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The telegraphic process remedies the two drawbacks of Fickian diffusion in modeling certain
biological systems: infinite propagation speed and lack of velocity correlation. In this paper we
discuss the telegraphic process both through theoretical and modeling considerations. We present
a general form of the telegraph equation that includes spatially dependent drift, and obtained a
stationary state solution in analogy with the classic Ornstein-Uhlenbeck process. The resulting
distribution tends to a Gaussian in the appropriate limits.
We also performed numerical simulations to compare the mean squared deviations and mean exit

times of the telegraph process to the diffusion process. The simulation was also generalized to include
mean reverting drifts and the results are found to be consistent with the theoretical distribution.
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I. INTRODUCTION

Animal dispersion is of fundamental research interest
in ecology. Diffusion is often used to study such behav-
iors [1, 2]. Fickian diffusion, however, allows for infinite
velocities and does not consider velocity correlations,
and is thus sometimes criticized in modeling animal
movements [3–5]. Fickian diffusion is often described
with the Fokker-Planck equation, which for probability
distribution P (x, t) has the following form in 1D

Pt = −(F1P )x +
1

2
(F2P )xx, (1)

where as in the rest of this paper, position and time
variables in subscripts denote differentiations, and

〈δx(t)〉 = F1δt,

〈δx(t)2〉 = F2δt.
(2)

The second line in Eq. (2) indicates that δxrms/δt =
F2/δxrms → ∞. The fact that particles travel at infi-
nite velocity can also be readily seen from the solution
of Gaussian diffusion. Letting F1 = U, F2 = 2D, the
solution of Eq. (1)

P (x, t) =
1√

4πDt
e−(x−Ut)

2/4Dt (3)

is positive for any x and t.
Diffusion also assumes that the direction of motion

at each step is uncorrelated with the previous direction.
However, on small enough time scales, the velocity of
any system depends on its previous velocity within its
correlation time. Diffusion should be considered an ap-
proximation to the underlying correlated process when

the measurement time in the experiment is large com-
pared to the correlation time.

For many systems in physics, the time between mea-
surements is large compared to other times involved in
the microscopic motions of the system. This fact was the
starting point for the development of stochastic models
describing Brownian motion. However, the movement of
biological systems occurs on a very different time scale
and the correlation times are much longer [2]. For these
systems, the diffusion approximation breaks down and
the system should be modeled with the correlations in-
cluded, such as with the telegraph equation.

This paper is organized as follows. In Sec. II we re-
view the telegraph equation. In Sec. III-IV we derive
the telegraph equation with drift and solve for a station-
ary solution. In Sec. V we give the backward equation
and discuss some rough ideas of more general solutions.
In Sec. VI, we compare the telegraphic and diffusion
processes through modeling. Sec. VII shows some ideas
of future work and Sec. VIII concludes.

II. THE TELEGRAPH EQUATION

An alternate formulation to the Fokker-Planck dis-
persion was proposed by [6]. The proposed telegraph
equation remedies the infinite velocity and also includes
velocity correlations. We formulate this idea as adapted
from [7]:

Instead of specifying a jump rate in the way one usu-
ally derives a Fokker-Planck equation from a Master’s
equation, we let the probability that the particle (or an-
imal) keep the same direction be p, and the probability
of turning around be q. In small time s after the last
turn, the animal has moved distance δ, and we consider
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them to be of the same order so that their ratio, the
velocity γ remains constant. We let λ be the rate of
turning so that the turning probabilities are given by

p = 1− λs,
q = λs.

(4)

We shall first quote the result for no drift and general-
ize to arbitrary drift field in the next section. Consider
α(x, t) and β(x, t) the probability density at coordinate
x and time t arriving from the left and right, respec-
tively. Then we can write

α(x, t+ s) = pα(x− δ, t) + qβ(x− δ, t),
β(x, t+ s) = pβ(x+ δ, t) + qα(x+ δ, t).

(5)

Expand to first order in s and λ and get

α+ sαt = p(α− δαx) + q(β − δβx),

β + sβt = p(β + δβx) + q(α+ δαx).
(6)

Use Eq. (4) so that we get

αt + γαx = −λ(α− β),

βt − γβx = λ(α− β),
(7)

where γ = δ/s is the finite velocity of the particle. Af-
ter some straightforward manipulations, we arrive at
the telegraph equation for the total probability density
P (x, t) = α(x, t) + β(x, t):

Ptt − γ2Pxx + 2λPt = 0. (8)

Notice in particular if the rate of turning λ = 0, the
probability satisfies the linear wave equation, with the
wave packet solution

P (x, t) =
1√
2π

ˆ ∞
−∞

A(k) exp[ik(x± γt)]. (9)

For λ 6= 0, there is no normalizable solution of this form.

The solution to the telegraph equation for general
lambda when the initial conditions are P (x, 0) = δ(x)
and Pt(x, 0) = 0 is given by Morse and Feshbach [8] as

P (x, t) =

{
e−λt

2 (δ(x− γt) + δ(x+ vt) + λ
γ [I0(Z) + λt

Z I1(Z)] for|x| < γt

0 for|x| ≥ γt

with Z = λ

√
t2 − x2

γ2

(10)

where I0 and I1 are the zeroth and first order modi-
fied Bessel functions of the first kind. We can also find
a differential equation for the second moment of this
distribution directly from Eq. (8) by multiplying the
equation by x2 and integrating over all x. This yields
the following equation

∂2〈x2〉
∂t2

+ 2λ
∂〈x2〉
∂t

= 2v2 (11)

whose solution, subject to the desired initial condi-
tions that 〈x2〉

∣∣
t=0

and d
dt 〈x

2〉
∣∣
t=0

, is

〈x2〉 =
v2

λ
(t− 1

2λ
(1− e−2λt)) (12)

Notice that, in the long time limit, the term with the
exponential goes to 0 and then the mean square devi-
ations are linear in time. This is in agreement with
the behavior of Fickian diffusion where 〈x2〉 = 2Dt.
Therefore, we can construct a Gaussian distribution
that agrees with the telegraph solution in the long time
limit by selecting D = v2

2λ . By comparing the telegraph

solution to its corresponding Gaussian, we can model
the convergence of the telegraph equation to the diffu-
sion equation as the value of λt increases, i.e. as the ra-
tio of the time elapsed to the correlation time increases.
This convergence is depicted in Fig. 1.

III. TELEGRAPHIC DISPERSION IN DRIFT
FIELD

Consider now the system in a drift field U(x).In biol-
ogy this scenario could represent for example the disper-
sion of plankton in a current, or the process of evolution:
random genetic drift with natural selection. Though in
the latter case there is little motivation to favor the tele-
graphic dispersal over Fickian diffusion. (Alternatively
one may consider letting the turning rate depend on
position. This approach is explored in [9].)

The Fickian dispersal is given by the Fokker-Planck
Eq. (1), with F1(x) = U(x) and F2(x) = 2D. To derive
the corresponding result for telegraphic dispersion, we
consider again Eq. (5), except now α and β represents
the probability density of particles arriving from the left
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FIG. 1. Telegraph versus Gaussian solutions. Depicts
the differences between the solution of the telegraph equa-
tion and its corresponding Gaussian distribution (D = v2

2λ
),

depicted in red and blue respectively, as a function of the
reversal rate λ. As λ increases the distribution approaches
a Gaussian for the fixed time interval. From left to right,
top to bottom λ =2, 4, 6, 10. Notice that the solution to
the telegraph equation has a cut-off since there is a finite
maximum velocity. Other parameters: v = 5, t =1.

and right in the frame that’s locally at rest with the
fluid (i.e. Lagrangian description). Then to transfer to
the lab frame we realize that the drift introduces a flux
U(x)P (x, t), so that

αt → αt + (Uα)x,

βt → βt + (Uβ)x,
(13)

where α and β still refer to the fluid’s frame. Effecting
this change in Eq. (6) and following through the rest of
the derivation, we arrive at the following equation for
telegraphic dispersion in field U(x):

Ptt−γ2Pxx+2(UP )xt+[U (UP ) x]x+2λ [Pt + (UP )x] = 0.
(14)

As a simple exercise, we shall compute the traveling
wave solutions in the simple case λ = 0 and U is con-
stant. Consider solution of the form P (x, t) = f(x− ct)
, then Eq. (14) gives

(c2 − 2Uc+ U2 − γ2)∂2xf = 0. (15)

Since a linear f is not normalizable, ∂2xf 6= 0. Hence we
get

c = U ± γ, (16)

i.e. the wave can travel in either direction in the medium
with Galilean velocity addition, just as expected. To
derive traveling wave solutions for λ 6= 0, it is necessary
to diagonalize the differentiation, in the manner briefly
described in Section V.

IV. STATIONARY SOLUTION

A. Stationary Equation

To obtain a stationary solution, we let all time deriva-
tives go to zero in Eq. (14), arriving at

∂xJ = 0, (17)

where the current

J = −γ2Px + U (UP )x + 2λUP (18)

must thus be constant.

B. Telegraphic Ornstein-Uhlenbeck Process

Consider the Ornstein-Uhlenbeck field

U(x) = −κx. (19)

This scenario for Fickian diffusion is sometimes used to
model a group of animals [1], where the diffusive force
is countered with attraction to the swarm center or, in
this simple model, the origin. For Fickian diffusion, the
probability density is defined on the entire real line, and
hence for normalization’s sake the current in Eq. (18)
must vanish. Since the velocity of the animals is now
finite, the equilibrium distribution must be bounded on
the interval

x ∈
[
−γ
κ
,
γ

κ

]
, (20)

where X = γ/κ represents a horizon of no escape. The
current must vanish at the horizon, and consequently,
on the entire interval. We thus have from Eq. (18) and
Eq. (19)

(κ2x2 − γ2)P + (κ2x− 2κλx)Px = 0 (21)

or

Px
P

= − κx

κ2x2 − γ2
(κ− 2λ). (22)

Eq. (22) is readily integrable and the result is

P (x) = A
(
γ2 − κ2x2

)λ
κ−

1
2 , (23)

where the normalization constant is determined by in-
tegrating over the domain Eq. (20)

A =
κΓ(1 + λ/κ)

√
πγ2λ/κΓ

(
1
2 + λ

κ

) . (24)

Throughout the entire problem, on can rescale x to rid
of γ. (In fact, the entire model depends on the only
non-dimensional parameter κ/λ.) Notice

lim
κ→0

(1− κ2x2)
λ
κ−

1
2 = lim

n→∞
(1 +

1

n
)−nλκx

2− 1
2 = e−λκx

2

.

(25)
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In other words, in the limit of low attraction, or equiv-
alently high rate of turning, the result approaches the
Fickian Ornstein-Uhlenbeck process. For κ � λ, we
have a wide swarm. The swarm tightens as κ → 2λ,
when the distribution becomes constant. When κ > 2λ,
the rate of turning is not big enough to exhibit swarming
in the given field, and the particles are concentrated to-
wards the horizon. In reality, only small κ corresponds
to swarm and we plot a few results in Fig. 2, where we
have taken λ = 50.

FIG. 2. Stationary telegraphic swarms. x axis is scaled
so that γ = 1. λ is taken to be 50.

V. BACKWARD EQUATIONS AND
DIAGONALIZATION

The conditional probability P (x, t|x0, t0) satisfies the
forward telegraph equation in x, t. One can similarly
derive a backward equation for x0 and t0 by modifying
Eq. (5) into backwards in time

α(x, t) = pα(x+ δ, t+ s) + qβ(x− δ, t+ s),

β(x, t) = pβ(x− δ, t+ s) + qα(x+ δ, t+ s).
(26)

Expanding again for first order and using Eq. (4)

αt + γαx = λ(α− β)

βt − γβx = −λ(α− β)
. (27)

which is the same as Eq. (6), except with λ changed
sign. Thus

∂2sP (x, t|y, s)− γ2∂2yP (x, t|y, s)− 2λ∂sP (x, t|y, s) = 0.
(28)

And similarly for the equation with drift, now with ad-
ditional flux

αt → αt − Uαx,
βt → βt − Uβx.

(29)

The drift does not get differentiated because now we are
evaluating at current time. Omitting the argument of

P , we have the forward and backward equations:

Ptt + 2(UP )xt + 2λPt =

− [U (UP ) x]x + γ2Pxx − 2λ (UP )x ,

Pss − 2UP ys − 2λPs =

−
[
U2P y

]
y

+ γ2Pyy − 2λUPy.

(30)

In comparison to the Fokker-Planck equation, these
equations are called hyperbolic. For constant U , this
means (2U)2 − 4(U2 − γ2) = 4γ2 > 0. To discuss the
equation further, it is convenient to diagonalize the dif-
ferentiation in the following manner.

Consider constant drift. Let

M =

[
1 −U
−U −γ2

]
(31)

and

d =

[
∂t
∂x

]
. (32)

Then

RTMR = D, (33)

where D is diagonal. The expressions for R and D turn
out to be complicated and will be omitted here. How-
ever, we shall note that the resulting equations can be
cast in the form

Pz1z1 + aPz1 + bPz2z2 + cPz2 = 0, (34)

where a, b, c are constants and z1 = x − ct and z2 are
linear combinations of x and t.

The fact that the equation is hyperbolic means b < 0.
Wavefront solutions of equations of the form Eq. (34)
are considered in [10, 11]. Here we shall only make a
simple comment. Letting Pz2 = 0, we get Pz1z1 +aPz1 =
0. If a is imaginary then we have traveling wave solution

P (z1) = A exp[iz1] = A exp[i(x− ct)]. (35)

VI. A SIMULATION OF THE TELEGRAPH
PROCESS

For a very simple model of correlated velocities we
consider a situation analogous to that of a random
walker on a 1D lattice. However, instead of stepping
left with probability l or stepping right with probability
r, consider a process where the walker continues moving
forward with probability p or turns around and takes a
step with probability q = 1− p. Notice that, regardless
of the value of the persistence probability p, the process
will be unbiased. Hence we compare results of the simu-
lation of this telegraph process to the canonical random
walk with r = l = 0.5. When p = 0.5 in the telegraph
process, the two processes are equivalent. Five sample
paths for the telegraph process with p = 0.5, 0.8 are
plotted in Fig. 3.
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FIG. 3. Example paths for a 1D telegraph process.
Simulated paths of the simple 1D telegraph process for two
values of the persistence probability p. For p = 0.5 the
sample paths are indistinguishable from those of a normal
random walker. However, when p = 0.8 periods of repeated
movement in the same direction become more frequent. Also
notice that the deviations from the starting point tends to
be greater for p = 0.8.

A. Comparisons between the telegraphic and
random walk processes

In this section, we present some quantitative metrics
to describe the differences between the 1D telegraph and
random walk processes. The results lead to the same
conclusion that can be seen in Fig. 3. Higher values of
the persistence probability cause greater deviations from
the starting point. Hence, movement according to the
telegraph process is advantageous to animals because it
means that they explore their environment faster, which
aids them in the search of food and other resources.

1. Mean squared deviations

It is easy to see from Fig.3 that deviations from the
initial position increase as the persistence probability
increases. To make this trend quantitative the mean
square deviations for the telegraph process as a func-
tion of time are shown in Fig.4 for p = 0.5, 0.8. The
deviations are linear in time on large scales with the
slope increasing with the persistence probability as ex-
pected. Though, on short time scales, the relation is
non-linear (except for p = 0.5 when we have the basic
random walk). This result matches the theory of the
telegraph equation with a non-linear solution Eq. (12).

2. First passage problem

Another approach to analyze the differences between
the models is to consider a first passage problem. We
model a situation where there are two absorbing bound-
aries placed symmetrically about the origin. How many
steps does it take for the particle to find its way to one of
these positions? We would expect that this time would
decrease as the persistence probability increases and this

FIG. 4. Mean square deviations. Shows the dependence
of the mean square deviations on time for the simulated tele-
graph process. The inset shows the behavior of the devia-
tions for a small number of steps. For p = 0.5 the solution is
precisely that of the random walk and the deviations are pro-
portional to t everywhere. For p = 0.8 we see a higher slope
and a deviation from the random walk linearity as expected.

dependence is precisely what we see in Fig.5. Therefore,
an organism that tends to keep moving forward before
turning around would find distant resources faster then
one that walks randomly.

FIG. 5. Mean exit times for the 1D telegraph process.
The mean time to exit a symmetric region about the initial
position is seen to decrease as the persistence probability
increases. The red asterisk shows the exit time for a normal
random walker and is close to the exit time for p = 0.5 when
the two processes are equivalent as expected. This result
comes from the simulation of 211 runs for each probability.
The positions of the absorbing boundaries for this simulation
were at ±20.
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B. Simulation of a Telegraphic
Ornstein-Uhlenbeck Process

We also considered a modified version of the tele-
graph process described above to include a mean re-
verting drift. The mean reverting drift is added into
the process at each step, so now the step size varies
with time. The amount of drift is assumed to increase
linearly with the distance from the origin. Hence, there
is a position on either side of the origin where the drift
term would be equal to the maximum velocity of the
particle so that it is forced back towards the origin. We
simulated this process over many runs to determine the
equilibrium distribution of the positions of the particles.
The results of this simulation are shown in Fig. 6. It is
easy to see the similarities between the results for this
simulation and the results from the theory in section IV.

FIG. 6. Simulated solution to the Telegraphic-OU
process. Distribution of positions for a simulated popula-
tion subject to the Telegraphic Process with an OU mean
reverting drift for three different values of the drift strength.
The values were chosen to correspond to the three analyti-
cal solutions shown in Fig. 2. Good agreement can be seen
between the analytical solutions and simulation results. His-
tograms contain values from 212 simulations of 212 steps for
each of the sets of parameters.

VII. FUTURE WORK

A. Applications to Swarming

An introductory summary of the mathematical mod-
els of swarming can be found in [12]. Above we discussed
the insect swarm attracted to the origin by an Ornstein-
Uhlenbeck type force, and found the result to be a slight
modification of Fickian dispersion. Fickian diffusion has
been used to describe particle, insect swarms, such as
bees [13], and animal dispersion through a landscape [7].

In such cases each individual in the swarm reacts in a
simple way to its surroundings so that complex behav-
iors emerge from the collective group. Instead of assum-
ing the swarm center to be fixed at the origin as we did
above, a mean field theory can be developed with either
Fickian or telegraphic diffusion, where animals react to
local population density.

However, one realizes that in swarm of larger animals
such as fish school or starling flock, the animals respond
more to local direction of motion than population den-
sity, leading to strongly correlated velocity within the
swarm. The fish on the boundary are subject to exter-
nal forcing and as they react to an outside predator. In
such cases the change of direction travels through the
swarm as a wave, so that the fish in the middle of the
swarm would react to the predator much earlier than
it would if it were alone. The Fickian dispersion would
thus be inappropriate to describe the behavior of such
swarms. This type of swarming would be a natural gen-
eralization of the telegraph dispersion paradigm, where
turning probability distribution is a function of local
average velocities. Such a model can be conceptualized
with ease in one dimension.This mean field generaliza-
tion we leave to future work. One may consider higher
dimensional cases as Cartesian products of one dimen-
sional processes, but the full generalization to higher
dimensions is non-trivial, as we now discuss.

FIG. 7. Example of a fish school. A school of bigeye
trevally in Malaysia (photo credit [14]). Each individual
aligns with local velocity average, so that complex swarming
behavior emerge. Such collective behavior help protect the
swarm agains predators, for the reason that wave speed is
larger than the speed of individual fish.

B. Generalization to Higher Dimensions

The derivation that leads to the telegraph equation
in 1D does not directly generalize to higher dimensions.
The result is a system of differential equations for the
partial populations moving in different directions that
cannot be combined into a single equation. A general-
izable description considers the correlated random walk
as a Poisson process with rate λ that gives the rate of
reorientations per unit time. At each event in the Pois-
son process, the organism stops moving and chooses a
new relative direction. This description of movement is
very accurate for flagellated organisms such as E. Coli
[2]. In general, the angular distribution of the reorien-



7

tations is organism specific and the step size may be
directionally dependent as well. For example, an organ-
ism is likely to move further if it senses food in that
direction. The interested reader is referred to the thesis
by Edward Colding[15] for more details on the so called
velocity jump process as applied to biological systems.

VIII. CONCLUSION

The telegraph equation is a fruitful alternative to the
Fickian diffusion equation in modeling animal move-
ments. In this paper, we considered the telegraph pro-
cess in spatially dependent drift field and discussed the
analogy to the Ornstein-Uhlenbeck process. We further

compared the mean square deviation and mean exit time
with Fickian diffusion through numerical modeling. As
expected, the processes considered do not produce sig-
nificant differences between the two processes for wide
range of parameters. However, the telegraphic approach
can be more readily generalized to study certain be-
haviors not suitable for Fickian diffusions, such as fish
schools.
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