PHYSICS 210B : NONEQUILIBRIUM STATISTICAL PHYSICS HW SOLUTIONS \#4 : DIFFUSION

(1) A diffusing particle is confined to the interval $[0, L]$. The diffusion constant is D and the drift velocity is v_{D}. The boundary at $x=0$ is absorbing and that at $x=L$ is reflecting.
(a) Calculate the mean and mean square time for the particle to get absorbed at $x=0$ if it starts at $t=0$ from $x=L$. Examine in detail the cases $v_{\mathrm{D}}>0, v_{\mathrm{D}}=0$, and $v_{\mathrm{D}}<0$.
(b) Compute the Laplace transform of the distribution of trapping times for the cases $v_{\mathrm{D}}>0, v_{\mathrm{D}}=0$, and $v_{\mathrm{D}}<0$, and discuss the asymptotic behaviors of these distributions in the limits $t \rightarrow 0$ and $t \rightarrow \infty$.

Solution:

(a) We studied first passage problems in $\S 4.2 .5$. The distribution function for exit times is given by $-\partial_{t} G(x, t)$, where $G(x, t)=\int_{0}^{L} d x^{\prime} P\left(x^{\prime}, t \mid x, 0\right)$ satisfies the backward FPE,

$$
\frac{\partial G}{\partial t}=D \frac{\partial^{2} G}{\partial x^{2}}+v_{\mathrm{D}} \frac{\partial G}{\partial x}=\mathcal{L}^{\dagger} G .
$$

The boundary conditions are $G(0, t)=0$ and $\left.\partial_{x} G(x, t)\right|_{x=L}=0$. The mean $n^{\text {th }}$ power of the exit time, $T_{n}(x)=\left\langle t_{x}^{n}\right\rangle$, therefore satisfies

$$
\begin{aligned}
\mathcal{L}^{\dagger} T_{n}(x) & =\mathcal{L}^{\dagger} \int_{0}^{\infty} d t t^{n}\left(-\frac{\partial G(x, t)}{\partial t}\right)=n \mathcal{L}^{\dagger} \int_{0}^{\infty} d t t^{n-1} G(x, t) \\
& =n \int_{0}^{\infty} d t t^{n-1} \frac{\partial G(x, t)}{\partial t}=-n T_{n-1}(x),
\end{aligned}
$$

with $\mathcal{L}^{\dagger} T_{1}(x)=-1$, i.e. $T_{0}(x)=\left\langle t_{x}^{0}\right\rangle=1$.
With $x=0$ absorbing and $x=L$ reflecting, we have

$$
T_{1}(x)=\frac{1}{D} \int_{0}^{x} \frac{d y}{\psi(y)} \int_{y}^{L} d z \psi(z)
$$

where $\psi(x)=\exp \left(v_{\mathrm{D}} x / D\right)$ (use Eqn. 4.53 with $A=v_{\mathrm{D}}$ and $B=2 D$). We then have

$$
T_{1}(x)=\frac{D}{v_{\mathrm{D}}^{2}}\left(1-e^{-v_{\mathrm{D}} x / D}\right) e^{v_{\mathrm{D}} L / D}-\frac{x}{v_{\mathrm{D}}} .
$$

One can check that this solution satisfies the boundary conditions $T_{1}(0)=0$ and $T_{1}^{\prime}(L)=0$.

It is convenient to define the length scale $\ell=D /\left|v_{\mathrm{D}}\right|$ and the time scale $\tau=D / v_{\mathrm{D}}^{2}$. We henceforth measure all lengths in units of ℓ and all times in units of τ. We therefore measure the moments T_{n} in units of τ^{n}. The mean escape time is

$$
T_{1}=e^{\sigma L}-e^{\sigma(L-x)}-\sigma x,
$$

where $\sigma=\operatorname{sgn}\left(v_{\mathrm{D}}\right)$. Note that for $\sigma>0$ the drift is away from the absorbing boundary, and the mean escape time is $T_{1} \sim e^{L}$, where L is the length in units of $D /\left|v_{\mathrm{D}}\right|$. This grows exponentially with $\left|v_{\mathrm{D}}\right|$. When $\sigma<0$ the exponential terms are dominated by the linear term for $L-x \gg 1$, and $T_{1} \approx x$, or in dimensionful units, $T_{1} \approx x / v_{\mathrm{D}}$, which says the particle exits in a time similar to what would expect for $D=0$, when there is pure ballistic motion. When $v_{\mathrm{D}}=0$ our length and time scales are divergent, which means the dimensionless quantities L and x are infinitesimal. We then expand to get $T_{1}=\frac{1}{2} x(2 L-x)$. Restoring units recovers $T_{1}=x(2 L-x) / 2 D$ in terms of dimensionful quantities.

To find $T_{2}(x)$, we solve $\mathcal{L}^{\dagger} T_{2}(x)=-T_{1}(x)$. This means that the dimensionless $T_{2}(x)$ satisfies

$$
T_{2}^{\prime \prime}+\sigma T_{2}^{\prime}=2\left[e^{\sigma(L-x)}-e^{\sigma L}+\sigma x\right]
$$

We can solve this by a spatial Laplace transform on the interval $x \in[0, \infty)$, later imposing the conditions $T_{2}(0)=T_{2}^{\prime}(L)=0$. We define

$$
\check{T}_{2}(\alpha)=\int_{0}^{\infty} d x T_{2}(x) e^{-\alpha x}
$$

Then

$$
\begin{aligned}
& \int_{0}^{\infty} d x T_{2}^{\prime \prime}(x) e^{-\alpha x}=-T_{2}^{\prime}(0)-\alpha T_{2}(0)+\alpha^{2} \check{T}_{2}(\alpha) \\
& \int_{0}^{\infty} d x T_{2}^{\prime}(x) e^{-\alpha x}=-T_{2}(0)+\alpha \check{T}_{2}(\alpha) .
\end{aligned}
$$

Assuming $\operatorname{Re} \alpha+\sigma>0$, we have

$$
\int_{0}^{\infty} d x\left[e^{\sigma(L-x)}-e^{\sigma L}+\sigma x\right] e^{-\alpha x}=\frac{e^{\sigma L}}{\alpha+\sigma}-\frac{e^{\sigma L}}{\alpha}+\frac{\sigma}{\alpha^{2}}
$$

We therefore have

$$
\alpha(\alpha+\sigma) \check{T}_{2}(\alpha)=A+\frac{e^{\sigma L}}{\alpha+\sigma}-\frac{e^{\sigma L}}{\alpha}+\frac{\sigma}{\alpha^{2}},
$$

where we have used $T_{2}(0)=0$, and where the constant $A \equiv T_{2}^{\prime}(0)$, which is yet to be determined. Therefore

$$
T_{2}(x)=2 \oint \frac{d \alpha}{2 \pi i}\left\{\frac{A}{\alpha(\alpha+\sigma)}-\frac{\sigma e^{\sigma L}}{\alpha^{2}(\alpha+\sigma)^{2}}+\frac{\sigma}{\alpha^{3}(\alpha+\sigma)}\right\} e^{\alpha x} .
$$

We now employ the method of partial fractions:

$$
\begin{aligned}
\frac{1}{\alpha(\alpha+\sigma)} & =\frac{1}{\sigma}\left(\frac{1}{\alpha}-\frac{1}{\alpha+\sigma}\right)=\frac{\sigma}{\alpha}-\frac{\sigma}{\alpha+\sigma} \\
\frac{1}{\alpha^{2}(\alpha+\sigma)^{2}} & =\left(\frac{1}{\alpha}-\frac{1}{\alpha+\sigma}\right)^{2}=\frac{1}{\alpha^{2}}+\frac{1}{(\alpha+\sigma)^{2}}-\frac{2 \sigma}{\alpha}+\frac{2 \sigma}{\alpha+\sigma} \\
\frac{1}{\alpha^{3}(\alpha+\sigma)} & =\frac{1}{\alpha^{2}}\left(\frac{\sigma}{\alpha}-\frac{\sigma}{\alpha+\sigma}\right)=\frac{\sigma}{\alpha^{3}}-\frac{\sigma}{\alpha}\left(\frac{\sigma}{\alpha}-\frac{\sigma}{\alpha+\sigma}\right)=\frac{\sigma}{\alpha^{3}}-\frac{1}{\alpha^{2}}+\frac{\sigma}{\alpha}-\frac{\sigma}{\alpha+\sigma} .
\end{aligned}
$$

We can now basically read off the form for $T_{2}(x)$:

$$
T_{2}(x)=2 \sigma A\left(1-e^{-\sigma x}\right)+2 e^{\sigma L}\left(2-2 e^{-\sigma x}-\sigma x-\sigma x e^{-\sigma x}\right)+x^{2}-2 \sigma x+2-2 e^{-\sigma x} .
$$

To fix A, we set $T_{2}^{\prime}(L)=0$:

$$
T_{2}^{\prime}(L)=2 A e^{-\sigma L}+4 L-4 \sinh L \quad \Rightarrow \quad A e^{-\sigma L}=2 \sinh L-2 L .
$$

Then

$$
\begin{aligned}
T_{2}(L) & =L^{2}-4+2(1-3 \sigma L) e^{\sigma L}+2 e^{2 \sigma L} \\
& =\frac{5}{12} L^{4}+\frac{3}{10} \sigma L^{5}+\mathcal{O}\left(L^{6}\right)
\end{aligned}
$$

where the second line says that in $v_{\mathrm{D}} \rightarrow 0$ limit we have $T_{2}(L)=5 L^{4} / 12 D^{2}$ (with appropriate dimensions). Note again that for $\sigma=+1$, when the drift is away from the absorbing boundary, the mean square escape time behaves to leading order as $T_{2}(L) \sim$ $\left(D / v_{\mathrm{D}}^{2}\right) \exp \left(2 L v_{\mathrm{D}} / D\right)$, whereas when $\sigma=-1$ and the drift is toward the absorbing boundary, the mean square escape time behaves as a power law $T_{2}(L) \simeq\left(L / v_{\mathrm{D}}\right)^{2}$.
(b) The probability distribution of exit times is $W(x, t)=-\partial G(x, t) / \partial t$, where

$$
G(x, t)=\int_{0}^{L} d x^{\prime} P\left(x^{\prime}, t \mid x, 0\right)
$$

as discussed in $\S 4.2 .5$ of the notes. The Laplace transform $\check{W}(x, z)$ therefore satisfies

$$
\mathcal{L}^{\dagger} \check{W}(x, z)=z \check{W}(x, z),
$$

with boundary conditions

$$
\check{W}(0, z)=1 \quad,\left.\quad \frac{\partial \check{W}(x, z)}{\partial x}\right|_{x=L}=0
$$

The first of these boundary conditions comes from the fact that $W(0, t)=\delta(t)$, since a particle starting at the left boundary is immediately absorbed. The resulting equation for $\check{W}(x, z)$,

$$
D \frac{\partial^{2} \check{W}}{\partial x^{2}}+v_{\mathrm{D}} \frac{\partial \check{W}}{\partial x}-z \check{W}=0
$$

has the general solution $\check{W}(x, z)=A_{+} e^{\lambda_{+} x}+A_{-} e^{\lambda_{-} x}$, where

$$
\lambda_{ \pm}(z)=-\frac{v_{\mathrm{D}}}{2 D} \pm \sqrt{\left(\frac{v_{\mathrm{D}}}{2 D}\right)^{2}+\frac{z}{D}} .
$$

Accounting for the boundary conditions, we have

$$
\check{W}(x, z)=\frac{\lambda_{+} e^{\lambda_{+} L} e^{\lambda_{-} x}-\lambda_{-} e^{\lambda_{-} L} e^{\lambda_{+} x}}{\lambda_{+} e^{\lambda_{+} L}-\lambda_{-} e^{\lambda_{-} L}} .
$$

Define

$$
\ell \equiv \frac{D}{\left|v_{\mathrm{D}}\right|} \quad, \quad \tau \equiv \frac{D}{v_{\mathrm{D}}^{2}} \quad, \quad u \equiv \sqrt{1+4 \tau z} \quad \Rightarrow \quad z=\frac{u^{2}-1}{4 \tau} .
$$

Then the eigenvalues $\lambda_{ \pm}$are

$$
\lambda_{ \pm}= \begin{cases}(-1 \pm u) / 2 \ell & \text { if } v_{\mathrm{D}}>0 \\ \pm \sqrt{z / D} & \text { if } v_{\mathrm{D}}=0 \\ (1 \pm u) / 2 \ell & \text { if } v_{\mathrm{D}}<0\end{cases}
$$

For $v_{\mathrm{D}}=0$, we have

$$
\check{W}(x, z)=\frac{e^{x \sqrt{z / D}}+e^{(2 L-x) \sqrt{z / D}}}{1+e^{2 L \sqrt{z / D}}} .
$$

The closest pole to $z=0$ lies at $2 L \sqrt{z / D}=i \pi$, which means $z=-\pi^{2} D / 4 L^{2}$. Upon taking the inverse Laplace transform, and evaluating at $x=L$ for convenience, we find $W(L, t) \sim e^{-\pi^{2} D t / 4 L^{2}}$, which says that the characteristic escape time is $t_{\text {esc }} \sim L^{2} / D$, as we found in part (a).

When $v_{\mathrm{D}} \neq 0$, it is helpful to eliminate z in favor of the variable u defined above. For $v_{\mathrm{D}}>0$, we have

$$
\check{W}(x, z)=\frac{(1+u) e^{-u(L-x) / 2 \ell}-(1-u) e^{u(L-x) / 2 \ell}}{(1+u) e^{-u L / 2 \ell}-(1-u) e^{u L / 2 \ell}} e^{-x / 2 \ell}
$$

The pole in the denominator occurs for

$$
e^{u L / \ell}=\frac{1+u}{1-u} \quad \Rightarrow \quad \frac{L}{2 \ell} u=\tanh ^{-1} u .
$$

Assuming $L \gg \ell$, the solution lies at $u=1-\varepsilon$ with $\varepsilon \simeq 2 e^{-L / \ell}$, hence

$$
z=\frac{u^{2}-1}{4 \tau} \simeq-\frac{1}{\tau} e^{-L / \ell}
$$

Thus, $W(L, t) \sim e^{-\gamma t}$ with $\gamma^{-1} \simeq \tau e^{L / \ell}$ exponentially large in L / ℓ, as found in part (a).

When $v_{\mathrm{D}}<0$, we have

$$
\check{W}(x, z)=\frac{(1+u) e^{u(L-x) / 2 \ell}-(1-u) e^{-u(L-x) / 2 \ell}}{(1+u) e^{u L / 2 \ell}-(1-u) e^{-u L / 2 \ell}} e^{x / 2 \ell} .
$$

The poles of the denominator lie at values of u such that

$$
e^{u L / \ell}=\frac{1-u}{1+u}
$$

With $u=-i w$, this yields $(L / 2 \ell) w=-\tan ^{-1} w$, whose only solution lies at $w=0$. In fact, this pole is cancelled by the numerator.
(2) Consider a continuum model of a polymer, where the position $\boldsymbol{R}(s)=(a / \sqrt{d}) \boldsymbol{W}(s)$, where $\boldsymbol{W}(s)=\left\{W_{1}(s), \ldots, W_{d}(s)\right\}$ is a d-dimensional Wiener process, with $s \in[0, N]$, where N is the length of the polymer in units of the persistence length a. The density, in units of mass per persistence length, is

$$
\rho(\boldsymbol{r})=\int_{0}^{N} d s \delta(\boldsymbol{r}-\boldsymbol{R}(s))
$$

Show that the structure factor $\left.S(\boldsymbol{k})=\left.N^{-1}\langle | \hat{\rho}(\boldsymbol{k})\right|^{2}\right\rangle$, where $\hat{\rho}(\boldsymbol{k})$ is the Fourier transform of the density, is of the Debye form,

$$
S(\boldsymbol{k})=2\left(R_{0} / a\right)^{2} f\left(k^{2} R_{0}^{2} / 2 d\right)
$$

where $f(x)=\left(e^{-x}-1+x\right) / x^{2}$.
Solution:
The Fourier transform of $\rho(\boldsymbol{r})$ is $\hat{\rho}(\boldsymbol{k})=\int_{0}^{N} d s e^{-i \boldsymbol{k} \cdot \boldsymbol{R}(s)}$, and therefore the structure factor is

$$
\begin{aligned}
S(\boldsymbol{k}) & =\frac{1}{N} \int_{0}^{N} d s \int_{0}^{N} d s^{\prime}\left\langle e^{i \boldsymbol{k} \cdot\left(\boldsymbol{R}\left(s^{\prime}\right)-\boldsymbol{R}(s)\right)}\right\rangle \\
& =\frac{1}{N} \int_{0}^{N} d s \int_{0}^{N} d s^{\prime} \exp \left\{-\frac{k^{\alpha} k^{\beta} a^{2}}{2 d}\left\langle\left(W^{\alpha}(s)-W^{\alpha}\left(s^{\prime}\right)\right)\left(W^{\beta}(s)-W^{\beta}\left(s^{\prime}\right)\right)\right\rangle\right\} .
\end{aligned}
$$

Now $\left\langle W^{\alpha}(s) W^{\beta}\left(s^{\prime}\right)\right\rangle=\min \left(s, s^{\prime}\right) \delta^{\alpha \beta}$, hence

$$
\begin{aligned}
S(\boldsymbol{k}) & =\frac{1}{N} \int_{0}^{N} d s \int_{0}^{N} d s^{\prime} \exp \left\{-\frac{k^{2} a^{2}}{2 d}\left(s+s^{\prime}-2 \min \left(s, s^{\prime}\right)\right)\right\} \\
& =\frac{2}{N} \int_{0}^{N} d s \int_{0}^{s} d s^{\prime} e^{-k^{2} a^{2}\left(s-s^{\prime}\right) / 2 d}=\frac{4 d}{k^{2} R_{0}^{2}} \int_{0}^{N} d s\left(1-e^{-k^{2} R_{0}^{2} s / 2 N d}\right) \\
& =\frac{4 N d}{k^{2} R_{0}^{2}}\left(1-\frac{2 d}{k^{2} R_{0}^{2}}\left(1-e^{-k^{2} R_{0}^{2} / 2 d}\right)\right)=2\left(R_{0} / a\right)^{2} f\left(k^{2} R_{0}^{2} / 2 d\right)
\end{aligned}
$$

where $f(x)=\left(e^{-x}-1+x\right) / x^{2}$.
(3) Verify that the distribution

$$
\Pi[h(x)]=\exp \left\{-\frac{D}{\Gamma} \int_{-\infty}^{\infty} d x\left(\frac{\partial h}{\partial x}\right)^{2}\right\}
$$

solves the functional Fokker-Planck equation for the one-dimensional KPZ equation.
Solution:
The functional Fokker-Planck equation for the $d=1 \mathrm{KPZ}$ system,

$$
\frac{\partial h}{\partial t}=D \frac{\partial^{2} h}{\partial x^{2}}+\frac{1}{2} \lambda\left(\frac{\partial h}{\partial x}\right)^{2}+\eta(x, t)
$$

is given in Eqn. 6.106 of the notes:

$$
\frac{\partial \Pi[h(x), t]}{\partial t}=\int d y\left(\frac{1}{2} \Gamma \frac{\delta^{2}}{\delta h(y)^{2}}-\frac{\delta}{\delta h(y)} J(y)\right) \Pi[h(x), t]
$$

where

$$
J=D \frac{\partial^{2} h}{\partial x^{2}}+\frac{1}{2} \lambda\left(\frac{\partial h}{\partial x}\right)^{2}
$$

To verify the solution, define

$$
W[h(x)]=\frac{D}{\Gamma} \int_{-\infty}^{\infty} d x\left(\frac{\partial h}{\partial x}\right)^{2}
$$

so $\Pi[h]=e^{-W[h]}$. Taking the functional derivative,

$$
\frac{\delta W}{\delta h(y)}=-\frac{D}{\Gamma} h^{\prime \prime}(y) \quad \Rightarrow \quad \frac{\delta \Pi}{\delta h(y)}=\frac{D}{\Gamma} h^{\prime \prime}(y) \Pi .
$$

Thus,

$$
\frac{\Gamma}{2} \frac{\delta^{2} \Pi}{\delta h(y)^{2}}=D \delta^{\prime \prime}(0) \Pi+\frac{2 D^{2}}{\Gamma} h^{\prime \prime}(y)^{2} \Pi .
$$

Next, we compute

$$
-\frac{\delta}{\delta h(y)}\left\{\left[D h^{\prime \prime}(y)+\frac{1}{2} \lambda h^{\prime}(y)^{2}\right] \Pi\right\}=-D h^{\prime \prime}(0) \Pi-\lambda h^{\prime}(y) \delta^{\prime}(0) \Pi-\left[D h^{\prime \prime}(y)+\frac{1}{2} \lambda h^{\prime}(y)^{2}\right]\left(\frac{2 D}{\Gamma} h^{\prime \prime}(y)\right) \Pi
$$

and adding these results we obtain

$$
\begin{aligned}
\left\{\frac{\Gamma}{2} \frac{\delta^{2}}{\delta h(y)^{2}}-\frac{\delta}{\delta h(y)} J(y)\right\} \Pi[h] & =-\frac{D \lambda}{\Gamma} h^{\prime}(y)^{2} h^{\prime \prime}(y) \Pi-\lambda h^{\prime}(y) \delta^{\prime}(0) \Pi \\
& =-\frac{d}{d y}\left(\frac{D \lambda}{3 \Gamma} h^{\prime}(y)^{3}+\lambda \delta^{\prime}(0) h(y)\right) \Pi
\end{aligned}
$$

and since the y-dependent term on the RHS is a total derivative, we have ${ }^{1}$

$$
\int_{-\infty}^{\infty} d y\left\{\frac{\Gamma}{2} \frac{\delta^{2}}{\delta h(y)^{2}}-\frac{\delta}{\delta h(y)} J(y)\right\} \Pi[h]=0
$$

where $J(y)=D h^{\prime \prime}(y)+\frac{1}{2} \lambda h^{\prime}(y)^{2}$. This says that $\Pi[h]$ is a solution to the functional FokkerPlanck equation.

We can now see why one dimension is special in this regard. Mutatis mutandis, if we apply the same procedure to the case where $W[h]=\frac{D}{T} \int d^{d} x(\nabla h)^{2}$, we obtain a term $(\nabla h)^{2} \nabla^{2} h$, which is the higher dimensional generalization of $h^{\prime}(y)^{2} h^{\prime \prime}(y)$ obtained above. But $(\nabla h)^{2} \nabla^{2} h$ is a scalar, in which all the spatial indices are contracted; it is not equal to the (vector) gradient of any function!

Finally, let's see how the above functional Fokker-Planck equation results from the continuum limit of an appropriate discrete model. Consider the coupled SODEs

$$
\frac{\partial h_{n}}{\partial t}=\frac{D}{a^{2}}\left(h_{n+1}+h_{n-1}-2 h_{n}\right)+\frac{\lambda}{2 a^{2}}\left(h_{n+1}-h_{n}\right)^{2}+a^{-1 / 2} \eta_{n}(t),
$$

where $\left\langle\eta_{n}(t) \eta_{n^{\prime}}\left(t^{\prime}\right)\right\rangle=\Gamma \delta_{n n^{\prime}} \delta\left(t-t^{\prime}\right)$. Notice the discrete derivatives in the above expression:

$$
\frac{h_{n+1}-h_{n}}{a} \approx \frac{\partial h}{\partial x} \quad, \quad \frac{h_{n+1}+h_{n-1}-2 h_{n}}{a^{2}}=\frac{1}{a}\left(\frac{h_{n+1}-h_{n}}{a}-\frac{h_{n}-h_{n-1}}{a}\right) \approx \frac{\partial^{2} h}{\partial x^{2}} .
$$

We saw in §3.4.3 how the multicomponent SDE $d u_{a}=A_{a} d t+\beta_{a b} d W_{b}(t)$ with $\left\langle d W_{a}(t) d W_{b}(t)\right\rangle=$ $\delta_{a b} d t$ gives rise to the Fokker-Planck equation $\partial_{t} P=-\frac{\partial}{\partial u_{a}}\left(A_{a} P\right)+\frac{1}{2} \frac{\partial^{2}}{\partial u_{a} \partial u_{b}}\left[\left(\beta \beta^{\mathrm{t}}\right)_{a b} P\right]$. In our case, we have $u_{a} \rightarrow h_{n}, \beta_{a b} \rightarrow \sqrt{\Gamma / a} \delta_{n n^{\prime}}$, and

$$
A_{a} \rightarrow A_{n}=\frac{D}{a^{2}}\left(h_{n+1}+h_{n-1}-2 h_{n}\right)+\frac{\lambda}{2 a^{2}}\left(h_{n+1}-h_{n}\right)^{2} .
$$

The corresponding Fokker-Planck equation is then

$$
\begin{aligned}
\frac{\partial P}{\partial t} & =\sum_{n}\left\{-\frac{\partial}{\partial h_{n}}\left(A_{n} P\right)+\frac{\Gamma}{2 a} \frac{\partial^{2} P}{\partial h_{n}^{2}}\right\} \\
& =a \sum_{n}\left\{-\frac{1}{a} \frac{\partial}{\partial h_{n}}\left(A_{n} P\right)+\frac{\Gamma}{2 a^{2}} \frac{\partial^{2} P}{\partial h_{n}^{2}}\right\} .
\end{aligned}
$$

We rewrite the RHS on the second line as we did in order to make contact with the continuum functional Fokker-Planck equation, where $a \sum_{n} \rightarrow \int d y$.

We now seek a stationary solution. We again take $P=e^{-W}$, with

$$
W=\frac{D}{\Gamma a} \sum_{n}\left(h_{n+1}-h_{n}\right)^{2} .
$$

[^0]From the chain rule, $\frac{\partial P}{\partial h_{n}}=-P \frac{\partial W}{\partial h_{n}}$. We now have the following:

$$
\frac{\partial W}{\partial h_{n}}=\frac{2 D}{\Gamma a}\left(2 h_{n}-h_{n+1}-h_{n-1}\right) \quad, \quad \frac{\partial A_{n}}{\partial h_{n}}=-\frac{2 D}{a^{2}}+\frac{\lambda}{a^{2}}\left(h_{n}-h_{n+1}\right) .
$$

We therefore have

$$
\begin{aligned}
-\frac{1}{a} \frac{\partial}{\partial h_{n}}\left(A_{n} P\right)= & \overbrace{\left(\frac{2 D}{a^{3}}-\frac{\lambda}{a^{3}}\left(h_{n}-h_{n+1}\right)\right) P}^{-a^{-1} P \partial A_{n} / \partial h_{n}}+ \\
& \overbrace{\left(\frac{D}{a^{2}}\left(h_{n+1}+h_{n-1}-2 h_{n}\right)+\frac{\lambda}{2 a^{2}}\left(h_{n+1}-h_{n}\right)^{2}\right)}^{A_{n}} \cdot \overbrace{\left(-\frac{2 D}{\Gamma a^{2}}\left(h_{n+1}+h_{n-1}-2 h_{n}\right) P\right)}^{-a^{-1} \partial P / \partial h_{n}}
\end{aligned}
$$

as well as

$$
\frac{\partial^{2} P}{\partial h_{n}^{2}}=\frac{\partial}{\partial h_{n}}\left(-P \frac{\partial W}{\partial h_{n}}\right)=-P \frac{\partial^{2} W}{\partial h_{n}^{2}}+P\left(\frac{\partial W}{\partial h_{n}}\right)^{2}
$$

so that

$$
\frac{\Gamma}{2 a^{2}} \frac{\partial^{2} P}{\partial h_{n}^{2}}=-\frac{2 D}{a^{3}}+\frac{2 D^{2}}{\Gamma a^{4}}\left(2 h_{n}-h_{n+1}-h_{n-1}\right)^{2} P
$$

When we add these results in the sum of the multivariable FPE, the two terms on the RHS immediately above cancel with corresponding terms in the expression for $-\frac{1}{a} \frac{\partial}{\partial h_{n}}\left(A_{n} P\right)$. Before canceling, it is good to notice that $-2 / a^{3}$ is the lattice equivalent of $\delta^{\prime \prime}(0)$. After canceling, we have

$$
\begin{aligned}
a \sum_{n}\left\{-\frac{1}{a} \frac{\partial}{\partial h_{n}}\left(A_{n} P\right)+\frac{\Gamma}{2 a^{2}} \frac{\partial^{2} P}{\partial h_{n}^{2}}\right\}=\lambda \frac{1}{a} \sum_{n} & \left(\frac{h_{n+1}-h_{n}}{a}\right) P \\
& -\frac{D \lambda}{\Gamma} a \sum_{n}\left(\frac{h_{n+1}-h_{n}}{a}\right)^{2}\left(\frac{h_{n+1}+h_{n-1}-2 h_{n}}{a^{2}}\right) P .
\end{aligned}
$$

The first term is identified with $-\lambda \delta^{\prime}(0) \int d y h^{\prime}(y)$, with $\delta^{\prime}(0)=1 / a^{2}$. This identification is due to our asymmetric definition of the lattice derivative at n as $\left(h_{n+1}-h_{n}\right) / a$. At any rate, the sum $\sum_{n}\left(h_{n+1}-h_{n}\right)$ vanishes, if we assume the field h_{n} vanishes at spatial infinity, or periodic boundary conditions are employed. The last term is the lattice version of $(D \lambda / \Gamma) \int d y h^{\prime}(y)^{2} h^{\prime \prime}(y) P$, which vanishes because $h^{\prime}(y)^{2} h^{\prime \prime}(y)=\frac{1}{3}\left(h^{\prime}(y)^{3}\right)^{\prime}$ is a total derivative. However, it is only a total derivative in the continuum, and not on the lattice, therefore our function $P\left(\left\{h_{n}\right\}\right)$ is not a stationary solution of the many variable FokkerPlanck equation.
(4) Consider the Mullins equation,

$$
\frac{\partial h}{\partial t}=-\nu \nabla^{4} h+\eta,
$$

where $\nabla^{4}=\left(\nabla^{2}\right)^{2}$.
(a) Use dimensional analysis and linearity to show how the interface width $w(t)$ scales with the parameters and time. For what dimensions does the noise roughen the interface?
(b) Compute the interface width and the two point correlation function in dimensions $d=1, d=2$, and $d=3$.

Solution:
(a) We have

$$
[\nu]=L^{4} T^{-1} \quad, \quad[\Gamma]=L^{d} H^{2} T^{-1} \quad, \quad[t]=T .
$$

The interface width is $w(t)=\left\langle h^{2}(\boldsymbol{x}, t)\right\rangle^{1 / 2}$, so $[w]=H$, and we conclude

$$
w(t) \propto \Gamma^{1 / 2} \nu^{-d / 8} t^{(4-d) / 8} .
$$

The interface is rough, i.e. its width increases with time, in dimensions $d \leq 4$ (we expect a logarithm in $d=4$ dimensions). Recall that for the Edwards-Williamson model, roughening only occured for $d \leq 2$.
(b) Fourier transforming the position variable, the Mullins equation becomes

$$
\frac{\partial \hat{h}(\boldsymbol{k}, t)}{\partial t}=-\nu k^{4} \hat{h}(\boldsymbol{k}, t)+\hat{\eta}(\boldsymbol{k}, t)
$$

The Fourier space correlator of the stochastic noise is

$$
\left\langle\hat{\eta}(\boldsymbol{k}, t) \hat{\eta}\left(-\boldsymbol{k}^{\prime}, t^{\prime}\right)\right\rangle=(2 \pi)^{d} \Gamma \delta\left(\boldsymbol{k}-\boldsymbol{k}^{\prime}\right) \delta\left(t-t^{\prime}\right) .
$$

Directly integrating the Mullins equation in Fourier space yields

$$
\hat{h}(\boldsymbol{k}, t)=\hat{h}(\boldsymbol{k}, 0) e^{-\nu k^{4} t}+\int_{0}^{t} d s \hat{\eta}(\boldsymbol{k}, s) e^{-\nu k^{4}(t-s)}
$$

Assuming we start from a flat surface with $h(\boldsymbol{x}, 0)=0$, we have

$$
\begin{aligned}
\left\langle h(\boldsymbol{x}, t) h\left(\boldsymbol{x}^{\prime}, t^{\prime}\right)\right\rangle & =\int \frac{d^{d} k}{(2 \pi)^{d}} \int \frac{d^{d} k^{\prime}}{(2 \pi)^{d}} e^{i\left(\boldsymbol{k} \cdot \boldsymbol{x}-\boldsymbol{k}^{\prime} \cdot \boldsymbol{x}^{\prime}\right)} \int_{0}^{t} d s \int_{0}^{t^{\prime}} d s^{\prime} e^{-\nu k^{4}(t-s)} e^{-\nu k^{\prime 4}\left(t^{\prime}-s^{\prime}\right)}(2 \pi)^{d} \Gamma \delta\left(\boldsymbol{k}-\boldsymbol{k}^{\prime}\right) \delta\left(s-s^{\prime}\right) \\
& =\Gamma \int \frac{d^{d} k}{(2 \pi)^{d}} e^{i \boldsymbol{k} \cdot\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right)} \int_{0}^{t_{<}} d s e^{-\nu k^{4}\left(t+t^{\prime}-2 s\right)} \\
& =\frac{\Gamma}{2 \nu} \int \frac{d^{d} k}{(2 \pi)^{d}} e^{i \boldsymbol{k} \cdot\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right)} \frac{1}{k^{4}}\left\{e^{-\nu k^{4}\left|t-t^{\prime}\right|}-e^{-\nu k^{4}\left(t+t^{\prime}\right)}\right\},
\end{aligned}
$$

where $t_{<}=\min \left(t, t^{\prime}\right)$. Thus, if we define $\boldsymbol{r}=\boldsymbol{x}-\boldsymbol{x}^{\prime}$, we have

$$
C\left(\boldsymbol{r}, t, t^{\prime}\right)=\left\langle h(\boldsymbol{r}, t) h\left(0, t^{\prime}\right)\right\rangle=\frac{\Gamma}{2 \nu} \frac{\Omega_{d}}{(2 \pi)^{d}} \int_{0}^{\infty} d k k^{d-5} f_{d}(k r)\left\{e^{-\nu k^{4}\left|t-t^{\prime}\right|}-e^{-\nu k^{4}\left(t+t^{\prime}\right)}\right\}
$$

where

$$
f_{d}(z)= \begin{cases}\cos z & \text { if } d=1 \\ J_{0}(z) & \text { if } d=2 \\ \Gamma(d / 2)(2 / z)^{\frac{d}{2}-1} J_{\frac{d}{2}-1}(z) & \text { if } d>2\end{cases}
$$

and $\Omega_{d}=2 \pi^{d / 2} / \Gamma(d / 2)$ is the area of the unit sphere in d dimensions ${ }^{2}$. Note that $f_{d}(0)=1$. The integral for $C\left(\boldsymbol{r}, t, t^{\prime}\right)$ is convergent in the infrared because the term in curly brackets vanishes as k^{4} in the $k \rightarrow 0$ limit.

In dimensions $d<4$ the interface width is given by

$$
\begin{aligned}
w^{2}(t) & =\frac{\Gamma}{2 \nu} \frac{\Omega_{d}}{(2 \pi)^{d}} \int_{0}^{\infty} d k k^{d-5}\left(1-e^{-2 \nu k^{4} t}\right) \\
& =\frac{\Gamma}{2(4-d) \nu} \frac{\Omega_{d} \Gamma(d / 4)}{(2 \pi)^{d}}(2 \nu t)^{1-\frac{d}{4}},
\end{aligned}
$$

which agrees with the scaling analysis in part (a). The two-point correlator $C\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}, t, t^{\prime}\right)$ is given by

$$
\begin{aligned}
& C_{d=1}\left(x-x^{\prime}, t, t^{\prime}\right)=\frac{\sqrt{2 \pi} \Gamma}{4 \nu}\left|x-x^{\prime}\right|^{3} \int_{0}^{\infty} d u \frac{\cos u}{u^{7 / 2}}\left[e^{-\zeta u^{4}}-e^{-Z u^{4}}\right] \\
& C_{d=2}\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}, t, t^{\prime}\right)=\frac{\pi \Gamma}{2 \nu}\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|^{2} \int_{0}^{\infty} d u \frac{J_{0}(u)}{u^{3}}\left[e^{-\zeta u^{4}}-e^{-Z u^{4}}\right] \\
& C_{d=3}\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}, t, t^{\prime}\right)=\frac{\pi \Gamma}{\nu}\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right| \int_{0}^{\infty} d u \frac{\sin u}{u^{3}}\left[e^{-\zeta u^{4}}-e^{-Z u^{4}}\right],
\end{aligned}
$$

with

$$
\zeta=\frac{\nu\left|t-t^{\prime}\right|}{\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|^{4}} \quad, \quad Z=\frac{\nu\left(t+t^{\prime}\right)}{\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|^{4}} .
$$

For the equal time correlation functions $\left\langle h(\boldsymbol{x}, t) h\left(\boldsymbol{x}^{\prime}, t\right)\right\rangle$, set $\zeta=0$ in the above expressions, and $Z=2 \nu t /\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|^{4}$.

[^1]
[^0]: ${ }^{1}$ We could also appeal to the fact that $\delta(y)$ is even and insist that $\delta^{\prime}(0)=0$. This is a bit dicey because $\delta(y)$ is really a distribution and not a proper function.

[^1]: ${ }^{2}$ Note $\Omega_{d=1}=2$.

