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The Hindmarsh-Rose (HR) model is a popular choice for describing bursting neurons. Yet, it has
the disadvantage of being quite complicated; for instance, it involves non-linear terms. It has been
demonstrated that a much simpler Resonant Integrate-and-Fire (RIF) model can replicate much
of the essential behaviour of the HR model. Of particular interest is the coherent resonant (CR)
bursting pattern that emerges when neurons—more specifically networks of neurons—are subjected
to noise. This topic has been addressed using stochastic methods.

I. RESONANT INTEGRATE-AND-FIRE
MODEL

The RIF model is a simple model for neuron activity
that closely matches the behaviour of the HR model (the
details of which we shall not dive into). In the RIF model,
the neuron is treated as a capacitor; the membrane is the
dielectric preventing charge from flowing into or out of
the neuron. One plate of the capacitor is the inside of
the neuron and the other is comprised of the surrounding
fluid. From classical electromagnetism, the voltage across
the membrane (capacitor), is then V (t) = Q(t)/Cap.
Taking the time-derivative of this equation gives:

dV

dt
=

1

Cap

dQ

dt

Henceforth we shall set Cap = 1 so that V =
Q ≡ x The flux of charge through the membrane dx/dt
has several constituents. First, the membrane is semi-
permeable, and there is a leakage current proportional
to the interior voltage (Ax). In addition, there is the
external ”source” current that is applied to the neuron
(Isignal).

Finally, the model assumes that there are ion chan-
nels that open and close depending on the membrane
potential. These channels add an additional term to the
current through the membrane By, where y is a measure
of the number of channels open (or the average ”open-
ness” of each channel). Since the channels open and
close depending on the membrane potential, we expect
that there should be a term proportional to the voltage
V when writing dy/dt. Open channels also slowly relax
to the closed position over time, providing a term Dy
to dy/dt. Thus, the dynamical equation for the channel
openness is:

dx

dt
= Ax+By + Isignal(t) (1)

dy

dt
= Cx+Dy (2)
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To model the action potentials that are characteristic of
neuron activity, a threshold value of the membrane po-
tential is set, such that the membrane potential resets to
its equilibrium value when the threshold is reached. In
addition, a large number of ion channels open when the
threshold potential is reached, as the electric field across
the ion channels is large enough to change the confor-
mation of most channels from closed to open. There-
fore, whenever the threshold voltage is reached, a number
yreset is added to the current number of open channels y.
The resulting coupled ODE system to describe a neuron
is thus:

dx

dt
= Ax+By + Isignal(t) (3)

dy

dt
= Cx+Dy (4)

while in the sub-threshold regime. And when x(t) ex-
ceeds xthresh

x→ xreset

y → y + yreset

To match the parameters A, B, C, D to the well-
established (and more complex) HR model of neuron
dynamics, the complex impedance of the membrane po-
tential was found for a sinusoidal external current δeiωt.
Minimizing the difference between the magnitude of the
impedance and that of the HR model (whose parameters
have already been fixed via experiment) as a function of
ω ≡ 2π/λ, suitable parameters were found to be:

A = −0.032, B = −1.3258, C = 0.00025, D = −0.001

Figure 1 demonstrates that for such periodic Isignal(t),
RIF mimics HR accurately for a large spectrum of fre-
quencies.

To develop an intuition for the RIF model, we first
investigate its behaviour for constant positive input
current. For instance, setting Isignal = 0.4 results
in the traces shown in Figure 2. To summarize, x
increases until xthresh is reached, at which point, x is
instantaneously set to xreset. Meanwhile, y decreases
exponentially, then jumps up by yreset when the thresh-
old is reached. In fact, x continues to decrease (and
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FIG. 1: In both the HR model and the RIF model, a neuron
subjected to periodic input Isignal(t) = δeiωt undergoes oscil-
lations in its membrane voltage. Namely, x(t) = x0(ω)eiωt

where x0(ω) ∈ C. For appropriate choice of parameters
A,B,C,D, the magnitude of the impedance, defined as x0/δ,
nearly coincides for both models over a large swath of ω ≡
2π/λ. This makes a convincing case for using the RIF model
in place of the more detailed HR model. [3]

FIG. 2: x(t) and y(t) for Isignal = 0.4, xthresh = 1, xreset =
0.9, yreset = 0.1 demonstrating the bursting behaviour of the
RIF model. [3]

polarize in the opposite direction) after reset because y

decays sufficiently slowly (i.e. the channels do not close
fast enough)—recall that B < 0, so y suppresses dx/dt
towards negative values. This is observed experimentally
as hyper-polarization.

Note: In providing this qualitative description (and
in producing Figure 2) we have used the fact that |A| �
|B| and the fact that |C| is appreciably smaller than |D|
to eliminate Ax and Cx. Of course, among other things,
the precise behaviour of y(t) is not exponential decay,
but it’s a decent approximation.

In fact, although the original analysis was done as
such (and with great success), we found the general ap-
proach of dropping the smaller terms questionable; it
only provides a fraction of the whole story. The pri-
mary reason that doing so works here is that xthresh was
chosen to be sufficiently small.

First and foremost, let’s solve the Equations 3 and
4 analytically for Isignal = constant. Without going into
gory detail: {

ẋ = Ax+By + I0
ẏ = Cx+Dy

⇒

{
ẍ = (A+D)ẋ− γx−DI0
ÿ = (A+D)ẏ − γy + CI0

⇒

{
x(t) = C1e

κ+t + C2e
κ−t + D

γ I0

y(t) = C3e
κ+t + C4e

κ−t − C
γ I0

where

γ ≡ AD −BC

κ± =
1

2

(
(A+D)±

√
(A−D)2 + 4BC

)
C1 =

κ− −A
κ− − κ+

(x0 +
D

γ
I0)− B

κ− − κ+
(y0 −

C

γ
I0)

C4 =
κ− −A
κ− − κ+

(y0 −
C

γ
I0)− κ− −A

κ− − κ+

κ+ −A
B

(x0 +
D

γ
I0)

C2 =
B

κ− −A
C4

C3 =
κ+ −A
B

C1

The problem here is that using the given parameter val-
ues for A,B,C,D the exponents κ± are complex. There-
fore, x(t) and y(t) exhibit oscillatory behaviour, which
has been completely ignored. Nonetheless, this oscil-
latory behaviour is swamped by the larger exponential
growth/decay.

In addition, rather than approach xthresh asymp-
totically, x(t) eventually curves back down and decays
to zero. It is fortunate that xthresh = 1.0 is sufficiently
small such that before the unadulterated solution for x(t)
has an opportunity to diverge from the C = 0 solution,
the threshold is achieved.
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II. STOCHASTIC INPUT CURRENT

In the subsequent discussion, we let Isignal(t) = η(t)
be Gaussian white noise. We shall see that this can lead
to coherent resonance (CR); the effect becomes particu-
larly dramatic when we couple the neuron to a network of
neurons. The system is now described by the stochastic
differential equation:

dx = (Ax+By)dt+ σdW (5)

dy = (Cx+Dy)dt (6)

with the usual reset rules.

Clearly the stochastic nature of dW allows x to spo-
radically exceed xthresh. What is more interesting, how-
ever, is that this can lead to the repeated firing behaviour
shown in Figure 3 Even changing the value of σ approx-

FIG. 3: For σ = 0.2, the neuron exhibits periodic firing). [3]

imately preserves the periodicity. A histogram of the
inter-spike intervals (Figure 4) shows that for a wide
range of σ the average time between successive spikes
is unchanged.

III. ANALYTICAL TREATMENT

From Equation 5 we can obtain a corresponding
Fokker Planck Equation (FPE). Up to O(dt) the mo-

FIG. 4: Inter-spike interval histogram (ISIH) showing that
the periodicity of neuron firing depends only weakly on the
particular value of σ. The most densely occupied bin is always
in the range of 200 to 300 time units, with slightly decreasing
period for larger σ. The large spike near t = 0 is an artefact of
choosing xreset near xthresh, which makes the neuron likely to
fire repeatedly in a short span of time; which is what is shown
in the magnified portion of Figure 3. Nonetheless, x will not
linger at threshold; repeated crossings resets y to ever larger
values so that x is inevitably suppressed. [3]

ments are:

〈dx〉 = (Ax+By)dt

〈dx2〉 = σ2dt

〈dy〉 = (Cx+Dy)dt

Here, we have used the fact that dW is a Weiner process
to write 〈dW 2〉 = dt. The corresponding FPE is then:

∂P

∂t
= − ∂

∂x
[(Ax+By)P ]− ∂

∂y
[(Cx+Dy)P ] +

σ2

2

∂2P

∂x2

(7)

where P (x, y, t) is the probability density of finding the
neuron in state (x, y) at time t.

Equation 7 describes a 2-component Ornstein-
Uhlenbeck process. As in the lecture notes (chapter 2
and chapter 4), we can solve this equation by taking
the spatial Fourier transform and applying the method
of characteristics. The Fourier transform of the FPE is
computed as follows. First, note that:

∂̂x(xP ) =

∫
dxdye−ikxxe−ikyx∂x(xP )

=

∫
dxdye−ikxxe−ikyx(P + x∂xP )

= P̂ + i
∂

∂kx

∫
dxdye−ikxxe−ikyx∂xP

= P̂ + i
∂

∂kx
(ikxP̂ )

∂̂x(xP ) = −kx
∂P̂

∂kx
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Similarly...

∂̂x(yP ) = ŷ∂xP

=

∫
dxdye−ikxxe−ikyxy∂xP

= i
∂

∂ky

∫
dxdye−ikxxe−ikyx∂xP

= i
∂

∂ky
(ikxP̂ )

∂̂x(yP ) = −kx
∂P̂

∂ky

Using these two expressions, the Fourier transform of
Equation 7 is:

∂P̂

∂t
= (Akx + Cky)

∂P̂

∂kx
+ (Bkx +Dky)

∂P̂

∂ky
− σ2

2
k2
xP̂

(8)

This is a quasi-linear PDE, and thus can be solved us-
ing the method of characteristics. The resulting solution
in 1D is a Gaussian, as shown in the PHYS210B notes
(chapter 2, appendix). To see that this is true in 2D as
well, we turn the PDE into a set of coupled ODEs via
the method of characteristics:

dP̂

ds
=
σ2k2

x

2
P̂

dkx
ds

=Akx + Cky

dky
ds

=Bkx +Dky

dt

ds
=− 1

Note that the equations governing kx and ky are the same
as the original coupled ODE system (equations 3 and 4)

for a single neuron, with no Isignal. The solution for P̂
is then:

P̂ (s) = P̂ (s = 0)e
σ2

2

∫ s
0
ds′k2x(s′)

= P̂ (s = 0)e
σ2

2

∫ s
0
ds′(C1e

κ+s
′
+C2e

κ−s
′
)2

If the initial condition is assumed to be a delta function
at t = 0, then P̂ (s = 0) can be written as:

P̂ (s = 0) = e−ikx(s=0)x0e−iky(s=0)y0 (9)

From the solution to the constant current case, the co-
efficients C1, C2, C3, and C4 can be written in terms of
kx0 = kx(s = 0) and ky0 = ky(s = 0). Plugging the
expressions for these terms into the solutions for kx and

ky and solving for kx0 and ky0 gives

kx0 =
(κ− −A)kx − Cky

κ+ − κ−
e−κ+s

+
κ− −D
κ+ − κ−

e−κ−s(kx −
C

κ+ −A
ky)

ky0 =
B

κ+ − κ−
[(

C

κ− −A
ky − kx)e−κ+s

+ (
C

κ+ −A
ky − kx)e−κ−s]

after some nasty algebra. We see that the initial condi-
tion 9 will be proportional to kx and ky, and represent
the motion of the mean value of x and y, as the inverse
Fourier transform will be an integral:∫

dkx
2π

dky
2π

eikx(x−f(x0,y0,t)eiky(y−g(x0,y0,t)F [kx, ky, t]

In fact, substituting the expressions for kx0 and ky0 into
equation 9 recovers the solution to the coupled ODEs 3
and 4 for f(x0, y0, t) and g(x0, y0, t). The C2

n terms in
the exponential will be proportional to k2

x, k2
y, or kxky.

Thus, the exponential terms in the solution are of a gen-
eral Gaussian form. Collecting terms and taking the in-
verse Fourier transform, we can read off the variances as
a function of time by inspection:

x̄2 =
β

α

2

ȳ2 =
β

γ

2

x̄y2 = β2

The parameters α, β, and γ are given by:

β =
σ2

4

(κ+ −A)(κ− −A)

(κ+ − κ−)2
[
κ− −A
κ+

(e2κ+t − 1)

+
κ+ − a
κ−

(e2κ−t − 1) +
2(κ+ + κ− − 2A)

κ+ + κ−
(e(κ++κ−)t − 1)]

γ2 =
1

2

σ2

(κ+ − κ−)2
[
(κ− −A)2

2κ+
(e2κ+t − 1)

+
(κ+ −A)2

2κ−
(e2κ−t − 1)

+
2(κ− −A)(κ+ −A)

κ+ + κ−
(e(κ++κ−)t − 1)]

α2 =
σ2

2B2

(κ+ −A)2(κ− −A)2

(κ+ − κ−)2
[

2

κ+ + κ−
(e(κ++κ−)t − 1)

+
e2κ+t − 1

2κ+
+
e2κ−t − 1

2κ−
]

As the Fourier transform of a Gaussian is a Gaus-
sian, P (~x, t) is also normally distributed. Knowing this,
the equations governing the time evolution of the mo-
ments of the distribution are easily derived by making
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use of the FPE. For demonstrative purposes, we compute
dx/dt. Integrating both sides of Equation 7 by

∫
dxdyx,

∫
dxdyx

∂P

∂t
=−

∫
dxdyx

∂

∂x
[(Ax+By)P ]

−
∫
dxdyx

∂

∂y
[(Cx+Dy)P ]

+
σ2

2

∫
dxdyx

∂2P

∂x2

The left hand expression is just dx/dt. Integrating by
parts,

dx

dt
=

∫
dxdy(Ax+By)P −

∫
dy [x(Ax+By)P ]

+∞
x=−∞

−
∫
dx [x(Cx+Dy)P ]

+∞
y=−∞

+
σ2

2

∫
dy

[
x
∂P

∂x

]+∞

x=−∞
− σ2

2

∫
dy [P ]

+∞
x=−∞

All boundary terms vanish since P decays faster than any
power of x, y. Then we are left with:

dx

dt
= Ax+By

We can perform the same sort of computation for other
moments. As P is normally distributed, it suffices to
compute the dynamical equations for x, y, x2, xy, y2 to
fix P . The time evolution of the moments is given by:

dx

dt
= Ax+By

dy

dt
= Cx+Dy

dx2

dt
= 2Ax2 + 2Bxy + σ2

dxy

dt
= Cx2 + (A+D)xy +By2

dy2

dt
= 2Cxy + 2Dy2

We take P (~x, t = 0) = δx− xresetδy − yreset, so the cor-

responding initial conditions are
[
x, y, x2, xy, y2

]
t=0

=

[xreset, yreset, 0, 0, 0] The solutions are:

x = C1e
κ+t + C2e

κ−t

y = C3e
κ+t + C4e

κ−t

x2 =
σ2

2(κ+ − κ−)2
[
(κ+ −D)2

2κ+
(e2κ+t − 1)

+
2BC

κ+ + κ−
(e(κ++κ−)t − 1)

+
(κ− −D)2

2κ−
(e2κ−t − 1)]

xy =
σ2B

2(κ+ − κ−)2
[
κ+ −D

2κ+
(e2κ+t − 1)

− A−D
κ+ + κ−

(e(κ++κ−)t − 1)

+
κ− −D

2κ−
(e2κ−t − 1)]

y2 =
σ2B2

2(κ+ − κ−)2
[

1

2κ−
(e2κ+t − 1)

− 2

κ+ + κ−
(e(κ++κ−)t − 1)

+
1

2κ−
(e2κ−t − 1)]

where κ± and C1,2,3,4 are the same as previously defined.
Substitution into

P (x, y, t)

=
1

2π

√
x2y2 − xy2

exp

− 1

2
(

1− xy2

x2y2

) ( (x− x)2

x2
− 2xy(x− x)(y − y)

x2y2
+

(y − y)2

y2

)
gives the desired result (see Figure 5 for the traces of the
two first moments).

IV. NETWORKS OF NEURONS

So far, this model has only focused on a single neu-
ron. To see how a network of connected neurons behave,
introduce ∆, the coupling of an action potential from
one neuron to all connected neurons. Whenever a neuron
reaches the threshold membrane potential, all other con-
nected neurons have their membrane potential is raised
by ∆. This is assumed to happen far faster than cur-
rent can leak out through the membrane, and is therefore
taken to be instantaneous. The simplest network is one
in which all neurons are connected to all other neurons.
The equation 3 then becomes, for the ith neuron:

xi(t+ dt) =xi(t) +

∫ t+dt

t

dt′(Axi(t
′) +Byi(t

′) (10)

+ σW (t) + ∆
∑
j 6=i

δ(t− tj) (11)

dyi =Cxi +Byi (12)

where tj represents the times neuron j fires an action
potential. The ion pumps of one neuron do not directly
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FIG. 5: Time evolution of first moments x(t) and y(t). The
solid line corresponds to initial condition (x0, y0) = (0.9, 0.1).
The dotted line corresponds to (x0, y0) = (0.9, 0.2). i.e. the
initial conditions are the values for (x, y) immediately after
reset. As can be seen the time constant of returning to equi-
librium 0 is independent of the particular values of yreset, so
the overall spiking pattern is independent of such arbitrary
choices, as should be the case.

affect the dynamics of the pumps of another neuron, and
thus, 4 remains essentially unchanged (y → yi). Simula-
tions of this network, at different noise strengths σ show
that for ”intermediate” noise levels the entire network
fires synchronously.

Figure 6 shows qualitatively how the bursting be-
comes synchronized for mid-strength noise. Alterna-
tively, one can look upon the corresponding ISIH plot
(Figure 8), which exhibits the sharpest peaks for inter-
mediate values of σ.

To see how this occurs, consider the state of the
network right after the network has fired. For some time
afterwards, the membrane potential for any neuron (say
the jth neuron) is far less than the threshold so that the
dynamics of xj are dominated by the negative effect of
yj . In this regime, no neurons are likely to cross the
threshold, and thus the system can be treated as a set
of independent neurons. From the solution of the FPE
for an isolated neuron, the probability of xj reaching the

FIG. 6: The plots above are for a network of 50 neurons in
which all cells are interconnected. Vertical axis indexes the
cells from 1 to 50. Points indicate the times at which a given
neuron crosses threshold voltage. ∆ = 0.06 is held fixed in
this case and σ varied. The three plots show bursting patterns
for various noise levels (σA = 0.08, σB = 0.12, σC = 0.9).
Synchronization occurs for intermediate noise (i.e. graph B).
[3]

threshold voltage at time t, assuming it starts from the
reset value, is:

qj(t) =

∫ ∞
xthresh

dx

∫ ∞
−∞

dyP (x, y, t)

=

∫ ∞
xthresh

dx
e−(x−x̄(t))2/(2σx(t))√

2πσx(t)

Plots of this function for various reset conditions and
noise levels are shown in Figure 10C.
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FIG. 7: Bursting patterns for various coupling strengths
(∆A = 0.06, ∆B = 0.1, ∆C = 0.2) with fixed noise σ = 0.08.
For sufficiently large ∆ the neurons synchronize with fre-
quency independent of ∆.

Now if a single neuron fires, the xj of all the other
neurons increases by ∆, which corresponds to shifting
the mean x̄ by ∆ in the probability distribution. This
will increase the probability that x will be larger than
the threshold, and thus increase the chance of another
neuron firing. This is shown in Figure 10D, where the
probability of firing increases when the mean is shifted
by ∆ = 0.06, compared to Figure 10C.

This is the chain reaction that leads to a synchro-
nized burst across the entire network; as more and more
neurons fire, the probability that other neurons fire in-
creases until all of the neurons have fired. Qualitatively,
as the coupling strength ∆ increases, the more synchro-
nized the network becomes. If the coupling strength is
infinite, a single action potential will cause the entire net-
work to fire. If the coupling strength is zero, all neuron

FIG. 8: Inter-spike intervals (with fixed ∆ = 0.06) as a func-
tion of σ. Synchronization is strongest for intermediate noise
levels. [3]

FIG. 9: Averaged traces for a network of 50 neurons with σ =
0.1 and ∆ = 0.06, demonstrating strongly synchronized firing.
The third graph is the power spectrum in Fourier space. The
strong peak at λ = 366 is indicative of synchronous behaviour.
[3]

bursts are independent and unsynchronized. Thus, the
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FIG. 10: For the plots above, initial conditions are al-
ways taken to be reset values (x0, y0) = 0.9, 0.2 (A)
Marginal density for xj , pj(x, t) ≡

∫∞
−∞ dyP (x, y, t), for

σ = 0.12 at t = 200, 330. (B) pj(x, t) at t = 330 for
σ = 0.08(solid), 0.12(dash − dotted), 0.2(dashed) i.e. from
”sharpest to flattest. (C) qj(t) corresponding to the σ =
0.12, 0.2 curves of sub-figure B. (D) qj(t) corresponding to
the curves of sub-figure B supposing the means in B had all
been shifted by coupling strength ∆. [3]

synchronization of the network increases with the cou-
pling strength ∆.

The reason why synchronization is not present at
low noise levels is apparent from a graph of the proba-
bility distribution

∫∞
−∞ dyP (x, y, t) in Figure 10B. At low

levels of noise, the variance is low, so any neuron reach-
ing the threshold voltage is unlikely, even when kicked by

other neurons. Of course, with a strong enough coupling,
one would eventually see synchronous bursting; even one
neuron bursting could raise the membrane potential of
the other neurons enough to initiate a cascade of action
potentials, as in Figure 7.

The disappearance of synchronized bursting at high
noise levels of noise is a more subtle point. Bursting is
synchronized because, after each burst, the dynamics of
x are dominated by the inhibition of the voltage from the
ion channels, −By. Thus, the mean neuron potential is
far from the threshold and bursting is unlikely. However,
for sufficiently strong noise (σ ∼ O(Byreset)), this is not
true. In this regime, the inhibitory effect of the open
ion channels does not dominate over the noise, and the
probability of bursting is not negligible. Thus, synchro-
nization is lost because even if the first bursting event
occurred across the entire network, the neurons are not
inhibited from firing again, and will fire randomly, de-
stroying the coherence observed at lower noise levels.

This resonant integrate-and-fire model of neural net-
works shows several properties seen in several other
more detailed models, particularly the Hindmarsh-Rose
model. Although simpler than the Hindmarsh-Rose
model, it displays similar sub-threshold and burst be-
haviour. Analysing the effect of stochastic noise on a
fully connected neural network led to the observation
that the noise could induce synchronized, periodic burst-
ing throughout the network. This effect is the result of
the interplay between the drainage of charge through ion
channels, neuron-neuron coupling, and stochastic noise.
In particular, the synchronization appears to have a ”res-
onant” noise level; synchronization appears only in a nar-
row range of noise strengths σ, for a given neuron-neuron
coupling strength.
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