PHYSICS 210B : NONEQUILIBRIUM STATISTICAL PHYSICS HW SOLUTIONS \#3 : STOCHASTIC CALCULUS

(1) Evaluate, for general α, the averages of the following stochastic integrals:

$$
\int_{0}^{t} d W(s) W(s) s \quad, \quad \int_{0}^{t} d W(s) W^{3}(s) e^{-\lambda s} \quad, \quad \int_{0}^{t} d W(s) W^{2 k+1}(s)
$$

Solution:
We evaluate the general stochastic integral,

$$
\begin{aligned}
I_{k}[\phi] & =\int_{0}^{t} d W(s) W^{2 k+1}(s) \phi(s) \\
& =\sum_{j=0}^{N-1}\left[(1-\alpha) W_{j}^{2 k+1} \phi_{j}+\alpha W_{j+1}^{2 k+1} \phi_{j+1}\right]\left(W_{j+1}-W_{j}\right)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\left\langle I_{k}[\phi]\right\rangle & =\alpha \sum_{j=0}^{N-1} \phi_{j+1}\left(\left\langle W_{j+1}^{2 k+2}\right\rangle-\left\langle W_{j} W_{j+1}^{2 k+1}\right\rangle\right) \\
& =\frac{(2 k+2)!}{2^{k+1}(k+1)!} \cdot \alpha \int_{0}^{t} d s s^{k} \phi(s)
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\left\langle\int_{0}^{t} d W(s) W(s) s\right\rangle & =\frac{1}{2} \alpha t^{2} \\
\left\langle\int_{0}^{t} d W(s) W^{3}(s) e^{-\lambda s}\right\rangle & =3 \alpha \int_{0}^{t} d s s e^{-\lambda s}=\frac{1}{\lambda^{2}}\left(1-e^{-\lambda t}\right)+t e^{-\lambda t} \\
\left\langle\int_{0}^{t} d W(s) W^{2 k+1}(s)\right\rangle & =\frac{(2 k+2)!}{2^{k+1}(k+1)!} \cdot \frac{\alpha t^{k+1}}{k+1}
\end{aligned}
$$

Note that in the limit $\lambda \rightarrow 0$ the term in curly brackets on the RHS of the second integral yields $(\lambda t)^{4} / 24+\mathcal{O}\left(\lambda^{5}\right)$ after a cancellation of the first four terms in the Taylor expansion of $e^{\lambda t}$, hence the integral becomes $\frac{3}{4} \alpha t^{4}$ in this limit, which is correct.

(2) Derive Eqn. 3.105 of the lecture notes.

Solution:
Starting from

$$
\begin{aligned}
& d u=-\beta u d t+\beta d W(t) \\
& \frac{d z}{d t}=i \nu z+i \lambda u(t) z,
\end{aligned}
$$

we obtained the solution

$$
z(t)=z(0) \exp \left\{i \nu t+\frac{i \lambda}{\beta} u(0)\left(1-e^{-\beta t}\right)+i \lambda \int_{0}^{t} d W(s)\left(1-e^{-\beta(t-s)}\right)\right\}
$$

We wish to compute the quantity $Y(s)=\lim _{t \rightarrow \infty}\left\langle z(t+s) z^{*}(t)\right\rangle$. We therefore have

$$
\begin{aligned}
\left\langle z(t+s) z^{*}(t)\right\rangle= & |z(0)|^{2} e^{i \nu s} \exp \left\{\frac{i \lambda}{\beta} u(0) e^{-\beta t}\left(e^{-\beta s}-1\right)\right\} \times \\
& \exp \left\{-\frac{\lambda^{2}}{2}\left\langle\left(\int_{0}^{t} d W(\sigma)\left[1-e^{-\beta(t-\sigma)}\right]-\int_{0}^{t+s} d W(\sigma)\left[1-e^{-\beta(t+s-\sigma)}\right]\right)^{2}\right\rangle\right\}
\end{aligned}
$$

We now invoke the result of Eqn. 3.27,

$$
\left\langle\int_{0}^{t} d W(s) F(s) \int_{0}^{t^{\prime}} d W\left(s^{\prime}\right) G\left(s^{\prime}\right)\right\rangle=\int_{0}^{\tilde{t}} d s F(s) G(s)
$$

where $\tilde{t}=\min \left(t, t^{\prime}\right)$, to obtain

$$
\begin{gathered}
\left\langle\left(\int_{0}^{t} d W(\sigma)\left[1-e^{-\beta(t-\sigma)}\right]-\int_{0}^{t+s} d W(\sigma)\left[1-e^{-\beta(t+s-\sigma)}\right]\right)^{2}\right\rangle=t-\frac{2}{\beta}\left(1-e^{-\beta t}\right)+\frac{1}{2 \beta}\left(1-e^{-2 \beta t}\right) \\
+(t+s)-\frac{2}{\beta}\left(1-e^{-\beta(t+s)}\right)+\frac{1}{2 \beta}\left(1-e^{-2 \beta(t+s)}\right) \\
-2 t+\frac{2}{\beta}\left(1-e^{-\beta t}\right)+\frac{2}{\beta}\left(1-e^{-\beta t}\right) e^{-\beta s}-\frac{2}{2 \beta}\left(1-e^{-2 \beta t}\right) e^{-\beta s} \\
=s-\frac{1}{\beta}\left(1-e^{-\beta s}\right),
\end{gathered}
$$

where we have assumed $s>0$. For $s<0$, it is clear that we must replace s with $|s|$. The final result is

$$
Y(s)=\lim _{t \rightarrow \infty}\left\langle z(t+s) z^{*}(t)\right\rangle=|z(0)|^{2} \exp \left\{i \nu s-\frac{1}{2} \lambda^{2}|s|+\frac{\lambda^{2}}{2 \beta}\left(1-e^{-\beta|s|}\right)\right\}
$$

(3) For the colored noise example in $\S 3.5 .3$ of the notes, compute numerically $\hat{Y}(\omega)$ and plot your results as a function of $\omega-\nu$. Set $\lambda \equiv 1$ and plot your results for a representative set of different values of the parameter β.

Solution:
We may derive an expansion for $\hat{Y}(\omega)$ as follows. First, for convenience we set $|z(0)|^{2}=1$. Then we have

$$
\begin{aligned}
Y(s) & =\exp \left\{i \nu s-\frac{1}{2} \lambda^{2}|s|+\frac{\lambda^{2}}{2 \beta}\left(1-e^{-\beta|s|}\right)\right\} \\
& =e^{i \nu s} e^{-\lambda^{2}|s| / 2} e^{\lambda^{2} / 2 \beta} \sum_{n=0}^{\infty} \frac{1}{n!}\left(-\frac{\lambda^{2}}{2 \beta}\right)^{n} e^{-n \beta|s|}
\end{aligned}
$$

Taking the Fourier transform, we have

$$
\hat{Y}(\omega)=e^{\lambda^{2} / 2 \beta} \sum_{n=0}^{\infty} \frac{1}{n!}\left(-\frac{\lambda^{2}}{2 \beta}\right)^{n} \frac{2\left(n \beta+\frac{1}{2} \lambda^{2}\right)}{(\omega-\nu)^{2}+\left(n \beta+\frac{1}{2} \lambda^{2}\right)^{2}} .
$$

Define the parameter $\varepsilon \equiv \lambda^{2} / 2 \beta$, and define rescaled frequencies $\bar{\omega} \equiv \omega / \beta$ and $\bar{\nu} \equiv \nu / \beta$. Then $\hat{Y}(\omega)=\beta^{-1} \hat{\mathcal{Y}}_{\varepsilon}(\delta)$, where $\delta=\bar{\omega}-\bar{\nu}$ and

$$
\begin{aligned}
\hat{\mathcal{Y}}_{\varepsilon}(\delta) & =2 \exp (\varepsilon) \sum_{n=0}^{\infty} \frac{(-\varepsilon)^{n}}{n!} \frac{n+\varepsilon}{\delta^{2}+(n+\varepsilon)^{2}} \\
& =2 \int_{0}^{\infty} d \tau \cos (\delta \tau) \exp \left\{-\varepsilon\left(e^{-\tau}-1+\tau\right)\right\} .
\end{aligned}
$$

Figure 1: The integral $\hat{\mathcal{Y}}_{\varepsilon}(\delta)$ from problem (3).

Note that $f(\tau)=e^{-\tau}-1+\tau$ is nonnegative and monotonically increasing for $\tau \geq 0$, with $f(0)=0$. For $\varepsilon \ll 1$, we can expand $f(\tau)=\frac{1}{2} \tau^{2}+\mathcal{O}\left(\tau^{3}\right)$ and obtain

$$
\hat{\mathcal{Y}}_{\varepsilon}(\delta) \simeq \sqrt{\frac{2 \pi}{\varepsilon}} e^{-\delta^{2} / 2 \varepsilon} \quad(\varepsilon \rightarrow 0)
$$

We evaluate numerically via Mathematica, viz.

$$
\begin{aligned}
& \mathrm{Y}\left[\mathrm{x}_{-}, \mathrm{a}-\right]:=\operatorname{NIntegrate}[2 \operatorname{Cos}[\mathrm{x} * \mathrm{y}] \operatorname{Exp}[-\mathrm{a}(\operatorname{Exp}[-\mathrm{y}]-1+\mathrm{y})],\{\mathrm{y}, 0, \text { Infinity }\}] \\
& \operatorname{Plot3D}[\mathrm{Y}[\mathrm{x}, \mathrm{a}],\{\mathrm{x}, 0,1\},\{\mathrm{a}, 0.25,1\}, \operatorname{PlotRange} \rightarrow \text { Full }]
\end{aligned}
$$

The resulting plot is shown in Fig. 1.
(4) Consider the following stochastic differential equation,

$$
d x=-\beta x d t+\sqrt{2 \beta\left(a^{2}-x^{2}\right)} d W(t),
$$

where $x \in[-a, a]$.
(i) Find the corresponding Fokker-Planck equation.
(ii) Find the normalized steady state probability $\mathcal{P}(x)$.
(iii) Find and solve for the eigenfunctions $P_{n}(x)$ and $Q_{n}(x)$. Hint: learn a bit about Chebyshev polynomials.
(iv) Find an expression for $\left\langle x^{3}(t) x^{3}(0)\right\rangle$, assuming $x_{0} \equiv x(0)$ is distributed according to $\mathcal{P}\left(x_{0}\right)$.

Solution:
(a) From $\S 3.3 .4$ of the notes, assuming the stochastic differential equation is in the Itô form (parameter $\alpha=0$),

$$
\frac{\partial P}{\partial t}=-\frac{\partial}{\partial x}(f P)+\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}\left(g^{2} P\right)
$$

with $f(x)=-\beta x$ and $g(x)=\sqrt{2 \beta\left(a^{2}-x^{2}\right)}$. Thus,

$$
\frac{\partial P}{\partial t}=\beta \frac{\partial}{\partial x}(x P)+\beta \frac{\partial^{2}}{\partial x^{2}}\left[\left(a^{2}-x^{2}\right) P\right] .
$$

At the boundaries $x= \pm a$ the diffusion constant vanishes, and the drift is into the interval, hence the boundaries are reflecting.
(b) We set the LHS of the FPE to zero to find the steady state solution. Assuming no currents at the boundaries, we have $P(x, t \rightarrow \infty)=\mathcal{P}(x)$, where the equilibrium distribution $\mathcal{P}(x)$ satisfies the first order equation

$$
0=x \mathcal{P}+\frac{d}{d x}\left[\left(a^{2}-x^{2}\right) \mathcal{P}\right] .
$$

This may be rewritten as

$$
\frac{d}{d x} \ln \left[\left(a^{2}-x^{2}\right) \mathcal{P}\right]=-\frac{x}{a^{2}-x^{2}}=\frac{d}{d x} \frac{1}{2} \ln \left(a^{2}-x^{2}\right)
$$

and therefore

$$
\mathcal{P}(x)=\frac{1}{\pi} \frac{1}{\sqrt{a^{2}-x^{2}}}
$$

which is normalized with $\int_{-a}^{a} d x \mathcal{P}(x)=1$.
(c) The eigenfunctions $P_{n}(x)$ satisfy $\mathcal{L} \mathcal{P}_{n}(x)=-\lambda_{n} P_{n}(x)$, with $Q_{n}(x)=P_{n}(x) / \mathcal{P}(x)$ satisfying $\mathcal{L}^{\dagger} Q_{n}=-\lambda_{n} Q_{n}$. It is useful to measure distances in units of a and times in units of β^{-1}. Then the FPE is $\partial_{t} P=\mathcal{L} P$, where our Fokker-Planck operator is

$$
\mathcal{L}=\frac{d}{d x} x+\frac{d^{2}}{d x^{2}}\left(1-x^{2}\right)
$$

The eigenfunctions $Q_{n}(x)$ satisfy $\mathcal{L}^{\dagger} Q_{n}=-\lambda_{n} Q_{n}$. Thus,

$$
(1-x)^{2} \frac{d^{2} Q_{n}}{d x^{2}}-x \frac{d Q_{n}}{d x}=-\lambda_{n} Q_{n}
$$

This is Chebyshev's equation. The solution are the Chebyshev polynomials $T_{n}(x)$, and the eigenvalues are $\lambda_{n}=n^{2}$. The eigenfunctions $P_{n}(x)$ are given by $P_{n}(x)=\mathcal{P}(x) Q_{n}(x)$, with $\mathcal{P}(x)=\pi^{-1}\left(1-x^{2}\right)^{-1 / 2}$.

A good place to learn about Chebyshev polynomials is Wikipedia. The Chebyshev polynomials of the first kind are an orthonormal family of functions $\left\{T_{n}(x)\right\}$ on the interval $x \in[-1,1]$, satisfying the recurrence relation

$$
T_{0}(x)=1 \quad, \quad T_{1}(x)=x \quad, \quad T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x)
$$

They satisfy the differential equation

$$
\left(1-x^{2}\right) \frac{d^{2} T_{n}}{d x^{2}}-x \frac{d T_{n}}{d x}+n^{2} T_{n}=0
$$

There are several generating functions for the $\left\{T_{n}(x)\right\}$:

$$
\begin{aligned}
\frac{1-t x}{1-2 t x+t^{2}} & =\sum_{n=0}^{\infty} t^{n} T_{n}(x) \\
e^{t x} \cos \left(t \sqrt{1-x^{2}}\right) & =\sum_{n=0}^{\infty} \frac{t^{n}}{n!} T_{n}(x) \\
-\frac{1}{2} \ln \left(1-2 t x+t^{2}\right) & =\sum_{n=1}^{\infty} \frac{t^{n}}{n} T_{n}(x)
\end{aligned}
$$

The orthogonality relation is

$$
\frac{1}{\pi} \int_{-1}^{1} \frac{d x}{\sqrt{1-x^{2}}} T_{m}(x) T_{n}(x)=\left\{\begin{array}{ll}
0 & \text { if } m \neq n \\
1 & \text { if } m=n=0 \\
\frac{1}{2} & \text { if } m=n \neq 0
\end{array} .\right.
$$

The first few $T_{n}(x)$ are
$T_{0}(x)=1 \quad T_{6}(x)=32 x^{6}-48 x^{4}+18 x^{2}-1$
$T_{1}(x)=x \quad T_{7}(x)=64 x^{7}-112 x^{5}+56 x^{3}-7 x$
$T_{2}(x)=2 x^{2}-1 \quad T_{8}(x)=128 x^{8}-256 x^{6}+160 x^{4}-32 x^{2}+1$
$T_{3}(x)=4 x^{3}-3 x \quad T_{9}(x)=256 x^{9}-576 x^{7}+432 x^{5}-120 x^{3}+9 x$
$T_{4}(x)=8 x^{4}-8 x^{2}+1 \quad T_{10}(x)=512 x^{10}-1280 x^{8}+1120 x^{6}-400 x^{4}+50 x^{2}-1$
$T_{5}(x)=16 x^{5}-20 x^{3}+5 x \quad T_{11}(x)=1024 x^{11}-2816 x^{9}+2816 x^{7}-1232 x^{5}+220 x^{3}-11 x \quad$.

The general solution of the Fokker-Planck equation is then

$$
P(x, t)=\sum_{n=0}^{\infty} A_{n} \mathcal{P}(x) T_{n}(x) e^{-n^{2} t} .
$$

The coefficients A_{n} are obtained from initial data $P(x, 0)$, viz.

$$
A_{0}=\int_{-1}^{1} d x P(x, 0) \quad, \quad A_{n>0}=2 \int_{-1}^{1} d x P(x, 0) T_{n}(x)
$$

(d) From the conclusion of $\S 4.2 .4$ of the notes, we have that

$$
P\left(x, t \mid x_{0}, 0\right)=\sum_{n} Q_{n}\left(x_{0}\right) P_{n}(x) e^{-\lambda_{n} t}
$$

where $P_{0}(x)=\mathcal{P}(x)$ and $P_{n>0}(x)=\sqrt{2} T_{n}(x) \mathcal{P}(x)$. Thus, assuming x_{0} is distributed according to $\mathcal{P}\left(x_{0}\right)$,

$$
\begin{aligned}
\left\langle x^{3}(t) x^{3}(0)\right\rangle & =\int_{-1}^{1} d x_{0} \mathcal{P}\left(x_{0}\right) x_{0}^{3} \int_{-1}^{1} d x P\left(x, t \mid x_{0}, 0\right) \\
& =\sum_{n}\left|\left\langle x^{3} \mid P_{n}\right\rangle\right|^{2} e^{-n^{2} t}
\end{aligned}
$$

where

$$
\left\langle x^{3} \mid P_{n}\right\rangle=\sqrt{2} \int_{-1}^{1} d x \mathcal{P}(x) x^{3} T_{n}(x)=\frac{1}{\sqrt{2}}\left(\frac{1}{4} \delta_{n, 3}+\frac{3}{4} \delta_{n, 1}\right),
$$

since $x^{3}=\frac{1}{4} T_{3}(x)+\frac{3}{4} T_{1}(x)$. Thus,

$$
\left\langle x^{3}(t) x^{3}(0)\right\rangle=\frac{1}{32} e^{-3 t}+\frac{9}{32} e^{-t}
$$

Note that $\left\langle x^{6}(0)\right\rangle=\frac{5}{16}$, which agrees with the calculation

$$
\begin{aligned}
\left\langle x^{6}(0)\right\rangle & =\int_{-1}^{1} d x_{0} \mathcal{P}\left(x_{0}\right) x_{0}^{6} \\
& =\frac{1}{\pi} \int_{0}^{\pi} d \theta \cos ^{6} \theta=\frac{1}{2^{6}}\binom{6}{3}=\frac{5}{16} .
\end{aligned}
$$

