cjump
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Figure 3: A specific stochastic trajectory showing the switching from the
homogeneous state to the cluster phase. In this simulation M = 100 and N
= 92 and p = 0.001. The vertical axis is the number of congested cars.
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nth vehicle is the distance from it and the n + 1th vehicle at time step t is
dn = xn+1 − xn. The update rules are motivated in such a way to avoid
collisions and include some element of stochasticity while also including the
general tendency of the driver to reach the maximum speed limit. Each
vehicle is updated in parallel, or said another way, what the driver decides
to do is assumed to only depend on the vehicle ahead of it at given time t.
The rules are as follows:

Step 1: Acceleration to speed limit. If vn < vmax, the speed of the nth
vehicle is increased by one, but vn stays the same if vn = vmax. This can be
contained in the following expression

vn → min(vn + 1, vmax).

Step 2: Avoiding a crash/ If dn ≤ vn, the speed is reduced to dn − 1.
This can be put in the form,

vn → min(vn, dn − 1).

Step 3. Stochasticity. If vn > 0, the speed of the nth vehicle is reduced
by 1 with probability p but vn does not change if vn = 0.

vn → max(vn − 1, 0)

with probability p.
Step 4: Update Vehicles in Parallel. Each vehicle will be moved accord-

ing to its new velocity from steps 1 through 3.

xn → xn + vn.

This simple model is able to reproduce some essential features of real
traffic flow, one of which is the spontaneous generation of traffic jams as can
be seen in Fig. 4. Also, the darkest regions representing the traffic jams are
density waves which move backward. As the density decreases, however, the
wave propogates forward as can be seen in the simulation.

4.2 Approximate Mean Field Approaches

To obtain approximate analytical results for cars on a discrete spacetime lat-
tice, one can use the methods of mean-field theory. For traffic flow, several
variations of the mean-field approach exist; some of them are: site-oriented
naive mean-field (SOMF) theory, paradisical mean-field theory, car oriented
mean-field (COMF) theory, and cluster approximations. All of the afore-
mentioned methods yield exact results in the case of vmax = 1 except for
SOMF theory.

For the site-oriented theories, each site has a discrete set of possible
values and the system is of size L with periodic boundary conditions. Each
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Figure 4: A cellular automata simulation of one-lane circular traffic flow
using the NS model. Results for different car densities are shown. The time
axis is downward.

site is allowed to take vmax + 2 possible values corresponding to the empty
cell state, and the occupied cell state for all vmax + 1 possible velocities.

The SOMF theory can be applied to the NS model of traffic flow by
expressing the probability cv(i; t + 1) that there exists at time t + 1, a ve-
hicle with velocity v in the ith cell to the probabilities of the previous time
step. Summing all of these probabilities gives the probability that a site i is
occupied at time t. That is, c(i; t) =

∑v−max
v=0 cv(i; t). One can then obtain

the following set of equations in the case that vmax = 1:

c0(i; t+ 1) = c(i; t)c(i+ 1; t) + pc(i; t)d(i+ 1; t) (40)

c1(i; t+ 1) = qc(i− 1; t)d(i; t) (41)

with d(i; t) = 1−c(i; t) is the probability that there is no car at site i at time
t. The probability p = 1− q is that for any vehicle with nonzero velocity to
decelerate at the randomization step. The expression for c0(i; t+1) contains
both situations where the velocity could be zero at the next time step. This
could either be due to there being a vehicle ahead of it at i + 1 or it could
have randomnly decelerated even if there were no vehicle ahead of it. The
second equation says that the velocity could be nonzero at t + 1 if there
wasn’t a vehicle at time t at i and if there was a vehicle at time t at i − 1
that did not accelerate which has the probability q.

Translation invariance of the stationary state solution exists due to the
use of periodic boundary conditions, so the final stationary state solution of
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cv(i; t) should not depend on i.For this model the flux is then given by c1
using the second equation we have,

J = c1 = qc(1− c). (42)

The SOMF theory underestimates the flux J compared to the exact
expression from the deterministic NS model where p = 0 and vmax = 1
which is,

J = min(c, 1− c). (43)

The exact expression is linear as it rises to the peak at 1
2 and goes back

down linearly to zero when c = 1. The SOMF theory gives a quadratic
function of c which rises with negative curvature and peaks at 1

4 and goes
back down to zero when c = 1.

The discrepancy is due to the SOMF theory including states which do
not exist in the steady state deterministic NS-model with parallel updating.
These states are called ”Garden of Eden” states or paradisical states because
one cannot get back to the state once one has left. One example of such
a state is where two cars are right next to one another yet the one that is
ahead of the other has speed v + 1 and the one behind has speed v. Such a
state in the deterministic model could have only come from a state that the
NS model could not include. It means that at the time step earlier, they
were both at the same location. The improved SOMF theory is called pMF
or paradisical mean field theory where one excludes such states. The pMF
theory gives back the exact flux of the NS model for vmax = 1.
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