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We review the basics of random matrix theory and its applications to transport in mesoscale
systems such as quantum wires and dots. The goal of this approach is to uncover properties of cor-
relators which are universal, despite impurities or noise, viewed as the the correlations of eigenvalues
from random S-matrices.

INTRODUCTION

Random matrix theory begins with the observation that, given some distribution of matrix elements, the correlations
of eigenvalues and vectors of these matrices are independent of many of the details of that distribution. The existence
of these ’universal features’ is very appealing when studying problems involving such complicated matrices whose
coefficients we can take to be approximately random. [6]

Several areas of physics lend themselves to such analysis.The methods of random matrix theory have been applied
successfully to the study of chaotic systems[3], the spectra of large nuclei[21], and constraining low-energy QCD[19].
In this paper, we summarize how random matrix theory can be applied to study transport properties of disordered
and open systems, particularly those for which quantum mechanical effects such as tunnelling and phase coherence
are essential to the physics.

The two examples focused on will be transport through a chaotic cavity, a model of a simple quantum dot, and also a
series of such cavities as a model of a disordered quantum wire. In these geometries we can understand precisely what
the ensemble of S-matrices is and how we can use it to obtain statistics of transport properties, such as conductance
fluctuation and shot noise.

We begin with a review of random matrix theory for a Gaussian distribution and its application to closed quantum
systems.

THE WIGNER-DYSON ENSEMBLE

Consider an ensemble of N ×N 1 Hermitian matrices, H obeying the following probability distribution:

P (H) = e−βTr V (H) (1)

Where V (H) ∝ H2 so that this distribution is Gaussian. Consequentially, each matrix element is guaranteed to be
independently distributed.2

We define β, referred to as the ’symmetry factor’, in the above distribution as a number which tells us what sort of
elements Hij are. The three cases we will be considering are:

β = 1 Hij ∈ R ’Orthogonal’
β = 2 Hij ∈ C ’Unitary’
β = 4 Hij ∈ H ’Symplectic’

The names are chosen for the type of matrices, U , which leave any H invariant: we can decompose H =
Udiag(λ1, ..., λN )U†. In applications to a physical system one chooses the smallest β, and thus matrix elements,
that manifestly preserves symmetries of the system.

For example, one may use β = 1 for a system which respects anti-unitary symmetries such as time-reversal but if
spin-rotation symmetry is broken one is forced to choose β = 4.

In this way we can say that β counts the number of degrees of freedom for each matrix element. This makes it a
suitable object to play the role of the ’inverse temperature’.

1 The N → ∞ limit will usually be taken.
2 Tr H2 = Tr HH† =

∑
i,j |Hij |2
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To determine the distribution of eigenvalues, P ({λi}), from our matrix distribution 1, we simply preform the basis
transformation, H = Udiag(λ1, ..., λN )U†, and integrate over the space of U . The trick is in how the volume element
transforms.

Consider the measure in the space of H matrices:

dµ(H) =
∏
i<j

dHij = J(
∏
i

dλi)dµ(U) (2)

To determine the Jacobian factor, J , we consider the line element: ds2 = Tr dµ(H)dµ(H†) = gµνdx
µdxν 3 From

which we can derive J = |det g|1/2.[18]
Using H = UHU† above we can express ds2 =

∑
i dλ

2
i +

∑
i,j dUidUj(λi − λj)2β from which it is clear:

J =
∏
i<j

|λi − λj |β (3)

Thus we can express P ({λi}) as:

P ({λi}) ∝
∏
i<j

|λi − λj |β
∏
k

e−βV (λk) (4)

By inspection we can see 4 can be brought into a form familiar from statistical mechanics: the Gibbs distribution.

P ({λi}) ∝ eβ[
∑

i<j ln |λi−λj |−
∑

k V (λk)] (5)

The Jacobian factor generates an effective logarithmic repulsion between eigenvalues! If one imagines that these
{λi} are classical particles distributed along one dimension then such an interaction could arise from the Coulomb
repulsion of infinite parallel lines of charge associated to each λi.[8]

As we’ve seen, the only correlations of eigenvalues enter from the Jacobian factor 3. This led to a rather seductive
conjecture that all such correlations are geometric in origin. Is this valid? Generally speaking, it depends heavily on
the characteristic length and energy scales of the problem.

The application of the Wigner-Dyson ensemble to the electronic properties of disordered metal grains[13] predicts
the same energy-level correlation function as assuming diffusive motion of the electrons in the grain. However both
models break down for |Ei − Ej | > Ec = ~D

L2 , differences above the Thouless energy.[1]
Note that Ec ∝ 1

L2 indicates that the theory works for length scales where there are many grain boundaries over
the relevant length, but breaks down if one is effectively looking inside of single grains. This is unsurprising: at long
length scales things look chaotic, but at short length scales they can begin to look ordered, which the individual grains
are.

Another interesting application of this formalism is when H has some dynamical dependance: the distribution
remains fixed but one tries to predict the fluctuations of the eigenvalues.

Consider a Hamiltonian:

H = e−τH0 + (1− e−2τ )1/2HGU (6)

Where τ ∈ (0,∞) is a time parameter which interprets between a fixed matrix H0 and a matrix HGU which is
distributed according to 1 for β = 2: the Gaussian Unitary Ensemble denoted by PGU (H).

This leads to a probability distribution:

P (H, τ) =
1

(1− e−2τ )N2/2
PGU (

H− e−τH0

(1− e−2τ )1/2
) (7)

The above distribution is actually the Green’s function for an Ornstein Uhlenbeck process: 7 obeys a Fokker-Planck
equation![14]

3 The dxµ are over the spaces of eigenvalues and eigenvectors, dλµ and dUµ respectively.
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By performing a series of N2 Gaussian integrals one obtains the corresponding Fokker-Planck equation for the
distribution of eigenvalues P ({λi} , τ) :

∂τP =
∑
i

∂i

λi +
∑
j 6=i

1

λj − λi
+

1

2
∂i

P (8)

One can apply this analysis to the case of disordered metal grains in magnetic field[5], relating τ to changes in
field strength. While this correctly predicts the two point functions of densities, the level dynamics are not a Markov
process and thus the higher point correlation functions will deviate from the RMT result above.

TRANSMISSION EIGENVALUES AND SCATTERING

We now consider the same formalism of random matrices applied to scattering matrices S, as opposed to Hamilto-
nians themselves.

Consider the 1-D case of two baths of electrons sandwiching a disordered region where scattering happens. The
incoming wavefunctions can be written ψn = e±knx, for which we can write S(n) to relate incoming to outgoing states
in the usual manner. S then is a 2N × 2N matrix relating the vector of incoming to outgoing channel amplitudes and
can be parameterized as:

S =

(
U 0
0 V

)(
−
√

1− T
√
T√

T
√
T

)(
U” 0
0 V ”

)
(9)

Where T is the diagonal matrix of transmission eigenvalues and the set of U, V, U ′, V ′ are N ×N unitary matrices.
We can construct an distribution similar to 1 for the scattering matrices which depends solely on the transmission

probabilities {Ti}:

P (S) ∝ e−βTr f(tt
†) (10)

Where tt† is the Hermitian matrix with eigenvalues Ti and f(tt†) ∝ (tt†)2. [4]
Our analogous version of equation 4 :

P ({Tn}) ∝
∏
i<j

|Ti − Tj |β
∏
k

T
−1+β/2
k exp[−βf(Tk)] (11)

Which has a Gibbs form, ala 5, by parameterizing the above with respect to the ratio of reflection and transmission
coefficients: λi = 1−Ti

Ti
.4 This then yields

P ({λn}) ∝ exp

−β
∑
i<j

u(λi, λj) +
∑
i

V (λi)

 (12)

with u(λ, λ′) = − ln |λ− λ′| the familiar logarithmic potential, and

V (λ) = [N − 1

2
(1− 2/β)] ln(1 + λ) + f

(
(1 + λ)−1

)
which now contains all the microscopic data of the scattering process.

In practice, the eigenvalue repulsion u is not logarithmic. The form of V above arises from its role as a Lagrange
multiplier in the derivation of ?? from maximization of entropy given a fixed mean density of the λi. The assumption
of geometrical correlations is then valid only for transmission probabilities Tn close to 1 and overestimates repulsion
for smaller Tn.

There is some inherent ambiguity in defining the entropy of a random matrix ensemble, for example under variable
redefinitions, and it is an open problem whether there is some scheme which can produce the correct distribution for
a disordered wire.

4 Note that λi is restricted to be positive as opposed to generic eigenvalues.
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FUNCTIONAL APPROACH TO CORRELATIONS

We now introduce a method to calculate correlation functions of the ensemble (??) with a generic potential u(λ, λ′).
The two point correlation function

K(λ, λ′) = 〈
∑
i,j

δ(λ− λi)δ(λ′ − λj)〉 − ρ(λ)ρ(λ′)

is given by the functional derivative of the mean spectral density ρ(λ) = 〈
∑
i δ(λ− λi)〉 with respect to the confining

potential V (λ). Note that

δ

δV (λ′)
eβW = −β

∑
j

δ(λ′ − λj)

so

ρ(λ′) =
δ

δV (λ′)
ln

∫ N∏
j

dλj exp(−βW ),

which is strongly reminiscent of the expectation value for an operator in field theory. Taking another functional
derivative with respect to V then yields the two point correlation function

K(λ, λ′) =
δ

δV (λ)

δ

δV (λ′)
ln

∫ N∏
j

dλj exp(−βW )

=
−1

β

δρ(λ)

δV (λ′)

In the limit of large N, the functional derivative can be explicitly evaluated [20]. The potential V and mean density
ρ are related by the integral equation

V (λ) +

∫ λ+

λ−

dλ′u(λ, λ′)ρ(λ′) = constant

where (λ−, λ+) contains the support of ρ. Finite N corrections are of order 1/N for β = 1, 4 and 1/N2 for β = 2 [9].
This expression has the natural interpretation that the eigenvalues distribute themselves to obtain equilibrium with
the potential V .

Varying this expression,

δV (λ) +

∫ λ+

λ−

dλ′u(λ, λ′)δρ(λ′) = constant

Note that
∫ λ+

λ−
dλρ(λ) ∝ N , so varying ρ while holding N fixed yields the constraint

∫ λ+

λ−

dλδρ(λ) = 0

This can be solved for K2 = δρ/δV :

K2(λ, λ′) =
1

β
u−1(λ, λ′) (13)

where u−1(λ, λ′) is the inverse of the integral kernel u.
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UNIVERSAL CONDUCTANCE FLUCTUATIONS

The universal behavior of the random matrix formulation becomes manifest in the fluctuations of the conductance
G. The Landauer formula states that the conductance is proportional to the sum of transmission probabilities [11]

G = G0

∑
n

Tn (14)

where G0 = 2e
h . The fluctuations in current, called shot noise, also depend in a simple way on the transmission

coefficients. The power of the shot noise is given by

P = P0

∑
n

Tn(1− Tn),

where P0 = 2eVG0. More generally, we will show that any “linear statistic” A =
∑
n a(Tn) exhibits the universal

behavior of random matrix theory.
First, we change variables to λn = (1 − Tn)/Tn so that A =

∑
n a(λn). For the conductance G, a(λ) = 1/(1 + λ).

The mean of A is

〈A〉 = 〈
∫ λ+

λ−

dλ a(λ)
∑
n

δ(λ− λn)〉 =

∫ λ+

λ−

dλa(λ)ρ(λ)

and the its variance 〈A2〉 − 〈A〉2 is

var A =

∫ λ+

λ−

dλ

∫ λ+

λ−

dλ′ a(λ)a(λ′)K2(λ, λ′)

Using the expression for K2 that we obtained eariler (13),

var A =
1

β

∫ λ+

λ−

dλ

∫ λ+

λ−

dλ′ a(λ)a(λ′)u−1(λ, λ′)

This equation highlights the universality of fluctuations in linear statistics. The expression is proportional to 1/β,
which means that the variance depends in a universal way on the symmetries of the system. Furthermore, the
expression is independent of the potential V which depends on the microscopic details of the system.

The universality of the conductance fluctuations can be argued as follows: Each of the N channels in the conductor
is either nonlocalized, in which case it will contribute to the conductance (with a transmission coefficient close to
unity), or localized, in which case it will not contribute to the conductance (transmission coefficent exponentially
small). These are called open and closed channels, respectively.[15]

The conductance is therefore proportional to the number of open channels only, Neff ≡ G/G0. The fraction of
open channels is approximately l/L, where l is the mean free path and L is the length of the conductor. Therefore
the conductance G ≈ G0N

l
L .

QUANTUM DOTS

Random matrix theory is well suited to the problem of scattering off of a quantum dot. A defect in an otherwise
ordered system can be treated as a scattering site with some unknown properties. Consider the circular ensemble
developed in random matrix scattering theory.

P ({φn}) ∝
∏
n<m

|eiφn − eiφm |β (15)

Remember that the S matrices are constrained by probability conservation, so are uniformly distributed in the unitary
group. We work in Tn = 1

cosh xn
2 , so that

P ({xn})
∏
i

dxi =
1∫
dµ(S)

dµ(S) (16)
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The usual trick of looking at the transformation and taking Jacobian of said transformation applies, but now we can
also say that dµ(S) = dµ(S · U) where U is a matrix of the type determined by β. We say that this measure is
invariant, and averages in S are equivalent to averages in the appropriate group of matrices.
Now let’s apply this to a one dimensional version of the quantum dot problem. Imagine a small chaotic cavity with
ideal point contracts on either side.

There is some impedence on the inputs, leading to three scattering sites, S0 for the actual cavity and S1 and S2 of
the contacts 1 and 2 respectively. Transport in the contacts is otherwise ballistic. To see why the circular ensemble
is a reasonable choice, consider the ”most random” possible distribution of scattering matrices, by which we mean
those with maximal entropy S = −

∫
dµP (S) logP (S). If subjected to the constraint

∫
dµP (S)Sq = S̄q, Gopar [12]

showed that

P (S) ∝ |Det(1− S†S)|−β(N1+N2−1+2/β (17)

Which is the Poisson kernel used to solve ~∇2
rP = 0 on the disk. It turns out that this is also the solution for our

quantum dot. Gopar [12] also showed that if S0 is distributed on the circular ensemble, then the total matrix S is
distributed on the Poisson kernel. Where Stotal is is obtained by multiplying the transfer matrices Mtotal = M1M0M2

and then converting back to S.
Before applying the circular ensemble to the quantum dot let’s try the Wigner-Dyson ensemble for this system, so

we consider the Hamiltonian

H =
∑
|α〉Ef 〈α|+

∑
µ,ν

|µ〉Hµν 〈ν|+
∑
µ,α

|µ〉Wµα 〈α|+ |α〉W ∗µα 〈µ| (18)

Where the states |α〉 run over the states at the Fermi surface of the leads, as those are the ones which can scatter.
Recall that the leads are ordered material with ballistic transport, so it makes sense to talk about a well defined set
of states on the Fermi surface and their energy Ef . The states |µ〉 and |ν〉 are the bound states for the disordered
cavity. That Hamiltonian H is distributed as 1. However, Ef and W should be well defined. So if

S = 1− 2πiW †(Ef −H+ iπWW †)−1W (19)

by polar decomposition. Therefore the average of S is just an average over H for the cavity, since the other elements
are fully determined. This seem like something of an over-simplification having developed the machinery for RMT for
the circular ensemble. However, we will see that the Wigner-Dyson ensemble can make accurate predictions about the
conductance of the disordered cavity, and it is in fact the gaussian distribution of H is in fact a valid approximation
of the circular ensemble in the limit M →∞ The average

S̄ =
Mδ − π2W †W

Mδ + π2W †W
(20)

Where M is the number of states at the cavity (S1) and δ is the mean energy spacing in the contacts energy levels.
If we consider the case of zero impedance on the inputs, so the only scattering events are inside the quantum dot

itself, the probability of transmission from state n on one lead to state to the state to state m is given by 〈|Smn|2〉
We will see that for the case of no time reversal symmetry with S uniformly distributed on the unitary group,

〈|Smn|2〉 =

∫
dµ(S)SnmS

∗
nm =

1

N1 +N2
(21)

since β = 2 and for β = 1, this becomes

〈|Smn|2〉 =

∫
dµ(S)

N1+N2∑
k,k”=1

SnkSkmS
∗
nk”S

∗
mk” =

1 + δnm
N1 +N2

(22)
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because S is now uniformly distributed on the orthogonal symmetric matrices. So now scattering back into the
same state n is twice as likely as any other scattering event. This is known as weak localization, and it results in
a measurable increase in the conductance of a material when time reversal symmetry is broken by a magnetic field
(ie when weak localization disappears). Let’s compute the conductance as the probability of all possible scattering
events which go from one contact to the other.

G = G0

N1∑
n=1

N1+N2∑
m=N1+1

|Smn|2 (23)

Taking the average of S from above, we get that

Ḡ =
2e2

h

N1N2

N1 +N2 − 1 + 2
β

(24)

so if a magnetic field is introduced to a quantum dot, the symmetry is broken and the conductance will increase! The
presence of time reversal symmety makes scattering of an electron back into the state it came from twice as likely as
any other, as there are two ways for the events to happen. This makes backscattering overall more likely then forward
scattering, so the conductance drops slightly. If we now consider the corrections from the scattering due to impedance
at the contacts, we can no longer just evaluate the values of Smn uniformly over the unitary group. Instead the

distribution now follows the poisson kernel and if we re-write Sbarrier =

S̄ A
C B

 for some unitary matrices A,B& C.

In the limit of NΓ >> 1 for Γn =transmission probability, Beenakker [6] showed that through perturbative expansion.

Ḡ

G0
≈ g1g

′

1

g1 + g2
+ (1− 2

β
)
g2g

′2
1 + g1g

′2
2

g1 + g2

3

+· · · (25)

Where the sum of tranmission probabilities gp =
N1∑
n=1

Γpn The firs term in 25 represents the classical sum of conductances

in series, and the first term in Beenakker’s expansion represents the leading order effect of symmetry breaking. Namely,
if β = 2 and time reversal is absent, the conductance rises to the classical series sum. This has a direct experimental
realization. Chang [7] realized this in both stadium and ring shaped quantum dots. The stadium (rectangle with
circular caps) geometry is classicaly non-integrable for ballistic motion, and so we expect our conditions for RMT to
be satisfied. Indeed, We can see that There is a narrower peak in the center for the case 1.

As to why the peaks have the finite width they do can look at this in terms of the two time scales (and therefore
energy scales) Ec,open << Ec,closed. Since we have E ' h

τ the energy of a closed system is related to the ergodic time

and the energy scale of an open system is related to the dwelling time Ec,open ' h
τdwell

. Then if we imagine changing
H in a manner similar to 6 where

H = H0 + iαA (26)

Where H is real and symmetric and A is real and anti-symmetric to the total hamiltonian goes from being uniformly
distributed in the orthogonal matrices to uniformly distributed in the unitary matrices as α → 1. If we simply do
perturbation theory to leading order, the result is the energy shift is

δEi = α2
∑
i6=j

A2
ij

Ei − Ej
'Mα2δ (27)

for mean energy spacing δ and M states in the system. We will say TR symmetry is broken when δE is of the same
order as E. This is better written in terms of the flux through the cavity rather than the field strength, since we
can relate the former to the energies of the cavity. The critical flux at which the symmetry breaks and there is a
transition from the GOE to the GUE is

Φc '
h

e
(
Ec,open
Ec,close

)1/2 ' h

e
(

NΓL2δ

~vfmin(l, L)
(28)

Where l is the mean free path and L is the size of the disordered region. Thus in figure 1 the change in normalized
conductance is plotted against the flux through the disordered cavity (in units of flux quanta). If we use the machinery
of the circular ensemble and rather than inserting a particular value of β we use the distribution for H and predict
the Lorentzian shape of the conductance peak for the stadium geometry.
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FIG. 1: Figure from [7] showing normalized concudtances for the circular and stadium geometries. The strength of the magnetic
field is in terms of the flux through a single dot

QUANTUM WIRE

One dimensional quantum chains don’t obey Ohm’s law. Rather the conductance scales, at any strength of disorder,
as G ∝ e−L/ξ where L is the chain length and ξ the coherence length which depends on the mean free path l.

This was demonstrated [2] precisely by considering a 1D chain with weak scattering (l� λF ) and computing how
the transmission probability scales with L and attained the exponential scaling for L > l.

A more realistic model of a wire is not one dimensional however: when the width W > λF we should describe
the transmission of the N transverse modes. This leads to considering the eigenvalues Ti of the trasmission matrix
product tt† and their joint probability distribution P (T1, ..., TN , L) where correlations arise from eigenvalue repulsion.

This has the effect of scaling ξ ∝ Nl and allows one to distrinquish between a metallic regime (Nl � L � l) and
an insulating regime (L ∝ Nl). In the metallic regime Ohm’s law is recovered and the conductance decreases linearly
in L.

The aforementioned probability distribution is known to satisfy a Fokker-Planck equation, known as the DMPK
equation[16]:

∂LP =
2

l(βN + 2− β)

N∑
i=1

∂i[λi(1 + λi)J∂i]
P

J
(29)

Where λi ≡ 1−Ti

Ti
and the Jacobian is given by 3. An interesting equivalent approach to studying localization and

transport in the thick wire (N � 1) limit is the use of a one dimensional supersymmetric non-linear σ model! [10]
Let us verify our expectations in the metallic regime. We can derive from 29 a coupled set of evolution equations

for Mq ≡
∑N
n=1 T

q
n .[17] We can think of this in the context of a large N expansion for which one such equation, to

leading order in N , is given by:

∂s〈Mp
1 〉 =

−p
N
〈Mp+1

1 〉+O(Np−1) (30)

Note that β is not present in this truncation, s ≡ L/l. We can solve this precisely with the initial condition of Tn = 1
for all n if s = 0:

〈Mp
1 〉 = Np(1 + s)−p (31)

Combining this with 14 implies that 〈G/G0〉 = 〈M1〉 which, in the diffusive limit of s >> 1 is precisely the linear
dependence expected.
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Carrying our the expansion of 30 further once can determine the variance of G as well: VarG/G0 = 2
15β
−1 which

agrees with diagrammatic perturbation theory results. That this coefficient is not 1
8 implies that the repulsion between

eigenvalues is not truly logarithmic, as previously discussed.

CONCLUSIONS

Random matrix theory can be both a valuable calculational tool and source of insight into problems of highly
chaotic or disorder driven behaviour. While sensitive to the scales within a given problem, it is perhaps the best
tool for understanding physics in regimes where other tools fail precisely because of their dependence on structure.
It is also for this reason a very broad method and, as we have shown, has promise in determining characteristics of
transport in these disordered systems.
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