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1 Introduction

The simplest models used to describe physical systems are often linear. However, several natural phenomena
can only be accurately modeled by relatively complex nonlinear systems of equations. There is a wealth of
interesting dynamics displayed by systems consisting of nonlinear elements, for example systems in which
the dynamics depend delicately on the initial conditions, viz, chaos, and systems which generate fractal
structures. These types of dynamics are especially noticeable in models of biological phenomena such as
cardiac arrythmia, fluctuations in predator-prey populations, or neuronal cascades in the human brain.

Of special interest to us are the class of nonlinear systems which are excitable by external stimuli.
Excitability is characterized by a response that is highly nonlinear; for small perturbations, the system
remains steady, but once a threshold is reached, the system “spikes”, leaving the resting state entirely and
going on an excursion in phase space. This type of behavior is characteristic of the action potential train
through a neuron, described by the Hodgkin-Huxley (HH) model [1]. In the early 1950s, Hodgkin and Huxley
performed action potential measurements on the squid giant axon and proposed a model of action potential
transmission, typically represented as an electrical circuit as shown in Figure 1. The classical model of
potential transmission through a neuron was of the form

Cm
dV

dt
= −V − Veq

R
+ Iappl (1)

where Cm is the membrane capacitance, R is the resistance, V is the potential and Iappl is the excitation.
As evident from the form of the equation, Iappl provides an excitation and the potential relaxes back to Veq
in a time-scale set by the product CmR, representative of an excitation-relaxation type of behavior. Using
experimental data and accounting for both sodium and potassium ion channels, Hodgkin-Huxley proposed
a more complex model equation consisting of various nonlinear elements,

Cm
dV

dt
= −gKn4(V − VK)− gNam

3h(V − VNa)− gL(V − VL) + Iappl (2)

where gKn
4, gNam

3h and gL are effective conductances of potassium, sodium and leakage channels. n,
m and h are dimensionless quantities associated respectively with potassium channel activation, sodium
channel activation, and sodium channel inactivation, and obey linear dynamics with coefficients that are
potential-dependent, making the model a nonlinear set of equations in four variables.
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the sodium and potassium conductances to time and membrane potential.
Before attempting this we shall consider briefly what types of physical system
are likely to be consistent with the observed changes in permeability.
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Fig. 1. Electrical circuit representing membrane. RB =l/gNa; RK= l/9K; RI= 1/#1. RNw and

RK vary with time and membrane potential; the other components are constant.
The nature of the permewablity change8

At present the thickness and composition of the excitable membrane are
unknown. Our experiments are therefore unlikely to give any certain informa-
tion about the nature of the molecular events underlying changes in perme-
ability. The object of this section is to show that certain types of theory are
excluded by our experiments and that others are consistent with them.
The first point which emerges is that the changes in permeability appear to

depend on membrane potential and not on membrane current. At a fixed
depolarization the sodium current follows a time course whose form is inde-
pendent of the current through the membrane. If the sodium concentration
is such that ENaB<E, the sodium current is inward; if it is reduced until
ENa > E the current changes in sign but still appears to follow the same time
course. Further support for the view that membrane potential is the variable
controlling permeability is provided by the observation that restoration of the
normal membrane potential causes the sodium or potassium conductance to
decline to a low value at any stage of the response.
The dependence of 9Na and g9 on membrane potential suggests that the

permeability changes arise from the effect of the electric field on the distribu-
tion or orientation of molecules with a charge or dipole moment. By this we
do not mean to exclude chemical reactions, for the rate at which these occur
might depend on the position of a charged substrate or catalyst. All that is
intended is that small changes in membrane potential Would be most unlikely
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Figure 1: The electrical circuit representing nerve membrane originally proposed by Hodgkin and Huxley
(taken from [1])
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1.1 The FitzHugh-Nagumo model

The Hodgkin-Huxley model has been hugely successful in describing the transmission of an action potential
through a cell membrane. However, due to the large number of variables, the phase space dynamics of the
equation is hard to visualize. In 1961, FitzHugh [2] sought to reduce the HH model to a simpler set of
equations in two state variables while retaining its essential excitation characteristics. The reduced version
was experimentally demonstrated by Nagumo et al [3] using electrical circuits and has since been called the
FitzHugh-Nagumo (FN) model (FitzHugh himself called it the Bonhoeffer-van der Pol model, for reasons
that will soon become clear).

Instead of simply stating the FN equations, it is enlightening to loosely follow FitzHugh’s own derivation
of his model. We start with an innocuous linear differential equation for a damped oscillator:

ẍ+ γẋ+ x = 0 (3)

If we replace the constant damping coefficient by one that depends quadratically on x, we obtain the famous
Van der Pol oscillator [4] which has significantly richer dynamics (deterministic chaos and whatnot),

ẍ+ c(x2 − 1)ẋ+ x = 0 (4)

Applying the Liénard transformation y = x− ẋ/c−x3/c, we can write equation (4) in two-dimensional form:

ẋ = c(x− x3/3− y) (5)

ẏ = x/c (6)

Adding one or two extra terms, we arrive at the general deterministic FN model, which may be represented
in the following form

εẋ = x− x3/3− y + z (7)

ẏ = −γx− βy + a (8)

These equations are relatively simple mathematically, but they capture the essential qualitative properties
of a large class of excitable nonlinear systems. Not surprisingly, they are also quite widely studied.

In our discussion, as done in [5], we will work with the particularly simple FN model

εẋ = x− x3/3− y (9)

ẏ = x+ a (10)

2 Dynamics of the deterministic FitzHugh-Nagumo model

The dynamics of a two-dimensional nonlinear system such as equations (9) and (10) is best studied on the
phase plane spanned by the two dynamic variables x and y. The phase point representing the state of the
system moves spontaneously in this plane along paths that satisfy the equations of motion. These paths
should be thought of as completely filling the plane, like the stream lines of a flowing fluid. There are two
special curves on the phase plane, called nullclines, along which the velocities of x or y are zero. These
are clearly obtained by setting the derivatives in the equations of motion equal to zero. From equations (9)
and (10), the x-nullcline is the cubic curve y = x − x3/3, while the y-nullcline is simply the vertical line
x = −a. The qualitative behavior of the system for different parameter values can generally be inferred just
by plotting the nullclines and looking at the overall structure of the flow field. In Figure 2, we show the
phase portraits for a = 1.05 and a = 0.95 respectively.
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Figure 2: Phase portraits for the deterministic FN model. The red and green dashed lines are the x- and
y-nullclines respectively. The black arrows show the velocity field. Representative trajectories are shown in
blue, with their origins marked by circles. The figure on the left is for ε = 0.05, a = 1.05, while that on the
right is for ε = 0.05, a = 0.95

Suppose our initial point is (−0.5, 0) and ε = 0.05. For a > 1, the dynamics proceeds as follows - the
system first moves to the left branch of the x-nullcline and slides downwards along the curve onto the point

where the two nullclines intersect, i.e., at (x, y) = (−a,−a3

3 +a). This fixed point is stable and by symmetry,
the system has a stable fixed point for |a| > 1. The dynamics are more interesting for |a| < 1, however.
The system moves from the initial point to the left branch and slides down it. However, once it reaches
the bottom-most point of the curve, the velocity in the y-direction pushes it out of the x-nullcline, thereby
destablizing x-motion. Due to the small value of ε, velocities off the nullclines greatly favor horizontal motion.
The system now makes a jump to the other branch of the x-nullcline, where x motion is stabilised once more,
and proceeds to move up the curve. At the top of the curve, the system makes another jump onto the left
branch. The process repeats and we observe a limit cycle.

In the next section, we introduce a noise term, making the dynamics even more exciting.

3 Coherence resonance in the FitzHugh-Nagumo system

3.1 The stochastic FitzHugh-Nagumo model

The deterministic equations of motion for the FN model can be made stochastic in the following simple
manner:

εẋ = x− x3/3− y (11)

ẏ = x+ a+Dξ(t) (12)

Here, the parameter D governs the amplitude of the noisy external force ξ, which is taken to be Gaussian
delta-correlated with zero mean 〈ξ(t)ξ(t′)〉 = δ(t − t′). As mentioned in [5], noise in equation (12) can be
interpreted directly as fluctuations of the bifurcation parameter a, which in turn switches the limit cycle on
and off. There is no equivalent obvious interpretation for noise added directly to equation (11).

The discretization of these equations, to first order in ∆t, is

x(t+ ∆t) = x(t) +

[
x(t)− x(t)

3

3
− y(t)

]
∆t

ε
(13)

y(t+ ∆t) = y(t) +
(
x(t) + a

)
∆t+ (

√
∆tD)W1 (14)

where W1 is a Gaussian random variable with mean zero and variance one. This is Euler’s method for
simulating stochastic differential equations, and is the method used in the original paper by Pikovsky and
Kurths [5]. The results presented here were obtained from simulations using this scheme.
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3.2 Simulations

We simulated the FitzHugh-Nagumo model using MATLAB (see Appendix B for codes), for the parameters
ε = 0.01, a = 1.05, and a range of different noise amplitudes D. These parameters were chosen so that
we could reproduce the results of [5]. Representative results from our simulations are presented in Figure 3
below (compare Figs. 1, 2 in [5]). The phenomenon of coherence resonance is qualitatively visible in the
figures on the left; the noise-excited oscillations are maximally coherent for moderate noise, becoming more
irregular for larger or smaller noise amplitudes.
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Figure 3: Simulated dynamics of the FN system. Left panel: time-series of y for model parameters a = 0.95,
ε = 0.01 and varying noise amplitudes (from top to bottom D ≈ 0.02, 0.07 and 0.26). Each color represents
one pulse (the pulse durations are used to calculate the noise-to-signal ratio R). Right panel: corresponding
autocorrelation functions at the given noise levels. The quantity T is the total length of each simulation in
arbitrary time units.

We calculated the normalized autocorrelation function over a long time period for each set of parameters:

C(τ) =
〈ỹ(t)ỹ(t+ τ)〉

〈ỹ2〉
, ỹ(t) ≡ y(t)− 〈y〉 (15)

These functions are plotted on the right side of Figure 3. They also reproduce the results of Pikovsky and
Kurths well, and again demonstrate the coherence resonance (correlations decay slower for moderate noise).
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Figure 4: Correlation time τc (blue solid line) and noise-to-signal ratio Rp (red dotted line) vs. noise
amplitude D for the FN system with a = 0.95 and ε = 0.01

The rate at which the autocorrelation function decays can be described neatly with a single quantity, the
characteristic correlation time, defined as

τc =

∫ ∞
0

C2(t)dt (16)

We computed τc by numerically integrating the obtained correlation functions according to the trapezoid
rule for each simulated noise amplitude. The dependence is shown in Figure 4, and displays a marked peak
at D ≈ 0.06.

We can also characterize the coherence resonance via a different quantity. The process depicted on the
left of Figure 3 can be readily viewed as a sequences of pulses, each having a duration tp. The normalized
fluctuations of pulse durations,

Rp =

√
〈tp2〉 − 〈tp〉2

〈tp〉
(17)

which can be interpreted as the noise-to-signal ratio, shows a minimum at the same noise amplitude D ≈ 0.06
at which the correlation time shows a maximum (see Figure 4).

4 Fokker-Planck equation and stationary probability density

The Fokker-Planck equation (FPE) for the probability density P (x, y, t|x0, y0, t0), corresponding to the
system of equations equations (11) and (12) describing the stochastic FN model is

∂P

∂t
= −1

ε

∂

∂x

[(
x− x3

3 − y
)
P

]
− ∂

∂y

[
(x+ a)P

]
+
D2

2

∂2P

∂y2
(18)

Note that the parameter D here is not the diffusion constant. Unfortunately, this FPE does not seem
to be solvable analytically, even in the stationary case [6]. Under some fairly restrictive set of conditions
and approximations, an exact nonequilibrium potential has been obtained by Izús et al. [7], but their
approach is far beyond the scope of this report. The stationary probability distribution for this FPE has
been probed extensively via numerical simulations, starting with the work of Treutlein and Schulten [8] in the
1980s. Instead of resorting to full-blown finite-element simulations, we will instead follow the semi-analytical
method of Lindner and Schimansky-Geier [9].
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The FN problem becomes tractable in the limit of small ε, which corresponds to a large separation of
time-scales between the variables x and y. In this limit, the fast variable x relaxes very quickly towards
one of the stable branches of the nullcline y = x − x3/3. The cubic function can be inverted to give x as a
function of y along the left and right branches,

xL(y) = 3y− cos

(
1

3
arccos

(
y/y+

))
(19)

xR(y) = 3y+ cos

(
1

3
arccos

(
y/y−

))
(20)

where the trigonometric functions are understood to go over to their hyperbolic counterparts if the innermost
argument is greater than 1.

In the ε→ 0 limit, the two-dimensional stochastic process described by equation (18) therefore separates
into two one-dimensional processes, occurring on the right and left branches, and coupled by probability
currents JR→L and JL→R (see Figure 5 below). Since jumps between branches occur instantaneously in the
ε → 0 limit, there is no finite probability density on the straight lines l2 and l1 along which these currents
flow.

Thus, we obtain two coupled FPEs in the slow variable y,

∂PL

∂t
=

∂

∂y

[
−a− xL(y) +

D2

2

∂

∂y

]
PL + JR→Lδ(y − y+) (21)

∂PR

∂t
=

∂

∂y

[
−a− xR(y) +

D2

2

∂

∂y

]
PR + JL→Rδ(y − y−) (22)

describing the evolution of the probability density on the left and right branches. PL and PR are defined on
the semi-infinite intervals [y−,∞) and (−∞, y+] respectively, and x(y) is the inverse of the cubic function
along the appropriate branch. Absorbing boundaries at the finite endpoints of each interval account for
probability outflow to the other branch, and the delta-function terms in the FPEs represent the corresponding
probability inflows. Since P (y) vanishes at the absorbing boundaries, we have

JL→R =
D2

2

∂PL

∂y

∣∣∣∣∣
y=y−

and JR→L = −D
2

2

∂PR

∂y

∣∣∣∣∣
y=y+

(23)

Of course, the total probability in the system must be conserved∫ ∞
y−

PL(y) dy +

∫ y+

−∞
PR(y) dy = 1 (24)

Figure 5: Nullclines of the system and some particular points used in the derivations. This diagram was
taken from [9], who used a slightly different form of the FN model; hence the slanted y-nullcline and other
small discrepancies.
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At steady-state, the probability current must also be constant and equal to the average pulse rate

JL→R = JR→L = r (25)

The stationary solutions of the coupled FPEs (equations (21) and (22)) are

PL(y) =
2r

D2

∫ y

y−

dz e2[UL(z)−UL(y)]/D2

Θ(y+ − z) (26)

PR(y) =
2r

D2

∫ y+

y

dz e2[UR(z)−UR(y)]/D2

Θ(z − y−) (27)

with the effective potentals UL(y) and UR(y) given by

UL(y) = −ay − xL(y)

4

[
3y − xL(y)

]
(28)

UR(y) = −ay − xR(y)

4

[
3y − xR(y)

]
(29)

For the detailed derivation of these results, see Appendix A. The remaining free variable in equations (26)
and (27) is the pulse rate r, which is then determined by the normalization condition of equation (24).

We compare the approximate analytical probability distributions obtained in equations (26) and (27) to
those obtained by averaging over direct simulations of the Langevin equations (11) and (12). The approxi-
mation remains accurate up to values of ε ≈ 0.01, as the results in Figure 6 below indicate.
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Figure 6: The probability densities on the right and left branch are computed for a = 1.05 and D = 0.25.
The approximation (theory), formally valid in the limit ε → 0, is compared to distributions obtained by
averaging over simulations performed with finite values of ε.

5 Simple prototype for coherence resonance

To construct a simple prototype for coherence resonance, we reduce the dynamics of the two variable system
on the slow branch to a one-dimensional Langevin equation. In the slow region of phase space, the system is
restricted to the x-nullcline. As described above, on this line x can be written as a function of y. Plugging
it back into the equation for y, we have

dy

dt
= −dU

dy
+Dξ(t) (30)
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where −dU
dy is x in terms of y. The above equation simulates the behavior of y on one branch. To describe

the complete behavior, we define the above equation on the negative y axis (y ranges from −∞ to 0). y
initializes at a chosen point y0 and evolves stochastically to zero, provided we choose an appropriate U .
Since coherence resonance is observed in the parameter range with a stable fixed point, we need U to have
a minimum close to the excitation region. The system occasionally escapes from the well and reaches zero
with a rate that depends on the amplitude of the noise. The region y ≥ 0 is the excitation region, i.e. y
jumps from one slow branch to another. In our simplified prototype model, we reset y to y0 and repeat the
procedure, effectively simulating quasiperiodicity.

To show that such a reduction emulates the behavior of the FitzHugh-Nagumo system, we calculate the
characteristic correlation times and the noise-to-signal ratio for the prototype. The potential chosen was

U(y) =

{
−Ay, if y < −1

A+B +By, if− 1 ≤ y ≤ 0
(31)

Figure 7: Relative first passage time fluctuations R vs noise amplitude D for A = B = 1 and different
reinjection points y0. R may equivalently be interpreted as the noise-to-signal ratio.

The plots in Figure 7 show the noise-to-signal ratio versus noise amplitude for different y0. In our
simulations we use A = 1 and B = 1. Changing the potential to a harmonic potential or changing the A
and B does not change the qualitative nature of the dynamics.

From this prototype, we can extract the essential ingredients necessary for coherence resonance. Firstly,
there should be a stable fixed point close to the excitation point. Secondly, upon reaching excitation i.e.,
y = 0, the system should effectively reset itself to an earlier point y0. Lastly, the noise amplitude must be
large enough that the system can escape from the fixed point, but not so large as to cause significant irregular
motion during the return journey (which would lead to quasiperiodic rather than periodic behavior).

6 Concluding remarks

Coherence resonance is a fascinating nonlinear phenomenon exhibited by certain excitable models in the
presence of purely stochastic forcing. We have studied this behavior in the FitzHugh-Nagumo model, both
via direct simulations of the stochastic equations of motion and by considering the system’s Fokker-Planck
equation in a particular limit where the dynamics may be effectively described in one dimension. We have
closely followed the methods described in several excellent papers on the subject, which are listed in the
references. We have also included most of the simulation codes that we wrote for this project (Appendix B),
in the hope that others will enjoy using them to explore this interesting model and phenomenon.
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A Derivation of stationary probability distribution

Looking for stationary solutions PL(y, t) = PL(y), we set the LHS of equation (21) to zero and integrate
once to obtain

r = −
[
a+ xL(y)

]
PL +

D2

2

∂PL

∂y
+ rΘ(y − y+) = constant (32)

where Θ(x− x0) =
∫ x

−∞ dz δ(z − x0) is the unit step function. Rearranging,

∂PL

∂y
−

2
[
a+ xL(y)

]
D2

PL =
2r

D2
Θ(y+ − y) (33)

Define the integrating factor

ψ(y) = exp

{
− 2

D2

∫ y

y−

dy′
[
xL(y′) + a

]}
(34)

The integral is easily carried out by using y = x− x3/3⇒ dy = dx
(
1− x2

)
:

UL(y) ≡ −
∫ y

y−

dy′
[
xL(y′) + a

]
= −ay −

∫ xL(y)

−1
dx
(
x− x3

)
= −ay − xL(y)2

2
+
xL(y)4

4

= −ay − xL(y)

4

[
3y − xL(y)

]
(35)

where constant terms have been ignored since they will cancel in the final solution.
Multiplying equation (33) by ψ(y) = e2UL(y)/D2

transforms the LHS into a total derivative, so we imme-
diately obtain the solution

PL(y) =
2r

D2
e−2UL(y)/D2

∫ y

y−

dz e2UL(z)/D2

Θ(y+ − z) (36)

Following the same procedure starting from equation (22), we obtain the distribution on the right branch.

B MATLAB simulation codes

Three different codes are included. These were created and used with MATLAB 2012b. The simulations
may take a long time to run with the given parameter specifications, so it is advised that you change the
parameters and/or modify the codes as needed before running them.

The included codes are:

• fitzHugh trajectory.m — traces a trajectory of the FN system in the phase plane.

• fitzHugh.m — runs simulations for each of the specified noise strengths D. Generates the equivalent
of Figure 3 for each simulation, along with one Figure 4 for the entire set.

• fitzHugh probability density.m — computes numerically the approximate stationary probability
densities given by equations (26) and (27), and compares these to the densities obtained from direct
simulation of the FN model for different values of ε. Generates the equivalent of Figure 6.
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