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I. Introduction 
 

 An excitable system consists of three general states: rest state, excited (or firing) state, and a 

refractory (or recovery) state. When unperturbed, the system stays at its rest state. Under small 

perturbation, the system performs small-amplitude linear oscillations around its rest state. However, 

for large enough perturbation, the system can be driven out of its rest state and goes through the 

excited and recovery states before returning to its rest state [Linder]. Such response is highly 

nonlinear. There exists many excitable systems in nature. In this paper, we study two specific 

systems in detail: semiconductor laser with optical feedback and neuron network oscillation. We 

describe the theories used to model these two excitable systems and explain how noise can be 

introduced to induce coherence resonance in these systems. 
 

 
 

 

II. Correlated Noise Induced Optical Coherence Resonance 
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Fig. A. Experimental setup of a semiconductor laser with optical feedback [Lindner]. 

 

 Semiconductor laser subjected to external optical feedback (Fig. A) can exhibit 

dynamical instability [10, 8]. Specifically, when the injection current is kept above, 

but close to, the solitary laser threshold, irregular dropouts in laser intensity can be 

observed [5]. Giacomelli et al has further shown experimentally that the coherence 

(or regularity) in the laser intensity dropouts can be tuned by changing the amount of 

input noise in the pump current. Coherence resonance can be observed for an optimal 

amount of noise, which is neither too large nor too small Fig. B [5]. 

 

 
Fig. B. Temporal evolution of the intensity of a semiconductor laser with optical feedback. The 

noise level is (a) -60.8 dBm/MHz, (b) -52.5 dBm/MHz, (c) -44.3 dBm/MHz [5]. 

 

1. Lang-Kobayashi Model 

I(t) 
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 The dynamics of semiconductor laser with optical feedback can be modeled 

with the Lang-Kobayashi (LK) model [7]. The LK model assumes the semiconductor 

laser is under single-mode operation and that multiple reflections from the external 

feedback mirror can be ignored due to low reflectivity. Under single-mode, single 

reflection conditions, we need only to add an extra term to the standard 

semiconductor laser rate equations to account for the feedback field [7, 4, 9]: 

  ),()(]exp[)(),(
2

1)(
tFtEitENEG

i

dt

tdE
Eff 


 


    (1) 

  2
)(),()( tENEGtNCN

dt

dN
the   .            (2) 

The material-gain function can be expressed as follow: 
 

2

0

)(1

)(

tEs

NtNg
G




 .      (3) 

The definition of all variables used above is summarized in table 1. The random 

fluctuation due to spontaneous emission is represented by )(tFE , which is Guassian 

white noise with zero mean and  correlated in time (i.e. )()()( ttRtFtF EE
  ). The 

steady state solutions of the LK equations are of the following form [8, 10]: 
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where 
2

)(tEPs  , sn  is the carrier density change, and s represent the frequency 

shift from the solitary laser frequency  . Substituting equation (4) into (1), 

separating the real and imaginary part, we obtain the following two equations: 
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Variables Definition 
)(tE  Complex electric field envelope inside the laser 
)(tN  Excess carrier number 

  Linewidth enhancement factor  
  Solitary laser frequency 

e ,  Inverse of photon and carrier lifetime, respectively 
  Feedback strength / rate, related to facet and external reflectivity 

[8] 

f  Time it takes for light to travel to the external mirror and back 

)(tFE  Langevin force → Gaussian white noise due to spontaneous 

emission 
C  Pump rate, directly related to pump current 

0N
g

N th 


 
Threshold carrier number 

Table 1. Definition of variables in rate equations. 
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Combining equation (3), (4), (5), and (6), we see that s  and sn  are related by an 

elliptical equation [8]: 

1
22

22































sss gngn

.      (6) 

That is the multiple solutions to the LK equations lie on an ellipse in the ( s , sn ) 

phase space. Fig. C shows a possible set of solutions in phase space. The 

characteristics equations of the Jacobian matrix of the LK equations are rather 

complicated [11]. However, it can be shown that solutions on the upper half of the 

ellipse, denoted by stars, are unstable saddle points, usually referred to as antimodes. 

The diamond in the center of the ellipse corresponds to the steady state solution in the 

absence of optical feedback. Solutions at the lower half of the ellipse, referred to as 

modes, may or may not be stable depending on many parameters — one of them 

being the feedback strength  . The solution indicated by an arrow in Fig. C 

represents the maximum-gain mode (MGM). Operating under this mode, the laser is 

most efficient — outputting maximum power with minimum carrier density change 

sn . Physically, it corresponds to optimal constructive interference between the intra-

cavity field and the feedback field [8].  

 

 
Fig. C. Steady state solutions (fixed points) of the LK equations in ( s , sn ) phase 

space [8]. 

 

 For small feedback, the modes are stable and the laser operate at a frequency 

very close to its solitary frequency,  . However, as the feedback strength increase, 

many of the modes also become unstable and the system attempts to move toward the 

MGM. However, before the system can reach the MGM, it passes by an antimode, 



2013 Final Project of Physics 210B Nonequilibrium Statistical Physics 

which "throws" the system back toward the center of the ellipse. Mulet et al 

numerically simulated the phase space trajectory for a semiconductor laser biased 

close to its threshold and subjected to optical feedback (Fig. D) [9]. As shown in Fig. 

D, as the system travels toward the MGM from other unstable modes (diamonds), it 

comes too close to an antimode (crosses), which drives the system toward the center 

of the ellipse, resulting in a dramatic increase in )()()( fttt    and a intensity 

dropout. Here, )(t  is the difference between the phase of the intra-cavity field )(t  

and that of the feedback field )( ft   .  

 

 
Fig. D. Evolution of the trajectory in phase space of a semiconductor laser with 

optical feedback and pumped close to threshold [9]. 

 

2. Optical Coherence Resonance 

 

 By tuning the noise characteristics in the pump current, Buldu et al showed that 

the coherence in the intensity dropouts can be optimized [4]. To model the pump 

current noise, an extra term, )(t , was added to equation (2): 

  2
)(),()()](1[ tENEGtNNtC

dt
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the   .           (7) 

The system evolves in time scales on the order of tens of picoseconds, which is faster 

or of the order of the characteristic time scale of the fastest electrical modulation that 

can be introduced experimentally [6]. Therefore, the pump current noise cannot be 

adequately modeled with Gaussian white noise. Instead, Buldu et al adapted 
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correlated noise of the Ornstein-Uhlenbeck type, which is Gaussianly distributed with 

zero mean and correlation of form: 
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where c  is the correlation time of the noise. One can solve equation (1), (7) and (8) 

numerically and recover the intensity dropouts or phase jumps in the time series of 

the laser output (Fig. E) [4].  

 

 
Fig. E. Simulated intensity and phase difference as a function of time. A peak in the 

phase difference between intra-cavity field and feedback field corresponds to a 

dropout in the intensity [4]. 

 

 The noise level can be tuned in the simulation by changing the variance 

c

D


  . Fig. F shows the phase jumps as a function of time for three different values 

of  . The phase jumps are most coherent (or regular) for moderate amount of noise 
21035.9   (Fig. F(b)), which corresponds to perturbing the system in resonance. 

That is the average perturbation time interval is close to the system's intrinsic 

recovery time. For low noise level (Fig. F(a)), the perturbation is rarely large enough 

to drive the system out of its stable mode. Therefore, the time intervals between 

successive jumps in )(t  are relatively large and less regular. For very high level 

noise (Fig. F(c)), the system is frequently driven out of its current mode before it has 

enough time to recover back to its stable mode. That is the average perturbation time 

interval is much shorter than the system's recovery time. Therefore, we see that the 

peaks in )(t  broaden and the time intervals between successive peaks are irregular. 



2013 Final Project of Physics 210B Nonequilibrium Statistical Physics 

 

 
Fig. F. The coherence behavior of )(t  as the noise level changes: (a) 21036.7  , 

(b) 21035.9  , (c) 11060.1  . Noise correlation time is kept constant at 

psc 24  [4]. 

 

 Interestingly, coherence resonance can also be observed by fixing the noise 

level 
c

D


   and changing the noise correlation time 

c
 . Fig. G(b) shows that the 

peaks in the phase )(t  is most coherent for moderate correlation time psc 6.57  [4]. 

Short correlation time corresponds to high frequency modulation in the pump current. 

In this high frequency limit, the carriers dynamics in the semiconductor acts as a low-

pass filter, preventing the system from responding to the high frequency modulation. 

Therefore, the intervals between successive peaks in Fig. G(a) are large and irregular. 

On the other hand, in the low frequency limit, or long correlation time, the carriers 

have enough time to respond and the system follows the noise modulation in the 

pump current. The incoherence in the noise naturally translates into the incoherence 

of the system output (Fig. G(c)). Only for moderate correlation time will the system 

responds in resonance.  
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Fig. G. Coherence behaviors of phase difference )(t  as the noise correlation time 

changes: (a) psc 8.15 , (b) psc 6.57 , (c) psc 2.153 . Noise intensity is kept 

constant at 079.0  [4]. 

 

III. Noise-Induced Network Oscillations in a Reduced Bursting Model 

1. Resonant Integrate-and-fire Model  
In this article, the author reduced the Hindmarsh-Rose (HR) model by modifying the integrate -and-

fire (IF) model with a reset mechanism after a threshold crossing, as given by the two linear ODEs 

and the reset rules: 
     

  
                                                    

     

  
                                     

 

                                  when      reaches          
 

The      resembles a voltage-like variable while      describe the slow dynamic of an adapting 

current, similar to the slowly relaxing variable of HR model. The stationary state is at       
      while no input (          ) is applied. The first ODE behaves as integrate-and-fire model: 

when the voltage-like   reaches the threshold       ,      is reset to               and meanwhile 

an action potential (spike) occurs, or more specifically saying, a sharp voltage change across the 

nerve membrane. To mimic the dynamic of HR model that a spike makes the increase of  ,      
will reset to              whenever threshold crossing happens. 
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The four parameters A, B, C and D in RIF model are chosen to fit its impedance magnitude with 

that of HR model [S. Reinker, 2006], so as to mimic the subthreshold behavior of HR model—it 

exhibits a subthreshold resonance to signals with input periods near 336 time units [Reinker, 2003]. 

The fitting results given in the article are A= −0.032, B= −1.3258, C = 0.00025 and D= −0.001.  

 

2. Results and Discussions 

The Deterministic Firing in RIF Model 

Deterministic cases with different sets of        ,       ,         and        are shown in Figure 1. 

When             , the RIF system eventually evolves to equilibrium state               . As 

constant             .4 applied, the system starts to cross threshold and fire regularly, and the 

firing frequency increases with the increase of the input intensity. Mathematically, with any 

constant input         the stable state is given as                            1. However, with 

the threshold-crossing-and-firing mechanism in RIF model only when                      will 

the system go to the stable state, otherwise it starts to firing periodically.  

 

 
 
Fig. 1 The deterministic RIF model: (a) It goes to stable state when             . (b) As         

               , the system can not continuous the periodic firing. The presence of the first firing depends 

on the initial condition of         at    . As long as    is negative and    is small enough, the       
would likely to be positive that makes   reach the threshold in the early time steps. (c)-(g) shows the regular 

                                                        

1        
    
    

 , the same as defined in the Appendix. 
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firing patterns with different sets of        ,       ,         and       . (c)&(d) The firing rate increases with 

        for that it is related with the increasing rate of  . (e) Lowering the        to 0, the time course of 

inhibitory-to-firing is reduced such that the period of the firing pattern slightly decreases. On the other hand, 

the period will be prolonged if (f)        is set to larger value 1 or (g) threshold is slightly lifted the to 1.11. 

(h) While        is sufficiently small (0.01) that after each firing the       could still be positive, then it 

enters endless bursting phase. 

 

The Stochastic Firing in RIF Model 

Adding Gaussian white noise into RIF model, we get the two-dimensional stochastic differential 

equations which describes Ornstein-Uhlenbeck process 

 

                                                              

                                                             

                                        when      reaches         , 

 

where      denotes the Wiener process and the constant   denotes noise intensity.  

 

Figure 2 shows the stochastic FIR cases both with              but different noise intensity  . 

Interestingly, the noise not only can kick   to reach the threshold but also give rise to have multiple 

threshold crossings—the burst firings. Because after a firing the reset value of   is still close to the 

threshold, with sufficiently large noise it’s highly possible to   to cross threshold again. However, 

each threshold crossing makes   increase by       , and the larger the   is the more inhibition exerts 

on  . Therefore, bursting phase will be terminates at some time and entering the recover period.  

 

 
Fig. 2 The stochastic FIR with noise level (a)       and (b)      , both demonstrate noise-induced 

multiple threshold crossings (bursts). The number of bursts in the same bursting phase can be tell form the 

increment of   value because we know each crossing make   increase by      . In (a) around      ,   

suddenly jumps to     indicating there are three times crossings, as shown in the inset. Note that as the noise 

level   increases, not only the firing rate slightly increases but the number of bursts in the short time period 

distinctly increases as well. 
 

Network behavior of RIF Model 

To investigate the network properties of the RIF neurons, the simplest way is to bring an all-to-all 

coupling with an identical coupling strength   into the stochastic differential equations: 
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                                        when      reaches           
 

The summation in the first SDE models the synaptic coupling between N neurons by setting that the 

voltage of  th neuron will be lifted by the amount of   (       ) whenever the  th neuron (  
 ) fires. In other words, any one of the neuron   in the network crossing the threshold will make all 

the other neurons jump by  . Here we choose   to be positive so neurons are gradually pushed to 

threshold for each kick
2
.  

 

Figure 3 displays the raster plots of the coupled 50 RIF neurons with different sets of noise 

intensity   and coupling strength  . Figure 3 (a)-(c) the coupling        is fixed but with different 

noise intensity respectively. When noise level is low (      ) the firing happens occasionally and 

is seemingly random. For intermediate noise (      ) it demonstrates a synchronized and 

periodically firings among the network, but for sufficiently high noise (     ) though the neurons 

still fire rapidly the synchronized activity disappears. Meanwhile, coupling strength   also has 

influence on this kind of stochastic oscillations, as shown in Figure 3 (d)-(f). With small noise 

intensity       , the network synchronization can only occur when the coupling strength is 

strong enough Figure 3 (e), and persist even with larger       (f). The only difference between (e) 

and (f) is that its takes a while to start synchronize for a lower coupling strength. 

 

                                                        
2 In a more complex neural network model, except for having the positive coupling, some portion of 
neurons will be set to have a negative   on the others so as to describe the inhibitory network 
behavior. 
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Fig. 3 (a)-(c) Raster plots of simulations of 50 RIF neurons [S. Reinker, 2006], with different noise level   

(a: 0.08, b:0.12, c:0.90) but with fixed coupling strength   0.06. Synchronized stochastic network 

oscillations occur at intermediate noise strength and are stable over a wide range of   values (between 

approximately 0.1 and 0.85). (d)-(f) The simulation with the dependence on coupling strength (d: 0.06, 

e:0.10, f:0.20) but fixed noise level    0.08. The synchronized oscillations appear when the coupling is 

strong enough. 

 

3. Stochastic Analysis of RIF Neural Network 
During the bursts recovery period, the system is described by two linear stochastic differential 

equations Eq. (3) and (4), from which we can obtain its associated Fokker-Plank equation (FPE). By 

solving FPE we will get the probability distribution of the system that help us to clarify: 1) the 

system behavior during the burst recovery phase; 2) approximate the probabilities of threshold 

crossings, and 3) the expected number of neurons crossing threshold in the constrained system. 

  

Following the procedure shown in Appendix, we got the unconstraint
3
 probability density of one 

neuron, which is a Gaussian distribution 

                                                        
3 The probability density can go over the threshold  . Even it’s not  
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where       and       are the center of the Gaussian (the first moments of   and  ),        and 

       are the variances which is proportional to    (noise intensity), and    
         is the 

correlation coefficient. Since threshold only exists in   variable, it is convenient to consider the 

marginal probability density for    

                   
 

      

     
      

 

    
   

Also, the quantity      is define as the probability that   >        in the unconstrained and 

uncoupled system at time t, 

            

 

      

  

Figure 4 (a) and (b) show the time evolution of        for a single neuron with different noise level. 

As we see the        moves toward the stable point     and arrives there roughly at    300 to 

350. From Appendix, we know the variance of       ,    , is proportional to   . Therefore, as 

           centered at    , the fraction of        that lies outside of threshold        is  -

dependent. The larger the   is, the larger the portion of the tail of        falls in the range   > 

      , shown in Figure 4 (c), and the higher the probability to have threshold crossing. And this 

threshold-crossing probability has been defined as      and shown in Figure (d). 

 

 

 
Fig. 4 (a) and (b) shows        at t=100, 150, 200, 250, 300, and 350 with the noise level   0.12 and 0.20, 

respectively. (c)            with different noise intensity. The portion of the tail of the density   that 

exceeds        is directly related to the variance of the distribution, which is proportional to the square of the 

noise intensity (  ). (d) the largest   has the dramatically increases in          while for small        is 

very close to 0, denoting that the high   leads to the high probability of threshold crossing at the most likely 

time      . 
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Another quantity        , defined as the average number of neurons that cross the threshold 

        spontaneously at a given time interval of length   , is given as 

              
where    is the average of      over the period   to     . Form figure 4 (d) we know      reaches 

maximum at       and almost stays as a constant afterward. Therefore   indicates how likely the 

isolated neurons are to cross threshold at time  . For different noise level, their   values at       

are shown in Table 1. 

 
Table 1 The larger noise level has the larger  , i.e., the threshold crossing is more likely to 

happen with higher noise. 

 
 

With the quantities      and  , we can explain how a small number of firing neurons can kick 

the system to bursting phase. The mechanism of coupling  , lifting the voltage by   whenever one 

neuron fires, is equivalent to shift the center of        to approach        the by the amount of  , 

i.e.,         . This shift in   makes its right tail enter the range   >       , and increases     , as 

shown in figure 5. For the case with slightly larger        shown in figure 3 (e), the 

synchronization doesn’t exit until time 2000. Obviously, with small   the majority of neurons may 

have to be pushed multiple times so as to shift their        sufficiently, which increases      to 

higher probability.  Thus, in the beginning the firing pattern is seemly random due to just few of the 

neurons originally closed to threshold can cross the threshold. However, when these neurons fire the 

rests will also be pushed to approach the threshold. As the voltage kicking goes on, majority of 

neurons become more and more closed to the threshold. Thus, whenever a neuron fires, those that 

are closest to the threshold will also be push to fire. Then the rests will also be pushed by the 

previous firing events, so on and so forth, just like a threshold crossing avalanche that firing triggers 

the fire of the other neurons in the short time period. 

 
 

 
Fig. 5 (a) shows the probability        (solid), and          (dashed)  of a single neuron   ,before and 

after a neuron  ’s firing (    ). (b) the corresponding      before and after the shift of  , with different 

noise level. 

 

 

 

IV. Appendix: Solving Probability Density 
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The probability density          for the solution of the unconstrained stochastic differential 

equation
4
, 

                                                   

is a Gaussian, and can be determined by solving the associated Fokker-Plank Equation: 

  

  
  

 

  
         

 

  
         

  

 

   

   
        

which includes four drift terms, and the only one diffusion term owing to the noise input in the   

equation. The initial conditions at an initial time    are given by 

                                                                       

Here, we are interested in the evolution of          just after an action potential generates, so we 

take initial conditions at      as the reset times    following an action potential, and set       
       and                as well. If we express          by its Fourier trans-form with respect 

to x and y, i.e., by 

         
 

     
         

                            

we obtain the Fourier transform of Eq.(??) by replacing      with       and   (or    with      (or  

    ), 

   

  
          

   

   
          

   

   
 
  

 
  
    

       
   

   
                                                                 

      
  
  

        
    
  

   

 
with initial condition                               . Since we already know that   is a 

Gaussian and therefore make the ‘ansatz’ that    is a Gaussian as well, and the solution is  

                           
 

 
               

where       and        (        ) are moments and variances. Insert this ‘ansatz’ in to Eq. (A.4) 

and get  

   

  
      

   

   
                    

 

 
                                           

the equation requires that    and     must satisfy the following ODEs 

 

                                     
 

And then we follow the approaches shown in (Risken, 1989), calculated      and     with 

Mathematica, and eventually we get 
 

    
  

         
 
                 

  
 
                

  
 
                 

     
  

    
   

         
 
                 

  
 
               

  
 
                     

     
  

                                                        
4 The   can be larger than the threshold        because FPE is not involved in the resetting mechanism of   

and  , which is applied when simulating the two SDEs Eq. (3) and (4). 
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where      is the eigenvalue of matrix   

     
                  

 
 

 

The probability density is  

         
 

             
 
     

 

    
   

 

      
 

 
      

 

   

 
                

      

 
      

 

   

    

 

 
Fig. A1 The plot of          ,       ,        and       . 
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