Lectures 9: Maximum likelihood II.
(nonlinear least square fits)

X2 fitting procedure!



short review of Lecture 8:

An example might be something like fitting a known functional form to data
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short review of Lecture 8:

example: testing coin making machine




short review of Lecture 8:

Model for motivating nonlinear least squares fitting (x2 fitting)

Manufacturer prints coins noticing that the printing machine produces biased heads.
This can be measured by tossing n coins from the batch and measuring the binomial
probability p of the batch. For convenience of some analysis 2p - 0.4 is determined by
measuring 2nnead/n - 0.4 which turns out to be the function of the temperature where

the machine operates (temperature x is recorded for the measurement). The results also
depend on five parameters b+ ... bs of the mechanical construction of the printing
machine. A smart theorist comes up with a model how the value of p depends on the
temperature x and the five parameters b1 ... bs:

(z — 54)2)

f(x) = by exp(—baox) + b3 exp (—% 7
f(x)=2p-0.4 is the S

measured value of 2p-0.4
as a function of
temperature x

Manufacturer wants to determine the parameters b+ ... bs so that they can operate the
machine at the temperature where 2p - 0.4 = 0.6 so that p=0.5 and the coins are
unbiased. This will require to fit the five parameters b+ ... bs of the machine based on the
available data at many temperatures. How do we do that?



short review of Lecture 8:

Data are collected at various temperatures x..

At each temperature x; the value yi = 2nheags/n - 0.4 is
measured to approximate 2p - 0.4 from n coin tosses

But Yi has some error €;

What is the error?



short review of Lecture 8:
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short review of Lecture 8:

Weighted Nonlinear Least Squares Fitting
a.k.a. y2 Fitting
a.k.a. Maximum Likelihood Estimation of Parameters (MLE)
a.k.a. Bayesian parameter estimation
(with uniform prior and maybe
some other normality assumptions)

these are not all exactly identical,
but they're real close!

y; = y(x;|b) + e; measured values supposed to be a model, plus
an error term
e; ~ N(0,0;) the errors are Normal, either independently
e ~v N(O, E) or else with errors correlated in some known

way (e.g., multivariate Normal)

We want to find the parameters of the model b from the data.



Maximum Likelihood discussion

Fitting is usually presented in frequentist, MLE language.
But one can equally well think of it as Bayesian:

P(bl{yi}) o< P({y:}b) P(b)
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Now the idea is: Find (somehow!) the parameter value b, that
minimizes 2.

For linear models, you can solve linear “normal equations” or, better,
use Singular Value Decomposition. See NR3 section 15.4

In the general nonlinear case, you have a general minimization problem,
for which there are various algorithms, none perfect.

Those parameters are the MLE. (So it is Bayes with uniform prior.)



Maximum Likelihood discussion

Nonlinear fits are often easy in MATLAB (or other high-level languages) if you
can make a reasonable starting guess for the parameters:

T — by)?
y(z|b) = by exp(—bax) + b3 exp (_%( - 4) )
5

o=y (st

)
ymodel = @(x,b) b(1)*exp(-b(2)*x)+b(3)*exp(-(1/2)*((x-b(4))/b(5)) .A2)
chisqfun = @(b) sum(((ymodel(x,b)-y) /<ia) A2}

1.2

bguess = [1 2 .5 3 1.5]

bfit = fminsearch(chisqfun,bguess)
xfit = (0:0.01:8); o8}
yfit = ymodel (xfit,bfit);

1

\
§ :

bfit = 1.1235 1.
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Maximum Likelihood parameter errors?

How accurately are the fitted parameters determined?
As Bayesians, we would instead say, what is their posterior distribution?

Taylor series:

o - . [y 82X2
32X (b) ~ ~2Xmin — (b —bo) {Z’?bc’?b] (b —bo)

So, while exploring the y2 surface to find its minimum, we must also
calculate the Hessian (2nd derivative) matrix at the minimum.

Then
P(b|{y:}) o exp [~1(b — bo)73; (b — bo)] P(b)
with I

2y2 } -1~ covariance (or “standard error”) matrix
1~

3, = |2 of the fitted parameters
’ [Qabab

Notice that if (i) the Taylor series converges rapidly and (ii) the
prior is uniform, then the posterior distribution of the b’s is
multivariate Normal, a very useful CLT-ish result!



¥2 distribution

Let’s talk more about chi-square.
Recall that a t-value is (by definition) a deviate from N(0, 1)

v2 is a “statistic” defined as the sum of the squares of n independent t-values.
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Chisquare(rv) is a distribution (special case of Gamma), defined as

x>~ Chisquare(v), D> 0

2) v—1

—
>
N
e
N | =

dy? = exp (—3 x°) d . 2 >0

p(x

The important theorem is that ¢ 2 is in fact distributed as Chisquare.

Let’s prove it.



I' function 1-pager

In mathematics, the gamma function (represented by

the capital Greek letter I') is an extension of the
factorial function, with its argument shifted down by 1,

to real and complex numbers. That is, if 7 is a positive
integer:

I'(n) =(n—1).

The gamma function is defined for all complex numbers
except the non-positive integers. For complex numbers
with a positive real part, it is defined via a convergent
improper integral:

I'(2) = /000 z” e ® da. I' (%) = /7




y2 distribution

Prove first the case of v=1:

Suppose px(x)zme = z~N(0,1)

and Y = T2

~N

py (y) dy = 2px (z) d

M a2
>

o
>

Q.S' 9L
nS

)

Q@
Q<
T

S |

dx X

1
So, py (y) =y~ 2px(y1/?) = \/leye_zy

~ Chisquare(1)




¥2 distribution

To prove the general case for integer v, compute the characteristic function

Xz ~ Chisquare(v), v > 0

1 1
p(P)dy* = — ()2 texp(=1x%)dy®.  x*>0
22"T'(3v)

characteristic function by Fourier transformation:

V2
(1-21*t) | |
\ Since we already proved that v=1 is the
distribution of a single t2-value, this proves that

the general v case is the sum of v t?-values.



x2 distribution Maximum Likelihood parameter errors?

How accurately are the fitted parameters determined?
As Bayesians, we would instead say, what is their posterior distribution?

Taylor series:

1.2 1.2 1 T |1 82X2
— 32X (b) ~ ~ 2 Xmin §(b — bo) {Z’?bc’?b] (b —by)

So, while exploring the y2 surface to find its minimum, we must also
calculate the Hessian (2nd derivative) matrix at the minimum.

Then
P(b[{yi}) o< exp [—%(b — bo)ngl(b — bo)] P(b)
with I

522 } -1~ covariance (or “standard error”) matrix

3, = |2 of the fitted parameters
’ [Qabab

Notice that if (i) the Taylor series converges rapidly and (ii) the

prior is uniform, then the posterior distribution of the b’s is
multivariate Normal



x2 distribution Maximum Likelihood parameter errors?

Numerical calculation of the Hessian by finite difference

0°f 1 (f++—f—+ B f+——f——)
dzdy ~ 2h 2h 2h

= o (Fae + foe = fm = )

bfit = 1.1235 1.5210 0.6582 3.2654

chisqfun = @(b) sum(((ymodel(x,b)-y)./sig).A2)
h = 0.1;

unit = @(1) (1:5) == 1;

hess zeros(5,5);

for i=1:5, for j=1:5

bpp = bfit + h*(unit(i)+unit(3));
bmm = bfit + h*(-unit(i)-unit(j));
bpm = bfit + h*(unit(i)-unit(3));
bmp = bfit + h*(-unit(i)+unit(3));

hess(i,j) = (chisgfun(bpp)+chisqfun(bmm)..
-chisqgfun(bpm)-chisgfun(bmp))./(2*h)A2;
end
end
covar = inv(0.5*hess)

o— 4 ®0+ ® ++
h
h
*=0 %00 *>o0 *
® _ _ ‘0_ .+_

1.4832

This also works for the diagonal
components. Can you see how?



distribution Maximum Likelihood parameter errors?

(z — 54)2)

For our example,  Y(z|b) = b1 exp(—baz) + b3 exp (_% b2

5

bfit =
1.1235 1.5210 0.6582 3.2654 1.4832

hess =
64.3290 -38.3070 47.9973 -29.0683 46.0495
-38.3070 31.8759 -67.3453 29.7140 -40.5978
47 .9973 -67.3453 723.8271 -47.5666 154.9772
-29.0683 29.7140 -47.5666 68.6956 -18.0945
46.0495 -40.5978 154.9772 -18.0945 89.2739

covar =
0.1349 0.2224 0.0068 -0.0309 0.0135
0.2224 0.6918 0.0052 -0.1598 0.1585
0.0068 0.0052 0.0049 0.0016 -0.0094
-0.0309 -0.1598 0.0016 0.0746 -0.0444
0.0135 0.1585 -0.0094 -0.0444 0.0948

This is the covariance structure of all the parameters, and indeed (at least in
CLT normal approximation) gives their entire joint distribution!

The standard errors on each parameter separately are 0; — Cz-z-

sigs =
0.3672 0.8317 0.0700 0.2731 0.3079

But why is this, and what about two or more parameters at a
time (e.g. by and b;)?






