PHYSICS 210B : NONEQUILIBRIUM STATISTICAL PHYSICS HW ASSIGNMENT \#4 : DIFFUSION

(1) A diffusing particle is confined to the interval $[0, L]$. The diffusion constant is D and the drift velocity is v_{D}. The boundary at $x=0$ is absorbing and that at $x=L$ is reflecting.
(a) Calculate the mean and mean square time for the particle to get absorbed at $x=0$ if it starts at $t=0$ from $x=L$. Examine in detail the cases $v_{\mathrm{D}}>0, v_{\mathrm{D}}=0$, and $v_{\mathrm{D}}<0$.
(b) Compute the Laplace transform of the distribution of trapping times for the cases $v_{\mathrm{D}}>0, v_{\mathrm{D}}=0$, and $v_{\mathrm{D}}<0$, and discuss the asymptotic behaviors of these distributions in the limits $t \rightarrow 0$ and $t \rightarrow \infty$.
(2) Consider a continuum model of a polymer, where the position $\boldsymbol{R}(s)=(a / \sqrt{d}) \boldsymbol{W}(s)$, where $\boldsymbol{W}(s)=\left\{W_{1}(s), \ldots, W_{d}(s)\right\}$ is a d-dimensional Wiener process, with $s \in[0, N]$, where N is the length of the polymer in units of the persistence length a. The density, in units of mass per persistence length, is

$$
\rho(\boldsymbol{r})=\int_{0}^{N} d s \delta(\boldsymbol{r}-\boldsymbol{R}(s))
$$

Show that the structure factor $\left.S(\boldsymbol{k})=\left.N^{-1}\langle | \hat{\rho}(\boldsymbol{k})\right|^{2}\right\rangle$, where $\hat{\rho}(\boldsymbol{k})$ is the Fourier transform of the density, is of the Debye form,

$$
S(\boldsymbol{k})=2\left(R_{0} / a\right)^{2} f\left(k^{2} R_{0}^{2} / 2 d\right)
$$

where $f(x)=\left(e^{-x}-1+x\right) / x^{2}$.
(3) Verify that the distribution

$$
\Pi[h(x)]=\exp \left\{-\frac{D}{\Gamma} \int_{-\infty}^{\infty} d x\left(\frac{\partial h}{\partial x}\right)^{2}\right\}
$$

solves the functional Fokker-Planck equation for the one-dimensional KPZ equation.
(4) Consider the Mullins equation,

$$
\frac{\partial h}{\partial t}=-\nu \nabla^{4} h+\eta
$$

where $\nabla^{4}=\left(\nabla^{2}\right)^{2}$.
(a) Use dimensional analysis and linearity to show how the interface width $w(t)$ scales with the parameters and time. For what dimensions does the noise roughen the interface?
(b) Compute the interface width and the two point correlation function in dimensions $d=1, d=2$, and $d=3$.

