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Introduction 

 There exist a number of systems which can extract work out of unbiased random 

fluctuations. A windmill, for example, harnesses air currents, and a self-winding wristwatch 

utilizes random motion of the user to power itself. A number of other various rectifiers produce 

similar effects in macroscopic systems, but whether this is possible in a microscopic system is 

another question. Brownian noise, in some nanoscale system, should be able to produce 

meaningful work in a similar manner, yet this would seem a violation of the Second Law of 

Thermodynamics. It turns out that if we are clever enough, we can indeed create devices that 

produce work from thermal noise, without violating the laws of thermodynamics. These are 

called thermal ratchets. 

 A 'thermal ratchet' refers to a broad range of systems where thermal noise, or Brownian 

motion, is rectified and harnessed to do useful work. This is a directed transport phenomenon 

where thermal noise plays the dominating role. But directed transport in a system with a single 

thermal heat bath is forbidden by the second law of thermodynamics. The effect of this noise 

must be symmetric, and no features of our device can bias the Brownian motion. Thus a first 

requirement for a thermal ratchet is breaking of thermal equilibrium [1]. This will come in 

various forms; different heat baths, perturbations, periodic driving, etc. It turns out that another 

requirement is breaking of spatial inversion symmetry [1], for example in the form of a periodic 

and asymmetric potential, or perturbation. With these two conditions, directed transport can 

emerge to produce work.  

 

 

 



Feynman's Thought Experiment 

 The question of why these requirements are necessary was addressed by Feynman in the 

famous Feynman Lectures on Physics in 1962 [2]. In this thought experiment, Feynman 

proposed a machine, small enough to be influenced by moving particles, with a small paddle  

 

 

 

 

 

 

 

wheel in one thermal bath and a ratchet and pawl in another (Fig. 1). This would be connected to 

a mass that could be lifted and produce work. The paddle wheel in the first bath, at temperature 

T1, is in contact with molecules whose random Brownian motion can turn the paddle. Since the 

noise is symmetric there is no preferential direction of the wheel's rotation. However, the ratchet 

on the opposing side allows rotation only in one preferential direction. It seems that this can 

produce useful work from Brownian motion, which violates the second law. But Feynman 

showed that if the whole device is at the same temperature it will only rotate back and forth 

randomly. This is because the ratchet mechanism is also influenced by random Brownian 

motion, which allows the wheel to slip backwards intermittently. Now, if we break thermal 

equilibrium, with T2<T1, the ratchet will indeed only move forward and produce work. Before 

examining real systems, we'll briefly consider the theory of a thermal ratchet. 

 

Figure 1: Feynman's ratchet and pawl. [3] 



 

Theory 

 The theory of thermal ratchets can be expressed by a Langevin equation, which describes 

the time evolution of a particle's position with respect to some faster varying stochastic variable 

(in this case the thermal noise). Consider a Brownian particle at temperature T in a potential V(x) 

with a load force F. Then the Langevin equation for the particle's position is:  

𝑥 = 𝑘[−𝑉′ 𝑥, 𝑡 + 𝐹 + 𝜉(𝑡)]  

where ξ(t) represents the thermal fluctuations as white Gaussian noise with zero mean [4]. From 

this Langevin equation, we can write the corresponding Fokker-Planck equation for the evolution 

of the probability density. This is given as: 

𝜕𝑡𝜌 𝑥, 𝑡 = −𝜕𝑥𝐽(𝑥, 𝑡) 

where the particle current J is: 

𝐽 𝑥, 𝑡 = −𝑘𝜌 𝑥, 𝑡 [𝜕𝑥𝜇 𝑥, 𝑡 − 𝐹] 

[4]. The particle current refers to what is used to do work, whether thermal particles made to 

diffuse in a preferential direction, electrons in a circuit, etc. This general approach can be applied 

to the many specific Brownian motor systems that exist, which we will now discuss. 

 

The Flashing Ratchet 

 The simplest Brownian motor that we can consider is the so called 'flashing' ratchet. 

Consider a particle in an asymmetric and periodic potential that is flashing on and off (Fig. 2) 

[5]. There is some external force, from the right to left, which the particles can do work against. 

When the potential is off the particle is free to diffuse, and when it is on it becomes trapped.  



 

 

 

 

 

 

 

Without thermal noise, the particle would move to the left in the presence of this force. But with 

it, the particle's position is given by a probability distribution based on a random walk. Therefore 

when the potential is off the particle starting at iL diffuses around the region, and because of the 

asymmetry of the potential it is more likely to be trapped in the well at (i+1)L than (i-1)L when 

the potential turns on again. Thus despite a force to the left, the particle moves to the right as the 

potential is turned on and off. In this case, we can write the Langevin equation with this periodic 

potential as  

𝑥 = 𝑘[−𝜁 𝑡 𝑉′ 𝑥 + 𝐹 + 𝜉(𝑡)], 

where ζ(t) is noise of values 0 and 1, switching the potential on and off [4].  

 It turns out that the velocity of particle current depends nonmonatonically on the 

switching frequency (Fig. 3) [5]. This is because while the potential is off, the particle must 

diffuse at least a distance αL but not longer than (1-α)L. Therefore we can tune the switching 

frequency to specific particles and devices. The energy that we extract from this system, as a 

particle current, now comes not from thermal diffusion but from the potential being turned on. 

Thus we do not violate the second law, yet use thermal noise to yield directed transport and 

work.  

Figure 3: Flashing potential. While off, the particle diffuses with 

Gaussian probability, seen on the bottom of the figure. When on, 

the particle becomes trapped. It moves to the right despite an 

external force to the left [5]. 

Figure 2: Velocity distribution of particle current with 

respect to the time the potential stays off [5]. 



Fig 4. The mechanism of a rocking 

ratchet.  (a) the unperturbed, 

sawtooth potential with a constant 

force applied. (b) particle velocity as a 

function of Fmax. (c) particle velocity as 

a function of thermal noise 

The Rocking Ratchet 

 A typical “flashing” thermal ratchet involves no changes 

in the spatial average of the force on the particle, but instead 

simply changes the landscape of the potential surface locally. 

Another common type of ratchet involves applying a fluctuating 

net force across the entire surface while leaving the time averaged 

potential unchanged.  This approach essentially involves tilting a 

standard sawtooth potential back and forth between two limits by 

adding a linear factor to the potential ±Fmax.  If Fmax is sufficiently 

high, the potential surface at this limit will decrease 

monotonically and the particles will all flow to the left 

preferentially (See figure 4 A)[5].  However, when the –Fmax 

limit is reached, the minima which exist in the standard 

sawtooth potential will remain, and trap particles, preventing 

them from flowing more than one period to the right.   

It is interesting to note that in this approach, the thermal ratchet is perfectly functional 

even in the absence of thermal noise, provided that the period of oscillation is sufficiently low.  

With a high frequency, it is possible that the particles will not have time to move across one of 

the sawteeth in the +Fmax position, before they flow back to the right in the –Fmax position, and 

thus no long distance transport will occur. In the absence of thermal noise, condition on Fmax is 

trivially ΔU/[(1-α)L]<Fmax, but with thermal noise, this condition can be relaxed depending on 

the maximum magnitude of the forces due to thermal fluctuations.  For a slow square wave 

modulation, the average rate of flow can be calculated analytically calculated [6]. In figure 4 the 

average velocity of the particles are plotted against Fmax in figure 4B and against thermal noise at 



Fig 5. Circular and eliptical 

rings with “onion” state 

polarization 

Fmax=0.4pN in figure 4C. Notably, we see that increasing the noise can actually increase flow 

suggesting that in some applications, it may be useful to add noise to a system in order to 

increase transport.   

One example of a rocking ratchet demonstrated by D. Perez de Lara, et al. Involves 

purely magnetic manipulation of the potentials in order the achieve directionally preferred 

transport of superconducting vortices [7].  In this work, researchers used a superconducting Nb 

film in contact with a structurally symmetric array of Ni nano-rings.  The superconducting 

vortices play the role of the nonequilibrium particle, and the driving force of the rocking 

potential is induced by A.C. currents in the sample.  The goal is to demonstrate that unlike 

similar superconductor vorticy thermal ratchets whose function is derived from structural 

asymmetry, this thermal ratchet is driven by magnetic effects alone.  In this situation, the 

magnetic state of the ring arrays is measured in several cases: one with in-plane field along the 

axis of the square array, field along the long axis of the elliptical 

rings, and field along the short axis of the elliptical rings.  In all 

cases, the data suggests that the ring form onion states; that is, 

where the magnetization of the ring along the circumfrence of the 

ring, but half of the ring is polarized clockwise, and the other half 

counter-clockwise (see figure 5).   

Structural defects are often effective potential wells for 

superconducting vortices.  Close to the critical temperature of the superconductor, 

magnetoresistance generates a periodic potential minima when the vortex density is an integer 

multiple of the site density.  Thus, when the number of vortices per Ni ring is controlled by an 

externally applied magnetic field, it can be characterized simply by making magnetoresistence 



Fig 6. Vortecy current as a function of the 

applied AC field.  Shown for onion 

magnetization, demagnetized states, and 

triangular nanostructures 

measurements.  In these experiments, samples 

with elliptical rings are structurally symmetric, 

and thus display no ratchet effect in the absence 

of magnetization.  But when the rings are 

magnetized in parallel onion states, the ratchet 

effect is clear (See figure 6).  Thus, the ratchet 

effect can be attributed purely to magnetic 

asymmetry.  Further confirmation of this purely 

magnetic phenomena can be found in the fact that the magnitude of the vortex current does not 

change with the a.c. input driving current, and thus there is no reversal of the vortex ratchet for a 

purely magnetically induced ratchet.  Thus a net current of superconducting vortices can be 

driven via a zero-average A.C. current in the presence of conducting rings, which become 

magnetized in onion states, confirming that the ratchet effect in this system is purely 

magnetically driven.   

 

The Plasmonic Brownian Ratchet 

Fig 7.  The basic operation of a flashing ratchet (a), an overhead schematic of the plasmonic structures (b), and 

a planar view of the strucutres with the direction of the fields indicated (c) 



Fig 8. U(y) for a variety of vaues of θ (a).  

Maximum potential depth and disorder 

parameter as a function of θ (a inset). Force 

experienced by a particle (b) and the norm of 

the electric field (b inset). 

 The plasmonic Brownian ratchet is another interesting simulated example of a flashing 

ratchet [8].  In this example, researchers utilize an array of plasmonic nanostructures to bias 

Brownian motion of dielectric beads.  The goal is to produce geometrically asymmetric, 

anisotropic traps for the particles, and then modulate the time of interaction with the traps by 

turning on an off illumination of the surface.  Each cell of the lattice in this structure consists of 

four metallic dipole antennas who’s length gradually varies, and spaced at a dramatically 

subwavelength spacing (See figure 7b).  The length of the series is given by Lo=L-3(ω+g)tan(θ).  

The angle θ characterizes the degree of asymmetry in the structure.  Each unit cell is repeated 

with a period of Λ and the structures lie on a glass substrate which is immersed in water 

containing well dispersed dielectric beads at room 

temperature.  In order to modulate the potential, the 

system is illuminated with a p lane wave normal to the 

surface and with the electric field polarized along the 

dipole antenna axis (figure 7c).   

 In order to characterize researchers performed 

simulations on the structures and determined the 

structure of the potential well of a single antenna array 

as a function of parameters such as θ in figure 8a,b.  It 

is clear from these plots that they asymmetric geometry 

of the antennas yields an anisotropy in the trap.  The 

field pattern reveals that within the gap between the 

longest antenna, there is a dramatic field enhancement 

whereas the neighboring, shorter antennas leads to a 



Fig 9. Simulation of diffusion probabilities for 4000 

particles in the proposed structure.  (a) shows the initial 

configuration of the system, and (b) demonstrates the 

distribution after 16 on-off cycles.   

continuous field profile along the y axis.  By changing physical parameters of the array, it is 

possible to change features such as the depth of the potential well, and its degree of asymmetry.  

However, at sufficiently large values of θ, the size and thus resonant frequencies of neighboring 

antennas is too great, and the antennas begin to decouple.   

 To demonstrate the function of the Brownian ratchet, researchers carried out simulations 

for diffusive beads in the presence of their proposed plasmonic structure with the incident 

trapping field periodically turned on and off.  For particles of mass m, radius σ, temperature T, 

and subject to an external force Fy, the motion is governed by the Langevin equation of motion: 

 

Where we see the standard drag 

coefficient γ and diffusion constant 

D=kBT/mγ.  By solving this equation for 

N particles at 300K=T, researchers 

simulated the statistics of the system.  In 

this case, Λ=800nm because for this 

value, U(y) contains no local maxima, 

I0=75mW/μm
2
and the process is 

simulated in 1D.  The results of this 

simulation can be seen in the histograms 

in Figure 9.    The simulation confirms the 

possibility for this type of device to cause 

biased brownian motion, which could have exciting results in the fields where precise 

manipulations of small particles are currently a great challenge. 



Conclusion 

  Thermal ratchets provide a way to get meaningful work out of random thermal 

fluctuations, provided there is some energy input to break thermal equilibrium and spatial 

symmetry. These thermal ratchets have applications in nanoscale and biological technology, for 

example in sorting various particles based on how they diffuse through the ratchet. We have 

investigated a wide number of different forms these systems can take, from a simple asymmetric 

and periodic potential, to more modern magnetic and plasmonic systems.  
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