
PHYSICS 210B : NONEQUILIBRIUM STATISTICAL PHYSICS
HW SOLUTIONS #1 : PROBABILITY

(1) A six-sided die is loaded in such a way that it is twice as likely to yield an even number
than an odd number when thrown.

(a) Find the distribution {pn} consistent with maximum entropy.

(b) Assuming the maximum entropy distribution, what is the probability that three con-
secutive rolls of this die will total up to seven?

Solution:

(a) Our constraints are

p1 + p2 + p3 + p4 + p5 + p6 = 1

2p1 − p2 + 2p3 − p4 + 2p5 − p6 = 0 .

We can combine these to yield

p1 + p3 + p5 = 1
3

p2 + p4 + p6 = 2
3 .

At this point it should be obvious that the solution is p1,3,5 = 1
9 and p2,4,6 = 2

9 , since
nothing further distinguishes among the even or the odd rolls. This is indeed what the
maximum entropy construction gives. We write

S∗
(
{pn}, λo, λe

)
= −

6∑
n=1

pn ln pn − λO
(
p1 + p3 + p5 − 1

3

)
− λE

(
p2 + p4 + p6 − 2

3

)
.

Extremizing with respect to each of the six pn, we have

p1 = p3 = p5 = e−(1+λO)

p2 = p4 = p6 = e−(1+λE) .

Extremizing with respect to λO,E recovers the constraint equations. The solution is what
we expected.

(b) There are 15 out of a possible 63 = 216 distinct triples of die rolls which will total to
seven:

(1, 1, 5) (2, 1, 4) (3, 1, 3) (4, 1, 2) (5, 1, 1)

(1, 2, 4) (2, 2, 3) (3, 2, 2) (4, 2, 1)

(1, 3, 3) (2, 3, 2) (3, 3, 1)

(1, 4, 2) (2, 4, 1)

(1, 5, 1)

1



Of these, six contain three odd rolls and nine contain one odd and two even rolls. Thus,
the probability for three consecutive rolls summing to seven is

π = 6 p31 + 9 p1 p
2
2 = 14

243 = 0.05761.

For a fair die the probability would be πfair = 15
216 = 0.06944.

(2) Show that the Poisson distribution Pν(n) = 1
n! ν

n e−ν for the discrete variable n ∈ Z≥0
tends to a Gaussian in the limit ν →∞.

Solution:

For large fixed ν, Pν(n) is maximized for n ∼ ν. We can see this from Stirling’s asymptotic
expression,

lnn! = n lnn− n+ 1
2 lnn+ 1

2 ln 2π +O(1/n) ,

which yields
lnPν(n) = n ln ν − n lnn− ν + n− 1

2 lnn− 1
2 ln 2π

up to terms of order 1/n, which we will drop. Varying with respect to n, which we can
treat as continuous when it is very large, we find n = ν − 1

2 +O(1/ν). We therefore write
n = ν + 1

2 + ε and expand in powers of ε. It is easier to expand in powers of ε̃ ≡ ε+ 1
2 , and

since n is an integer anyway, this is really just as good. We have

lnPν(ν + ε̃) = −(ν + ε̃) ln

(
1 +

ε̃

ν

)
+ ε̃− 1

2 ln(ν + ε̃)− 1
2 ln 2π .

Now expand, recalling ln(1 + z) = z − 1
2z

2 + . . . , and find

lnPν(ν + ε̃) = − ε̃(1 + ε̃)

2ν
− ln
√

2πν +
ε̃2

4ν2
+ . . .

Since ν → ∞, the last term before the ellipses is negligible compared with the others,
assuming ε̃ = O(ν0). Thus,

Pν(n) ∼ (2πν)−1/2 exp

{
−
(
n− ν + 1

2

)2
2ν

}
,

which is a Gaussian.

(3) The probability density for a random variable x is given by the Lorentzian,

P (x) =
γ

π
· 1

x2 + γ2
.

Consider the sum X =
∑N

i=1 xi , where each xi is independently distributed according to
P (xi).

(a) Find the distribution PN (X). Does it satisfy the central limit theorem? Why or why
not?
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(b) Find the probability ΠN (Y ) that |XN | < Y , where Y > 0 is arbitrary.

Solution :

(a) As discussed in the Lecture Notes, the distribution of a sum of identically distributed
random variables, X =

∑N
i=1 xi , is given by

PN (X) =

∞∫
−∞

dk

2π

[
P̂ (k)

]N
eikX ,

where P̂ (k) is the Fourier transform of the probability distribution P (xi) for each of the xi.
The Fourier transform of a Lorentzian is an exponential:

∞∫
−∞

dx P (x) e−ikx = e−γ|k| .

Thus,

PN (X) =

∞∫
−∞

dk

2π
e−Nγ|k| eikX

=
Nγ

π
· 1

X2 +N2γ2
.

This is not a Gaussian. The central limit theorem does not apply because the Lorentzian
distribution has no finite second moment.

(b) The probability for X to lie in the interval X ∈ [−Y, Y ], where Y > 0, is

ΠN (Y ) =

Y∫
−Y

dX PN (X) =
2

π
tan−1

(
Y

Nγ

)
.

The integral is easily performed with the substitution X = Nγ tan θ. Note that ΠN (0) = 0
and ΠN (∞) = 1.

(4) Frequentist and Bayesian statistics can sometimes lead to different conclusions. You
have a coin of unknown origin. You assume that flipping the coin is a Bernoulli process, i.e.
the flips are independent and each flip has a probability p to end up heads and probability
1− p to end up tails.

(a) You perform 14 flips of the coin and you observe the sequence {HHTHTHHHTTHHHH}.
As a frequentist, what is your estimate of p?

(b) What is your frequentist estimate for the probability that the next two flips will each
end up heads? Would you bet on this event?
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(c) Now suppose you are a Bayesian. You view p as having its own distribution. The
likelihood f(data|p) is still given by the Bernoulli distribution with the parameter p.
For the prior π(p), assume a Beta distribution,

π(p|α, β) =
Γ(α+ β)

Γ(α) Γ(β)
pα−1 (1− p)β−1 .

whereα and β are hyperparameters. Compute the posterior distribution π(p|data, α, β).

(d) What is the posterior predictive probability f(HH|data, α, β)?

(e) Since a priori we don’t know anything about the coin, it seems sensible to choose
α = β = 1 initially, corresponding to a flat prior for p. What is the numerical value
of the probability to get two heads in a row? Would you bet on it?

Solution:

(a) A frequentist would conclude p = 5
7 since the trial produced ten heads and four tails.

(b) The frequentist reasons that the probability of two consecutive heads is p2 = 25
49 . This is

slightly larger than 1
2 , so the frequentist should bet! (Frequently, in fact.)

(c) Are you reading the lecture notes? You should, because this problem is solved there in
§1.5.2. We have

π(p|data, α, β) =
p9+α (1− p)3+β

B(10 + α, 4 + β)
,

where the Beta function is B(α, β) = Γ(α) Γ(β)/Γ(α+ β).

(d) The posterior predictive is

p(data′|data) =
B(10 + Y + α, 4 +M − Y + β)

B(10 + α, 4 + β)
,

where Y is the total number of heads found among M tosses. We are asked to consider
M = 2, Y = 2, so

f(HH|data, α, β) =
B(12 + α, 4 + β)

B(10 + α, 4 + β)
.

(e) With α = β = 1, we have

f(HH|data, α, β)
∣∣∣
α=β=1

=
B(13, 5)

B(11, 5)
=

11 · 12

16 · 17
=

33

68
= 0.4852941.

This is slightly less than 1
2 . Don’t bet!

It is instructive to note that the Bayesian posterior prediction for a single head, assuming
α = β = 1, is

f(H|data, α, β)
∣∣∣
α=β=1

=
B(11 + α, 4 + β)

B(10 + α, 4 + β)
=

B(12, 5)

B(11, 5)
=

11

16
.
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The square of this number is 121
256 = 0.4726565, which is less than the posterior prediction

for two consecutive heads, even though our likelihood function is the Bernoulli distribution,
which assumes the tosses are statistically independent. The eager student should contemplate
why this is the case.

(5) Consider the family of distributions

f(k|λ) =
N∏
j=1

λkj e−λ

kj !
,

corresponding to a set ofN independent discrete events characterized by a Poisson process
with Poisson parameter λ. Show that

π(λ|α, β) =
αβ

Γ(β)
λβ−1 e−αλ ,

is a family of priors, each normalized on λ ∈ [0,∞), which is conjugate to the likelihood
distributions f(k|λ).

Solution:

Let K = k1 + · · ·+ kN . Then

π(λ|k, α, β) =
f(k|λ)π(λ|α, β)

1∫
0

dλ′ f(k|λ′)π(λ′|α, β)

=
λK+β−1 e−(N+α)λ

1∫
0

dλ′ λ′K+β−1 e−(N+α)λ′

=
(N + α)K+β

Γ(K + β)
λK+β−1 e−(N+α)λ .

Thus the change in hyperparameters is given by

α→ α′ = N + α

β → β′ = K + β .

(6) Professor Jones begins his academic career full of hope that his postdoctoral work, on
relativistic corrections to the band structure of crystalline astatine under high pressure,
will eventually be recognized with a Nobel Prize in Physics. Being of Bayesian convic-
tions, Jones initially assumes he will win the prize with probability θ, where θ is uniformly
distributed on [0, 1] to reflect Jones’ ignorance.

(a) After N years of failing to win the prize, compute Jones’s chances to win in year
N + 1 by performing a Bayesian update on his prior distribution.
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(b) Jones’ graduate student points out that Jones’ prior is not parameterization-independent.
He suggests Jones redo his calculations, assuming initially the Jeffreys prior for the
Bernoulli process. What then are Jones’ chances after his N year drought?

(c) Professor Smith, of the Economics Department, joined the faculty the same year as
Jones. His graduate research, which concluded that poor people have less purchas-
ing power than rich people, was recognized with a Nobel Prize in his fifth year. Like
Jones, Smith is a Bayesian, whose initial prior distribution was taken to be uniform.
What is the probability he will win a second Nobel Prize in year 11? If instead Smith
were a frequentist, how would he assess his chances in year 11?

Solution:

(a) For the Beta distribution π(θ) = θα−1(1− θ)β−1/B(α, β), one has

〈θ〉 =
α

α+ β
. (1)

Let X denote the number of Nobel Prizes that Jones has received in years 1 through N .
Then the probability for outcomes {y1, . . . , yM} given observations {x1, . . . , xN}, where
xj = 1 meaning a Nobel Prize was awarded in year j and yk = 1 means a Nobel Prize will
be awarded in year N + k, is given by (see Eqn. 1.115 of the Lecture Notes)

f(y |x) =
B(X + Y + α,N −X +M − Y + β)

B(X + α,N −X + β)
,

where X =
∑N

j=1 xj and Y =
∑M

k=1 yk, and where B(u, v) = Γ(u) Γ(v)/Γ(u+ v) is the beta
function. We take M = 1 and y1 = 1, in which case

f(prize | reality) =
B(X + 1 + α,N −X + β)

B(X + α,N −X + β)
=

X + α

N + α+ β
,

where we have used the Γ-function identity z Γ(z) = Γ(z+ 1) . With X = 0 and α = β = 1,
we have f(prize | reality) = 1/(N + 2).

(b) For the Jeffries prior, take α = β = 1
2 , in which case f(prize | reality) = 1/(2N + 2).

(c) For Smith, we take X = 1, N = 10, α = β = 1, hence f(prize | reality) = 2/(N + 2) = 1
6 .

If Smith were a frequentist, he would estimate his chances at p = 1
10 .
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